The Annals of Statistics
1991, Vol. 19, No. 2, 557-578

ASYMPTOTICS OF MAXIMUM LIKELIHOOD ESTIMATORS
FOR THE CURIE-WEISS MODEL

By Francis CoMETS! AND BasiLis Gipas?

Brown University

We study the asymptotics of the ML estimators for the Curie-Weiss
model parametrized by the inverse temperature B and the external field A.
We show that if both B and A are unknown, the ML estimator of (83, h)
does not exist. For 8 known, the ML estimator IAz,l of h exhibits, at a first
order phase transition point, superefficiency in the sense that its asymp-
totic variance is half of that of nearby points. At the critical point (8 = 1),
if the true value is h = 0, then n%/ 4ﬁn has a non-Gaussian limiting law.
Away from phase transition points, A . is asymptotically normal and effi-
cient. We also study the asymptotics of the ML estimator of B for known A.

1. Introduction and main results. During the last few years a great
deal of attention has been given [2, 15, 16, 14, 17, 19, 8, 10, 11, 20] to the
estimation of parameters for Gibbs distributions—equivalently, Markov ran-
dom fields (MRF). This statistical inference problem was primarily motivated
by applications [6, 7, 9, 12, 13, 21] of the framework for image processing tasks
formulated in [6].

In this paper we study the asymptotics of the maximum likelihood (ML)
estimators for the Curie-Weiss model [4] which shares many qualitative
properties with MRF. Our main results are stated in Theorems 1.1-1.4 below.
Among other things, we prove (Theorem 1.1) that at a first order phase
transition point, the ML estimator of the external magnetic field is asymptoti-
cally superefficient, in the sense that its asymptotic variance is half of the
asymptotic variance of the estimators for nearby points. The ML estimates of
these nearby points are asymptotically normal and their asymptotic variance
saturates the Cramér-Rao lower bound. Preliminary work indicates that a
similar superefficiency phenomenon occurs for the Ising model. The superef-
ficiency property was conjectured in [11].

The Gibbs measure for the Curie-Weiss model is a probability distribution
on {—1, 1}* whose density with respect to the counting measure is given by

1 - -
(1.1) P, g n(%x1,...,%,) = ATRD) exp{n(ng + th)},

where x, €{-1,1}, i=1,...,n, X, =(x, + --- +x,)/n and Z(B,h) is a
normalizing constant called the partition function. This distribution is
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558 F. COMETS AND B. GIDAS

parametrized by two parameters: The inverse temperature B > 0, and the
external magnetic field A € %. However, the distribution contains only one
sufficient statistic, i.e., X,. This indicates that the pair(B8, k) cannot be
estimated simultaneously. In Section 2, we show that with probability 1, the
ML estimator of the pair does not exist. In Theorems 1.1-1.3 below, B is
assumed to be known and the ML estimator of & is studied. In Theorem 1.4, i
is assumed known and the ML estimator of 8 is studied.

From (1.1), we obtain that the conditional distribution at site i is given by

exp{x;(B(1/n)t; + h)}
exp{B(1/n)t; + h} + exp{—B(1/n)¢t; — h}’

Pn,ﬂ,h(xi

{xj}j#:i) =

where t; = ¥ ;,,x;. This shows the relation between the Curie-Weiss and
Ising models, as well as the weak long-range interactions in the Curie-Weiss
model.

In order to state our main results we need some elementary properties [4] of

the Curie-Weiss model: For & # 0, let m(gB, k) be the unique solution of
(1.2) tanh(Bm + h) = m

with sign(m) = sign(h). For B > 1, let m .= m _(B) be the unique positive
solution of

(1.3) tanh Bm =m.

For fixed B, m(B, k) is an odd increasing function of h, which is continuous
for h + 0. For B < 1, m(B, k) is continuous for all » € R and m(B,0) = 0.
For B> 1, m(B,h) > m,(B) as h |0, as m(B,h) > m_(B) = —m_(B) as
h 10 (see Figure 1). The Curie-Weiss model exhibits [4] a phase transition at
B =1, in the sense that for A # O or B < 1,

(1.4) X, - m(B, k)
in probability under P, ; , and for 8 > 1, h = 0,
X, = 30,8+ 30m )

in distribution under P, ; ;. These limits may be obtained as by-products of
Proposition 2.1 in Section 2. The value B = 1 corresponds to the (inverse)
critical temperature and the half line g > 1, A = 0, corresponds to the first
order phase transition points. The term first order phase transition refers to
the discontinuity of m(B, h) across this half line. The point B =1, h = 0 is
referred to as the second order phase transition point. The following variances
will enter our theorems: For A # 0, let

1 —m2(B,h)
1-B[1-m*B,h)]

(1.5) a%(B,h) =
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+1

mn(h)

<

n, 7

R |

Fic. 1. Graphs of m(h) and m,(h) for B > 1 and large n. The behavior of m (k) is deduced
from (2.36) and (2.33a).

and
2 P K 2
o (B’O) - ’Elir‘l)o' (B’h)
1
(1.63.) ='i'__B, if B <1,
1.6b o l-m if B> 1
(1.6b) _l—B(l—mﬁ)’lB> .

