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ACCURATE MULTIVARIATE ESTIMATION USING
TRIPLE SAMPLING!

By SHARON L. LOHR

University of Minnesota

Any multiresponse estimation experiment requires a decision about the
number of observations to be taken. If the covariance is unknown, no
fixed-sample-size procedure can guarantee that the joint confidence region
will have an assigned shape and level. Double-sampling procedures use a
preliminary sample of size m to determine the minimum number of
additional observations needed to achieve a prescribed accuracy and cover-
age probability for the parameter estimates. The triple-sampling proce-
dures of this paper, less sensitive to the choice of m), revise the sample size
estimate after collecting a fraction of the additional observations prescribed
under double sampling. Second-order asymptotic results relying on condi-
tional inference show that triple sampling is asymptotically consistent; in
addition, the regret for triple sampling is a bounded function of the
covariance structure and is independent of m.

1. Introduction. Let X;,X,,... be a sequence of independent and identi-
cally distributed random p-vectors with unknown mean 6 and unknown
positive definite covariance matrix ¥. The problem addressed in this paper is
that of determining a sample size 7 such that the resulting estimator 6,
accurately estimates 0. Accurate estimation is used here in the sense of Finster
(1985, 1986). A fixed- -accuracy set is a natural extension of a fixed-width
confidence interval to #”: § accurately estimates 6 with accuracy A and
confidence y if P(§ — 8 € A) > y. Formally, a fixed-accuracy set is a compact,
orientable Borel-measurable set A € #” which is star-shaped with respect to
0 and contains 0 as an interior point. The requirement that A be star-shaped
ensures that if § accurately estimates 8, so does any estimate & between 0
and 6.

Accurate estimates are useful in a wide variety of applications. Often
experimenters want a confidence region for a multivariate response which is of
a specified shape and size and is easy to interpret. For example, the U.S.
Environmental Protection Agency guidelines for solid waste analysis [U.S.
Environmental Protection Agency (1982), page 5] state that it is desirable to
use as few samples as necessary to achieve, with 80% confidence, a target joint
accuracy in which the log concentration of the ith contaminant is estimated to
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within error d;. In other words, their goal is a fixed-size rectangular accuracy
region A = II[—-d,, d,], rather than Working and Hotelling’s (1929) ellipsoidal
confidence set whose size and orientation depend upon the unknown covari-
ance matrix. Fishman (1977) and Kleijnen (1984) describe the problem of
determining the sample size to estimate the steady-state means of responses in
a queueing simulation study. The procedures developed in this paper provide
an algorithm for calculating the sample size and estimator for multiresponse
computer simulation studies.

Dantzig (1940) showed that a sequential or step-sequential procedure is
necessary to obtain accurate estimators in the multivariate normal situation
with unknown covariance. In many cases, however, a purely sequential proce-
dure, in which the parameters are reestimated after each observation, is
impractical. Following Stein (1945), Cox (1952) and Hall (1981), who studied
the one-dimensional case of fixed-width confidence interval estimation, we
limit data collection to stages.

If ¥ were known and the population were normal, any sample size n larger
than N = N(X), where N(V) is the solution to

(1.1) f(N(V),V) =y
and

(1.2)  f(n,V) =/A(n/277)p/2|V|_1/2 exp[ - (n/2)x” V™ 1x| dx,

would ensure that X, is an accurate estimator of 0. For £ unknown, double-
and triple-sampling procedures both prescribe collecting a first sample of size
m and estimating ¥ by

-X,)X -X,)".

A natural estimator of N after the pilot sample has been collected is N =
NE,). Lohr (1988) shows that N is asymptotically unbiased but the coverage
probablhty using N is strictly less than y because only a fraction of the data
are used to estimate X: the conditional distribution of $-1/2% (the normal
distribution) is used to find N while the actual distribution of $-12X is a
multivariate ¢-distribution. Chatterjee (1959, 1960), in fact, uses a multlvarl-
ate ¢-distribution in his Stein-type two-stage procedure for accurate multivari-
ate estimation with ellipsoidal accuracy. Chatterjee’s procedure gives exact
coverage probability; this exactness, however, is achieved only at the cost of
considerable computational complexity. Lohr (1988) inflates the covariance
estimate by a factor (1 + {/m) to compensate for not knowing X, choosing [ so
that t?e double-sampling stopping rule gives coverage probability y with error
o(m™1).