Our main results are stated in Theorems 1.1-1.4, and are proven in the
remaining sections. Throughout the paper, convergence in distribution will be
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indicated by —, . In Theorems 1.1-1.3, B is assumed to be known, and the g
dependence of the various objects such as P, z ,, m(B, h), o%(B, h), will be
suppressed.

TuroREM 1.1. Assume that B > 0 is known and let h, be the ML estimator
of h. Then

@ IfB>0,h+0o0rB<1,k=0,then under P, ,,

A 1
(1.7) Vn(h, —h) =p N(o,m).
(b) If B > 1, h = 0, then under P, ,,
1 1 1
(18) \/;fzn -p 5804' EN(O,W)

In Section 2, we will show that for A # 0 or B8 < 1, the Fisher information
converges to o?(h). Thus point (a) of Theorem 1.1 says that for A # 0 or
B < 1, the ML estimator of h is consistent and asymptotically normal and
efficient. While by part (b), the variance of the limiting distribution (i.e., the
asymptotic variance) is $((0)) 2. This means that at first order phase transi-
tion points, the ML estimator of A = 0 is asymptotically twice as efficient as
the neighboring points (k close to zero, B > 1). This is the superefficiency
phenomenon mentioned before. Part (b) of the theorem also shows that half of
the time, the estimator converges to the true value & = 0 faster than (1/ Vn)
[in fact at the speed (log n)/n]. The intuitive origin of this lies in the fact (to
be made precise in Section 2) that X, visits, with probability one half for large
n, each of the symmetric neighborhoods of m, and m_. But for A slightly
different from zero, X,, with probability tending to 1 as n — +, remains
outside to the interval [m_, m ].

The gap between (1/0%(0)) and 1/0%(0) indicates a nonuniform conver-
gence at the neighborhood of A = 0(B > 1). The next theorem fills the gap
between these two values and provides an explanation of the underlying
nonuniform convergence.

THEOREM 1.2. Assume B > 1. For h € R, define
exp(fim.,)

(1.9) a(h) = exp{TLm‘+} + exp{—ﬁm+} ’

Let Y be a normal random variable with mean zero and variance (0(0))~% and
denote by ui (resp., u7) the probability distribution of the truncated variable
Y1y .5 (resp., Y1y _3). Then we have

(a) Under P, 3 ,, with h e R,

(1.10) x/rT(fzn - %) —p Z~a(R)pg + [1 - a(R)]pg.
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(b) Under P, ,-12 with h > 0,

. 3
(1.11a) ﬁ(hn—ﬁ) —>p Z~uty
and with h < 0,
I3
(1.11b) fﬁ(ﬁn—ﬁ)—»l)z~“g.

Theorem 1.2 together with the (stochastic) monotonicity of A, in & (see
Section 2), yield all possible limits of Vn [A, — h(n)] for any sequence h(n) —
0. For h(n) = o(1/n), one obtains (1.10) with A = 0. For h(n) = o(n~/?) and
1/n = o(h(n)), one obtains (1.10) with A = « [equivalently, (1.11) with & = 0].
Also, Theorem 1.2 together with certain uniform estimates (see Section 2),
imply that if A(n) = 0o(1) and n~/2 = o(h(n)), then one obtains (1.11) with
h=o [equivalently, (1.7) with h = 0]. Note also that (1.8) is equivalent to
(1.10) with A = 0.

The second moment of lim, Vn [k, — h(n)] reflects the risk of the ML
estimator. The second moment of Z in (1.10) is independent of - and equal to
1/20%(0), while the second moment of Z in (1.11) increases from 1,/202(0) to
1/0*0) as |h| ranges from 0 to +o, thus filling the gap between these two
values. The mean of Z in (1.10) is equal to

tanh hm ,

V2mra?(0)

which increases, as k ranges from 0 to +w, from 0 to 27a2(0))"/2 A
straightforward computation shows that the mean of Z in (1.11a) decreases
from (2ma0))~ /2 to zero asjz ranges from 0 to +«. Hence, for large n, the
worst behavior of the bias of A, is (27a%(0))"1/2n~1/2 Note that this goes to
zero like n~'/2, in contrast to the typical behavior n~'. Also note that the
median of the limiting variable Z is zero in all cases.

The next theorem treats the critical point case B =1, h = 0.

(1.12)

THEOREM 1.3. Suppose that B = 1 (known) and that the true value of h is
zero. Then under P, (= P, , ,), we have

(1.13) n®*h, - H,

where ‘

(1.14a) H(a) =F(g'(a)), ach,
(1.14b) g(t) = log [ exp{—$5¢* + t¢) d,
(1.14c) dF(¢) = exp{— {;¢* — g(0)} d¢.

Note that at the critical point B = 1, h = 0, the ML estimator ﬁn approaches

the true value h = 0 at a speed n~3/* which is faster than the typical speed
n~1/2
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In Theorems 1.1-1.3, B was assumed to be known and we estimated &. In
the next theorem, h is assumed to be known and we treat the asymptotic
behavior of the ML estimator Bn of B. For s1mphclty, we suppress the
h-dependence of various quantities such as P, 5 ;, o 2B, h), etc.

THEOREM 1.4. Suppose that h is known and let én be the ML estimator of
B. Then

(@) Ifh # 0, then under P, g,

(1.15) V' (B, — B) =p N(0,(c(B)m(B)) 7).
(b) If h = 0 and the true B satisfies 0 < B < 1, then
~ 1
X1

where x? is the chi-square distribution. In particular, ﬁn is not consistent.
(¢) Ifh = 0 and the true B satisfies B > 1, then

(1.17) Vr (B, - B) »p N(0,(s(0)m . (B)) ).
(d) Ifh = 0 and the true B is equal to 1, then for a € R,

(1.18) Pn’l,o{\/ﬁ(ﬁn—l)<a > e ([ Vu(a) ,yv(a) ])

where F is defined by (1.14c) and v(a) is the variance of the probability
measure c exp{— ¢* + (a/2)¢%} d € on R.

Comparing part (b) of Theorem 1.1 and part (c) of Theorem 1.4, we see that
at first order phase transition points the ML estimator hn, when B is known
(B > 1), is superefficient, while the ML estimator Bn when A(= 0) is known, is
asymptotically normal. A similar behavior is expected for the Ising model. The
natural statistic of the parameter A which exhibits superefficiency, is the
mean magnetization X,. In the physics literature, this statistic is called order
parameter [18] and is intrisically related to the occurence of first order phase
transition. The notion of order parameters extends to general Gibbs distribu-
tion. For the general case we expect that at first order phase transition points,
the parameters of the distributions which are associated with the order
parameters [18] exhibit superefficiency, but the other parameters have a more
typical behavior. All our major results go through for the nonbinary
Curie—Weiss models [4] [(1.2), (1.8), (1.13) and (1.14) must be suitably changed].

A basic tool in our technical estimates is Kac’s Gaussian transform. This
transform leads to simple expansions of expectations via the Laplace method.
A large deviation technique [3] for evaluating expectations is also possible, but
our procedure is simpler and more straightforward.

The organization of the paper is as follows: In Section 2 we derive various
technical results which are used in the proof of Theorems 1.1 and 1.2. These
theorems are proven in Section 3. Theorem 1.3 is proven in Section 4 and
Theorem 1.4 in Section 5.
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2. Technical estimates. The proof of Theorems 1.1 and 1.2 will be
based on Proposition 2.1 and Corollary 2.1 derived in this section. The proof of
the proposition is based on two technical lemmas (Lemmas 2.1 and 2.2). We
start with some preliminary properties of the Curie-Weiss model and the
Gaussian transform.

A. Preliminaries and the Gaussian transform. The log-likelihood function
for the Curie—~Weiss model (1.1) reads

(21) ' ln(Xn;B’h)zpn(B’h) - %BXE_th’
where
1
(22) pn(B,h) = ;logzn(B,h)
is called the pressure of the model. The ML equations read
(233) mn(B,h) =Xn’
(2.3b) u,(B,h) =3X,
where
Ip,(B, h) .

(243) mn(B’h) = —3h— =En,[3,h(Xn),

Ip(B,h) 1 _
(2.4b) u,(B,h) = —w ‘Z‘En,g,h(X3)~

Applying Schwarz’s inequality, one easily obtains that if both g and A are
unknown, equations (2.3a, b) do not have a solution on a set of probability 1.
Hence B and %k cannot be estimated simultaneously.

The Gaussian transform is based on the simple identity

2.5 L 1/ ¢ L o2 d 0
. — = - —-— + > 0.
(2.5) exp{ 2ay } . ’/;Rexp{ 20177 ayn} n, a

Let E{-} denote expectation with respect to the measure 36(x — 1) +
38(x + 1). Using (2.5) we obtain

1 _ -
E{exp{n(EBX,f + th)}l)—{,,eA}

(26) = \/—-S—% exp{—n%%z-}fmdgexp{—n(%ﬁfz - h«_f)}

XE{exp[nﬁgX'n]aneA},
where we have used the change of variables Bn + h = B¢. From (2.6) with
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A =[-1,1], we obtain

n h?
A e I S e

where
(2.8) fo,n(€) = 3BE* — k¢ — logcosh BE.

The minima of f; ,(¢) will play a crucial role in our analysis. They satisfy the
equation

(2.9) B¢ — h = B tanh BE.

We will use the following well-known properties [4], some of which will be
consequences of our estimates in the remaining subsections:

1. For B < 1, f5 , has a unique minimum to be denoted by (B, k). It satisfies
{(B,0) = 0.

2. For h # 0, or B < 1, f5 ;, has a unique global minimum to be denoted also
by {(B, h).

3. For B > 1 and |h| sufficiently small, f; , has two minima {*(B, ) > 0 and
¢{(B,h) <0. For h > 0 (resp., h <0), {* (resp., {7) is the global mini-
mum. For A =0, {*(B,0)= —¢{ (B, h) =m (B) = —m_(B), where m ,
were defined via (1.3).

4. For h # 0, one easily derives, using (2.4a), (2.2) and (2.7), that m (B, k)
has a limit m(B, k) as n — », which satisfies

h
(2.10) m(B,h) = ) +{(B,h),

where {(B, h) is the unique global minimum of fj ;.