The double-sampling stopping rules work very well if the pilot-sample size
m has the same order of magnitude as the optimal sample size N. If m is
small relative to N, however, the double-sampling stopping time has infinite
regret and large variance and thus is inefficient when compared with the

n 1
Y =
m —

m
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purely sequential procedures of Chow and Robbins (1965) and Woodroofe
(1977) for one-dimensional accurate estimation and Finster (1986) for multi-
dimensional accurate estimation. The triple-sampling procedure of this paper
achieves finite regret and second-order asymptotic efficiency by taking two
additional samples after the pilot sample rather than just one. As in Hall
(1981), we allow for three samples by having the second sample comprise
about 100¢% (0 < ¢ < 1) of the observations in the second and third samples.
N,, the optimal size of the first and second samples if £ were known, is set
equal to ¢(N — m) + m. Then N, is estimated after the pilot sample by the
stopping time
ty = HC(N -m). ]+m,

where [x] denotes the smallest integer containing x. After the second sample
of t, — m observations, the covariance matrix is reestimated using fltz, the
least squares estimate of X using all ¢, observations. Then the size of the
third and final sample is ¢5(I) — ¢,, where

ta(1) = [N((1 +1/t;)E,)1.

Here [ compensates for the sequential nature of the procedure. With [ defined
in (2.3), triple sampling achieves the bounded regret of Simons (1968) and
attains coverage probability y with error o(N 1), the same order obtained by
Finster (1986). With this small order of error, the asymptotic results for triple
sampling apply even to moderate values of N.

Note that accurate estimates of linear combinations of the parameters are a
by-product of accurate estimates of the parameters if the accuracy set is a ball.
Suppose P(8 — 6 € B, (d)) = vy, where B, (d) is the /?-ball of radius d. Then if
q' = (1 — ¢~ Y7, an application of Hoélder’s inequality yields

P(le”(6 - 0)| < dlely, Ve e 2?) = P(I6 - 6l, < d) > .

The values ¢ = 2 and q = » give fixed-accuracy analogues of the Scheffé and
Tukey procedures for obtaining simultaneous confidence intervals.

The definition of accuracy used in this paper is that given by Finster (1985,
1986). The techniques used to develop the asymptotic properties for triple
sampling, however, are quite different from those of Finster’s continuously
monitoring procedures or the spherical accuracy procedures in Srivastava
(1967) and Srivastava and Bhargava (1979). Finster’s results depend on the
fact that the stopping time of a purely sequential procedure is the first passage
time of a function of a process similar to a random walk. The procedures in
this paper are closer in spirit to those of Cox (1952) and Hall (1981), using
Taylor series expansions and conditional inference. They extend the results of
Mukhopadhyay and Al-Mousawi (1986), who considered accurate multivariate
estimation for elliptical accuracy sets when the correlation matrix is known.

2, Triple-sampling procedures for accurate estimation. Accurate
estimation is most expensive when the standard deviations for the components
of the observations are large relative to the accuracy desired, i.e., when £~ /%4
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is small. Following Anscombe (1953), asymptotic results are expressed in
terms of N increasing to infinity. Note that N increases to infinity either as
Y — « or as the accuracy set decreases to the empty set. We take ¥ — « as
N — « to mean that

(2.1) A= (N2 HV%4A

is a constant set as N — «. In other words, ¥ — « along a ray. This formula-
tion is consistent with the asymptotic results of Stein (1945) and Chow and
Robbins (1965), in which d, the half-width of the confidence interval, tends to
zero. If A in (1.2) is replaced by dA, then N » wxas d — 0.

The following theorem demonstrates that conditionally on a stopping time
7, the estimate X, has the same distribution it would have if r were a fixed
integer rather than a random variable. The proof of the theorem follows the
proofs of Lemmas 1 through 4 in Robbins (1959).

THEOREM 1. Let 7 be an integer-valued stopping time which is a function
(Ep 1 Ep 42 Ep +35+ - - ). Then the conditional distribution of X given T =nis
A4(0,X/n).

Theorem 1 implies that conditionally on the stopping time ¢,({), the param-
eter estimates X, « are normally distributed with mean 6 and covariance
X/ty(l) and hence are unbiased. We now state the main result about second-
order properties of the triple-sampling procedure. Throughout, let ® represent

the standard multivariate normal probability measure and adopt the notation
S, =tr(S) — xTSx

and
Ez[h(x)] = /Rh(x) d®(x).