5. The m(B, h) of (2.10) satisfies (1.2) and is monotone in k. For B <1,
m(B,0) = 0. For B> 1, m(B,h) > m_ (B) as h |0 and m(B, h) > m_(B)
as h 10.

6. By symmetry, m ,(B,0) = 0. From (2.4a) we obtain

om,(B,h) _ °p,(B.h)
oh - 9n?
for finite n. Hence m (B, k) [and m(B, k)] is monotone in h (see Figure 1).

Using (2.7) one can easily show that for A # 0 or B < 1, the right-hand side
of (2.11) converges as n — + to

(2.12) o?(B,h) = (F1u(0) B,

where ¢ is as in (2.10). This ¢%(8, h) is the same as in (1.5).

7. From (2.1), we obtain that the Fisher information (per observation), when
B is known, is given by (3%pn(B, h))/dh? Hence for h # 0 or B < 1, the
Fisher information has a limit equal to o%(8, ). For B > 1, h = 0, the
Fisher information converges to +® as n — +.

(2.11) =nVar, ;,(X,) >0
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B. Two technical lemmas. In the rest of this section we will suppress the
B-dependence of the various objects that occur.

LEMMA 2.1. Let g be a measurable function on R such that |g(x)| <
explclx|} for some ¢ > 0. Let I be an interval such that f,(£) has a unique
minimum {(h) on the closure I of I with ¢ € I (I = interior of I). If f1({) > 0
(which holds for all B + 1 or h # 0), then

Vn [dég(Vn (& - £))exp{—n[ fu(€) = fu(D])
(2.13) !

= J d€8(Oexo{= 5 ()E) + O, u(n712).

Proor. Let J,(I) denote the left-hand side of (2.13). Let J,(a) = J,({ —
a, { + a)) for positive a (to be chosen next) and

(2.14) A=In{¢&ac< |-}
Then
(2.15) J (1) =dJd,(a) +J,(A).

By Taylor’s formula,

(&) = (&) + 3FH((E -+ R
with |R| < ¢,l¢ — ¢|%. Changing Vn (¢ — {) to £, we obtain

(2.16) J.(a) = [

dég(&)exp{— 31 ({)é* + R,)
¢l <ayn

with |R,| < ¢;1¢1°n~1/2. Let

L(a) = [ _deg(®e{=3fl(£)¢%).

<ayn
Using the inequality |e* — 1| < |uleixl, we obtain
(2.17) |J,(a) — I(a)| <K,(a),
with
(2.18)  K,(a) < fw| rdfanlg(fiexp{—% 7(0) €2 + R,|).

On the set {£: |¢] < aVn), we have |R,| < ac,|¢l’. Now we choose a so that
ac, < 3f7(Q) and [{ — a,{ + a] c I. Then

K,(a) <c;n™'/? /m I1° exp{ - 11 (£) €% + clél} dé.

Hence K,(a) = 0, (n~'/?). By a standard estimate on the tail of the normal
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distribution, we have that

[ deexp{=3fi(¢)€ + clél)
¢l 2ayn

is exponentially small. Hence (2.16) implies

(219)  Ju(e) = [ dég()ex(= 3 (§)€} + O, (n™'7).

Next we show that J,(A) in (2.15) is exponentially small. To this end, we
establish the following general fact: For all v > 0, d > 0, there exists a
& = 8(v, d) such that for any Borel set A with d < dist(¢, A) and

1
(2.20) ysinf{'(—fT)z[fh(f) —fh(z)]:geA},
we have
(2.21) J,(A) <8 'exp{—ns}.

Indeed, changing variables, we obtain

T(A) <V | dgexp(-ny(£ = 0)" + c/nlé - 4]

c\2 2
<2 d.fexp{ (g——) +—},

£>dyn 2y 4y
which is exponentially small Now, from the deﬁnltlon of f, we have
lm fu(§) —fu($)] = 5 > 0.
- g) —=[f W] =

Hence, if A is chosen to be of the form
A=In{é&ax<l|é¢ - <al}, a >a,
then the infimum in (2.20) is strictly positive (since { is the unique minimum

of f, on A). But this is true for all a’ > a. Hence it is true for the set A of
(2.14). Thus (2.21) together with (2.19) yields (2.13). O

REMARK. Although not needed in the proofs of our theorems, we note that
(2.13) may be strengthened in two ways: (a) if g is even, then the error in
(2.13) is the order O, ,(n™1). (V) If B > 1, I = R* (resp., R7), and ¢ = ¢*(h)
[resp., £7(h)], then there exists hy > 0 such that estimate (2.13) is uniform in
h for |k| < k. The proof of these refinements is not included here, since we do
not need these improvements.

LEMMA 2.2. Let g be as in Lemma 2.1. Suppose that B > 1, h = 0, and let
m,, € = {+1,— 1} be the two global minima of f,(&¢). Then

‘/E‘[m d¢ g(l/;(f - me))exp{—n%B§2}E{exp[nB§X'n]15@()—{"):8}
(2.22)
= exp{—nfo(m+)}{fmd§g(§)exp —L1fy(m,)€?] + oc(n—1/2)},
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where

+1, ifx>0
Slgn(x)‘{ L ifxeo

Proor. Let J, denote the left-hand side of (2.22). We write
(2.23a) J,=I,+R,,— R, ,,

where

(2.23b) I,=vn f [ A€8(Vn (& = m.))exp(~nipe*) Elexp[ npeX, ]},

=Vn [ dég(Vn(é-m n3zBE*
(2330 feggo g(Vn (¢ — m,))exp{—n}pe?)

xE{exp[ npex,| 1sign(X,,)=s}’

=Vn f ,d€g(Vn (¢ = m,))exp(—nzp¢?)
(2.23d)

E{exp[nBeX, | Lignz,)= o} -

Now, I, can be written as
I, = exp{=nfo(m.)Vn [ o dE8(/ (£ = m))exp{=n[ fu(£) = Fo(m.)])
and by Lemma 2.1,
(2.24) I,= exp{—nfo(m+)}{fmd§g(§)exp[—% g(m,)E] + oc(n—1/2)}.
The first error term R, , is bounded as
IR, .| < 1/_f dé exp{ —nipe? + cVnlé — m,|)
= Oc(exp{c\/;mJ,})

and the second error term R, , as
R ol <V [ déexp{=nipe® + cvnlé —m.)

= Oc(exp{cx/;er}).
Combining (2.23)-(2.26) we obtain (2.22). D

(2.25)

(2.26)

C. Asymptotics of the magnetization and central limit theorems for X,,.

PrOPOSITION 2.1. Let h € R. Then (a) For h #+ 0 or B < 1, we have under
Pn,h+7l/‘/rT7
(2.27) Vn (X, — m(h)) »p N(a?(h)h,o%(h)).
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(b) For B> 1 and h = 0, we have under P, 7 , i,

(2.28a) (Vn (X, - m,)|X, > 0) =, N(a?(0)%, 02(0)),
(2.28b) (Vn (X, - m_)|X, <0) >, N(a%(0)%,02(0)),
and under P, 3 ,,,

(2.29a) (Vn (X, - m.)|X, > 0) =, N(0,0%0)),
(2.29b) (Vn (X, - m_)|X, <0) =5 N(0,0%0)).

REMARK 1. In (2.28) and (2.29) we use the notation: For a sequence of
random variables Y,, a sequence of events A, and a probability distribution F
on R, we write (Y,|A,) =, F to mean P(Y, € dy|A,) — dF(y).

REMARK 2. For 2 = 0, (2.28) is proven in [5] and (2.27) in [4]. The proofs in
[4] and [5] use the characteristic function and can be extended to & # 0. Our
proofs use the Laplace transform and are easy consequences of Lemma 2.1 and
2.2. The Laplace transform yields also convergence of moments needed in the
proofs of the theorems.

Proor or ProrosiTioN 2.1. We will work with the Laplace transform
instead of the characteristic function

(a)
En’h+7m—1/2{exp{t\/;t_()—zn - m(h))}}

(2.30a) Z(h+ (t+h)/Vn
— exp{—tvn m(h)) (z (h(+ Z/;E)n)

Using (2.7) and Lemma 2.1 with g(¢) = exp{(t + h)¢)}, I =R, one easily
obtains

2

tth exp{—n;—ﬁ —nf({) +Vn (¢t + B)m(h)

Vn

Zn(h +
(2.30b)

fr (€)

1 I
Xexp{—z—o-z(h)(t +h) }[1 +0(n"V?)],

where we have used m(h) = —h/B + {(h) and o%(h) = (fyN~ ' -~
From this we deduce that the left-hand side of (2.30a) is equal to

exp{30%(h)(t* + 2th)} + O(n™1/%),
which yields (2.27).
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(b) We prove only (2.28a). The proof of (2.28b) is identical. We write
En’;n—l/z{exp{t\/—r?()?n - m+)}|Xn > 0}

(2.31a) ZH((t+h)/Vn
= exp{—t\/—n—m+} (Z+(71,/‘/—n_) ) ’

where

(2.31b) z;(”h) -E

Vn
Using (2.6), we have
t+h B t+0) _
,J{( 1=V exp{—(—z—l—g——)—}exp{\/;(t+h)m+}

xVn [déexp{Vn (¢t +R)(£ - m.))
Xexp{ —n%sz}

xE{exp[nﬁf)?n] 1,—(">0}.
Applying Lemma 2.2 with g(¢£) = exp{(¢ + h)¢}, we obtain

+(t+h_ = 1/—”(?" ) exp{—nfo(m+)+\/;l‘(t+7z)m+}

"\ Vn
1 7.2
X exp{Eaz(O)(t +h) } + 0, 5x(n"1?),
where we have used %(0) = (fy(m,))~! — B~1. This implies that the left-hand
side of (2.31) is equal to
exp{302(0)(¢2 + 2th)}[1 + O, z(n~V/?)],

which yields (2.28a). The proof of (2.29) can be given along a similar line and
we do not spell out the details [notice that (2.29) is formally obtained by letting
h—>0]. O

(2.32)

Since convergence of the Laplace transform implies convergence of mo-
ments, we obtain the following corollary which will be used in the proof of
Theorem 1.1.

CoROLLARY 2.1. (a) For h # 0 or B < 1, we have

(2.33a) mn(h + ————) =m(h) + oc?(h)— + o(n"1/?).
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(b) For B > 1, we have

(2.33b) m,|h+

n

I3
=m,+ 02(0)7;_— +o(n~v%, h>0,

;
)

Z -
(2.33¢) m,|h+ ————) m +a'2(0)‘/_ +o(n %), h<O.

Vn

ProoF. Part (a) is a straightforward consequence of (2.27). The proofs of
(2.33b) and (2.33c) are identical and we treat only the case h > 0. The
convergence of the expectation in (2.29a) shows that

(2.34) E, 5, X,| X, > 0) = m + 02(0) 1/_ +o(n-V2).

By Z(h = Z;(—h)) and (2.32), we have

Z;(h/Vn)
Z:(h)Vn) + 2, (h/Vn)
as n — o, This together with (2.34) yields (2.33b). O

(2.85) P, s,m(X,>0)=

ReEMARKS. (1) The convergence of the Laplace transform also implies that
for h#0 or B <1, the Fisher information nVar, g A(X,) converges to
o (B, h) given by (1. 5) [(see vii) of Section 2A].
(2) We have a uniform expansion of the finite size magnetization for 8 and
h near first order phase transition points, which implies (2.33b) and (2.33c):
For B > 1, we have

(2.86) m,(h) =m, tanh(nhm_) + o2(0)h + O(max(;zl—, hz))

uniformly in A form small |k|. The proof of this expansion is lengthy and
involves a uniform (and refined) version of Lemma 2.1. Since it is not used in
this paper and in order to reduce the size of the paper, we do not provide the
proof of (2.36) here. The chief interest of this expansion is in providing a
rigorous analysis of the rounding of a first order phase transition [18]. The
analogues expansion for the Ising model is an interesting and important open
question. The interest of (2.36) in our context, is in providing the quantitative
behavior of m (k) as is shown in Figure 1 at the end of the paper.

3. Proofs of Theorems 1.1 and 1.2.

Proor or THEOREM 1.1. (a) Since m (k) is an increasing function of 4,
the ML equation (2.3a) yields for any a € R,

P, {yn(h, - k) <a) =Pn,h{)_(n < m,,(h + %)}
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Thus, by Corollary 2.1(a),

P, f{n(h,-h)<a}= Pn,h{\/h_()?n - m(h)] <o?(h)a + Oh,a(%)}.

The right-hand side of this converges, by Proposition 2.1(a), to
a},

1
Pr{N(O,az(h)) < Uz(h)a} = PrOb{N(O, m
which proves (1.7).

(b) Let a < 0. By the monotonicity of m ,(h) and the ML equation (2.3a),
we have

a
{\/_ﬁ <a} nO{X <m(\/;)
and by (2.33c),

X, < O}Pn,o()_(n <0)

Pnyo{\/rTi'in <a}= Pn,O{‘/;()_(n -m_) <c?0)a
3.1 ‘

+

o\ 7
By Proposition 2.1(b), the conditional probability in (3.1) converges to
Pr{N(0,1/0%0)) < a}. Now P, (X, < 0) and P, o(X, > 0) sum to 1 and by
symmetry, differ only by P, 0(X = 0) which is exponentlally small as n — .
Hence, both P, (X, < 0) and P, o(X,, > 0) converge to 3. Thus, for a < 0,

(3.2) ,}ifgoPn,o{ﬁﬁn <a}= EPr{N(o, F(T)) < a}.
Now let a > 0 and write
P, o[Vnh, <a} =P, ok, <0}
— a
+ Pn,o{O <X, < mn(——

7
Using (2.33b) and (2.28a), we obtain (for a > 0),

P, o{Vnh, <a} = P; (X, < 0}

Pyof = im < (X, = m.)

X, < O}P o X, < 0).

z > o}pnyo(zn > 0).

(39) < a%0)a + O ( } )

1 1
-+ = — :
e b o ) <o)

This together with (3.2) yields (1.8). O

X, >0}P of X, > 0}
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Proor oF THEOREM 1.2. We proceed as in the proof of Theorem 1.1: (a)
For a < 0, we have

. h
Pn,Tz/n{‘/;(hn - ;) <a}
ol Tm( 05
=Ln%/n n<Mm, T -
(3.4) o
~4hn,h/n ‘/’T"(Xn_m )
1 —
< 0'2(())(1 + 0"’7‘(_{) Xn < O}Pn,ﬁ/n(Xn < 0)
Now
- Z;(h/n)
Pn,?i/n(Xn < 0) = m,

where Z_ (h) [and Z}(h)] are defined as in (2.31b). Using the Gaussian
transform as in (2.31b), one can easily show that

(8.5) P, 5/n(X, <0) >, .1—a(h).
By (2.29b), the conditional probability in (3.4) converges to
Pr{Y < a}.

Hence, for a < 0,

(3.6) Pnjt/n{\/rT(ﬁn - %) < a} >, (1 —a(h))Pr{y <a}.

Now, for a > 0, we write

Pn,z/n{\/rf(ﬁn - %) < a}

+ Ijn,ﬁ/n{_JrT’n+S ‘/E()_(n - m+)

1
<o?(0)a + 0“’7‘(7—{)

X, > O}Pn,z/n()_fn > 0).

As in (3.5), we have
Pn,ﬁ/n()_(n > O) = e a(TL).
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This together with (3.5) and (2.29a) yield for a > 0,
h
(37) Pn,ﬁ/n{l/;(ﬁn - ;

This together with (3.6) is equivalent to (1.10).
(b) We will prove only (1.11a). The proof of (1.11b) is similar. Thus let
h > 0. For a < —h, we have

h — a+h
Pn,ﬂ/‘/i{‘/;(ﬁn - W) <a} =Pn,7i/,/E{Xn <mn( \/_:T )}

< a} =, nll = a(B)] + a(R)Pr{Y < a}.

h
(38) Pn,ﬁ/ﬁ{‘/;(ﬁn - Tn—) <a} =5 0.

For a > —h, we have

Pn,ﬁ/,/ﬁ{‘/;(i;’n_ %) <a}
- a+h
= Pn,TL/,/E{Xn < m, JE )}
(39) = n;/‘/—(X <0

,,N,L{ im<vn (X, - m.)

1
<02(0)(a+h)+0(‘/_)X >0} nz/‘/n(X > 0).

Now (2.35) together with (2.28a) and (3.9) yield (for a > —h, h > 0),

. h
(3.10) Pn,ZN,T{‘/E(hn— 7;—) <a} - . Pr{Y<a}.

This together with (2.9) is equivalent to (1.11a). O

4. Proof of Theorem 1.3. The proof of Theorem 1.3 proceeds along the
lines of the proof of Theorem 1.1. In place of Proposition 2.1, we have the
following limit theorem at the critical point B8 = 1, h = 0.

ProposiTION 4.1. For B = 1 and h = 0, we have under P, 314, h € R,
(4.1) n'/*X, -p Fy,
where
dFy(x) = exp{—f5x* + hx — g(h)} dx
with g(t) defined in (1.14Db).



574 F. COMETS AND B. GIDAS

Proor. We estimate the Laplace transform
Z,((t+ 71)n‘3/4)
Z,(hn=3/%)

(4.2) " E, 5,-w{exp{tn'/*X,}} =

From (2.7) we have

- h? -
(4.3) Z,(hn=%*) = ‘/ —2—,—:; exp{—n'l/z—z-}fdg exp{—nfo(£) + n'/*hé}.

For B = 1, f,(£) has only one minimum m(0) = 0. At the minimum ¢ = 0, we
have

fo(0) = £5(0) = f5'(0) = f¢"(0) = 0,
F0(0) = 2.
Thus near the minimum ¢ = 0,

2
fo(€) = 4_!54 + R.

Using this and following the proof of Lemma 2.1, one can show that

nt/4 fmdf exp{ —nfo(£) + hnl/4¢)

(4.4) = fmdg exp{— 15¢* + hé) +o(n7VY)

= exp{g(h)} + o(n"/*).
From this and (4.2) we obtain
(4.5) E, 7.-s{exp{tn'/*X,}} -, .. exp{g(¢t + k) — g(h)},
which yields (4.1). O

ReEMARk. For % = 0, Proposition 4.1 is contained in [4].

The following corollary is an easy consequence of the proof of Proposition
4.1 and will be used in the proof of Theorem 1.3.

COROLLARY 4.1. For B = 1, we have
m,(hn=3/%) = g'(i_’z)n‘l/4 +o(n~ %),
Proor oF THEOREM 1.3. For a € R,
Pn,o{na/“ﬁn <a}= P, o{X, < m,(an=%/%)}
= Pn’o{nl/“)?n < g'(a) +o(1)}.

By Proposition 4.1 with % = 0, the right-hand side of (4.6) converges to
F,(g'(a)), which implies the theorem. O

(4.6)
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5. Proof of Theorem 1.4. The proof of Theorem 1.4 proceeds along lines
similar to the proofs of Theorems 1.1 and 1.3. For each case (a)-(d) of
Theorem 1.4, we need the analogues of Proposition 2.1 and Corollary 2.1 (or of
Proposition 4.1 and Corollary 4.1). We shall see that the technical estimates
for the present theorem reduce to the technical estimates of Section 2. Next,
we sometimes suppress the h-dependence for convenience.

(a) For h # 0, we have from Proposition 2.1(a),

Vn (X2 - m*(B, h))
(5.1) = \/'T(Xn—m(ﬁ,h))()—fn+m(ﬁ,h))
N(0,40%(B, h)m*(B, h))
under P, ; ;. We will now show that the u,(8) = u (B, h) defined by (2.4b)
satisfies for B e,

(5.2)

u,| B+ —‘/—B_n—) = —mz(B) +02(B)m2(B)‘/_ +o(n"12),
To prove this we consider the Laplace transform
En,13+l§n"1/2,h{exp{t‘/’7[)_(n - m(B7 h)]}}

(5.3) Z,(B+ (B/Vn),h + (t/Vn
- exp -8, 1) 2 z ((B + Zz?)/ﬁ),(h) =

where
o do
elon{n| 3053+ (3 7). o 75 |
exp ~ 5B (8, 1)
(5.4) {exp{ [ Bzg+(h+fi"¢;_(”—’ﬂ)znl}

<on (V[ X, —mw,m])}

5 BX: +

- exp{—ﬁéﬁmz(ﬁ, h)}zn(ﬁ, h+ %)

XEn,B, h+(t+§m)/ﬁ{¢n,§(‘/;[xn - m] )}:
with

1 _
e o ]
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The random variable gon,g(\/;[)_(n — m(B, h)]) converges as n > +o to 1 in
probability under P, g ;. (zmeg, n), = @nd it is uniformly integrable with re-

spect to the same measure, since it is bounded above by exp{|Vn[X, —
m(B, h)]l}. Hence, the expectation in (5.4) tends to 1 as n — +o and there-
fore, we have

Z,(B+ (B/Vn),h + (t/Vn)) ~ Z, (B, h+ (t+Bm(B,h)/Vn))
Z,(B+ (B/Vn),h) Z,(B,h + (Bm(B, h))/Vn)
for large n. The right-hand side of (5.5) [and hence of (5.3)] can be estimated as
that of (2.30a). Then, (5.2) is obtained from the convergence of the Laplace
transform [as in Corollary 2.1 (a)].
Combining (5.1), (5.2) and the strict monotonicity of «,(B), we see that the

ML estimates B, given by (2.3b) satisfy [compare with the proof of Theorem
1.1(a)]

P, s {Vn (B, — B) <a} ~ P, ; 1{Vn [ X2 — m*(B)] < 20%(B)m?*(B)a)
~ Pr{N(0,(c(B)m(B)) *) < a},

(5.5)

which proves (1.15).
(b) From the proof of Proposition 2.1(a), we obtain (for 0 < 8 <1 and
h=0)as n > =,

nX2 -, o%(B)x?, under P, s

u (B) = 7(F) +o(l).

2n n

and

This for 0 < a < b < +, we have

N n_
lim P, ﬁ{ﬁn IS (a,b)} = lim P, B{EX,? S (nun(a),nun(b))}
— 400 ’ n— +o ’

= Pr{o?(B)x7 € (¢%(a), o%(d))}.
This proves (1.16), since o%(8) = (1 — B)~ L.
(¢c) For B > 1 and h = 0, Proposition 2.1(b) yields

(5.6) Vn (X2 — m2(B)) »p N(0,40%(B)m2(B))

under P, ; ,. We will now show that for B € R, we have [compare with (5.2)]

n

Al now :
(5.7) un(B + %) = 5mAB) + 0B (B) 1= + o(n V).

Then the proof of (1.17) proceeds as in part (a) of the present theorem. To
prove (5.7), we consider

En,ﬁ+§n_1/2,0{exp{t‘/r7[)_(n - m+(ﬁ)]}|)_(n > O>
Zy(B + (B/Vn),(t/Vn))
Z;(B+(B/Vn),0) ~
where Z} is defined in (2.31b). As in (5.4), Z}*(B + (B/ Vn),(t/ Vn)) can be

— exp{~tvmm.(8))
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expressed in terms of Z}(B,(t + Bm,)/Vn) and a conditional expectation
which tends to 1 as n — +o. This gives an estimate similar to (5.5). Then as
for (5.2), we obtain

1 . — 1
EEn,Bﬂin_l/z,O{Xr%IXn < 0} = +(B) + 0'2(,B)m+(ﬁ) ‘/—— + O(n_l/z)

and
1 o
3 Enpepn-nolX2|X, < 0) = —m2 (B) + *(B)m? (B) = ‘r +o(n12),

Since these are the same, they yield (5.7).
(d) For B8 = 1 and h = 0, we will use Proposition 4.1. We will also show that

B _1 -1 !
(5.8a) un(l + 7;—) = §U(.3)7;‘ + o(—ﬁ),
where

_ - 56" + 3B¢”
(5.8b) v(B) = fngdegl;[(p[ HE+ %3152] a“*

Then for a € R, we have

- a
P, 1o{Vn (B, — 1) > a} = nlo{ X,“,’>un(1+ W)}
~ P, 1,0{Vn X2 > v(a))
“potel — F([—\/v(a) ,Vu(a) ]),
which proves (1.18). To prove (5.8), we consider
Z, (1 + Bn~Y2 tn=%%)

(59) B, pemoexnin X)) = =g

As in (4.3),

(5:10) Z,(1+ Bn/%,m=3/4) ~ -2% [ dé exp{=nfy gu-mo(€) + n/eE).

Using
2 B 2 § 6
fregn-12,0(§) = T mf + O(W) + 0(¢°),
one finds that the right-hand side of (5.10) is equivalent to

_ 1 B
(2m) " *n1/4 [dg exp{ -t S tg}.
Then this yields that the left-hand side of (5.9) converges to

Jd¢ exp{—3¢* + 3BE? + t£)
Jdéexp{—13¢* + 3BEY}

which implies (5.8).
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