Define
M=E,[I- XXT]/EA'[Ix],

where I is the p X p identity matrix. Note that tr M = 1 and by Theorem
9.1.25 of Graybill (1983),

(2.2) pl<tr(M?) <1

THEOREM 2. Let X,X,,... be independent and identically distributed
#1(0,%) random vectors. Let N = N(2), ¢, = [e(N — m)],+ m and ti(l) =
[[N((l +1/t,)8, I, where 1 is a known constant and the function N is defined
in (1.1). Assume m —  as a fractional power of N, so that N = O(m"*) for
some h > 1 but m/N — 0. Let A’ be as defined in (2.1). Then, as N — =,

(a) t;(1)/N - 1 almost surely.
(b) For any q € #, E(t,(1)/N]?) — 1.



ACCURATE MULTIVARIATE ESTIMATION 1619
(¢) E[ty(1)] =N +1/c — 2trM2/c + L + [2¢E,[1,]] 'E4

X[2p(trM?) — 4 + 2p + Ix[xTx(trM2 +1) - 2x"Mx||

+(2¢) " '[(4 - p)tr(M?) —p — 2] + 0(1).

@ El(t,(1) — N)?] = 2N te(M2) /c + o(N).
(e Ve (t3(l )-N)/VN converges to a A0, 2tr(M?)) distribution.

) P( toD OEA)
=y + (4eN) {[20 - p + ¢ - 2] E,[L,]
+E,(-4+2p + Ix[xTx - 2x"Mx])} + o( N71).

To attain asymptotically correct coverage probability up to o(N~!) terms,
we find the value /; which solves P(X, ;) — 0 € A) =y + o(N™1). Set

(2.3) l;= —-E,[2p — 4 + L[x"Tx — 2x"Mx]| /2E,[I,] +p/2 + 1 — c/2.

The first term in (2.3) depends upon N and X through the set A'. We
substitute the estimates ¢5(0) and E for N and X in (2.3) and define

A =(t,(008;1) 74,
M = E4[I - xx"]/E,[1,]

)1/2

and

(2.4) I,= —Ei[2p — 4 + L[x"x — 2x"Nix]] /2E4[1,] + p/2 + 1 — ¢/2.

CorOLLARY 1. Let t5(1,) = [N((1 + l3/t2)2 ), where 5 is defined in (2.4).
Then the results of Theorem 2 hold when ] 5 1S substztuted for 1. In particular,
as N —> «,

E[ty(I5)] = N + (trM2/2¢)

(©) X(—p + EA,[2p + IxxTx] /EAr[Ix]) + o(1)
and
€3) P(Xta(za) -0c A) =vy+o(N71).

Theorem 2 and Corollary 1 are proven in Section 3.

Theorem 2 demonstrates that the triple-sampling procedure attains first-
order asymptotic efficiency if the pilot-sample size tends to infinity as some
fractional power of N, the “best’ fixed-sample size. The first-order properties
do not depend on the covariance and do not require a correction factor. We
may use the estimate £ in place of the unknown covariance ¥ and still have
an asymptotically correct procedure up to first-order asymptotic terms. If vy is
0.95 or 0.99, though, an error of order o(1) can make a substantial difference
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in the coverage probability unless N is very large indeed. Lavenberg and Sauer
(1977) found that sequential stopping rules with only first-order asymptotic
consistency perform poorly for relatively small sample sizes. The second-order
asymptotic results apply to more moderate values of N. The effects of substi-
tuting £ for I appear in the second-order asymptotic results, particularly in
the terms of order O(N 1) in the expression for the coverage probability in
Theorem 2(f).

The term —2tr(M2)/c in the expression for the average sample number
shows the effect of optional stopping and appears because fl has bias
—2%1/2MX'/2/N,. This bias is proven in Lemma 7 of Section 3 and may be
heuristically explained as follows. If E significantly ‘‘overestimates” X, then
t, will overestimate N, and the second sample will be large, tending to correct
the original estimate of the covariance. Alternatively, if X, ‘“underestimates’
¥, then ¢, will underestimate N,. The second sample will thus not contain as
many observations to compensate for the bias arising in the first sample, so 2 ty
will be more likely to err in the same direction as E . The argument that E
is biased also applies to 2, - Lf one ignores the fact that these quantities are
obtained sequentially, substltutlng s, . for a fixed-sample estimate of the
covariance in, say, an F-test for the s1gmﬁcance of one of the means, one
would thus obtain more false positive results in repeated sampling than the
nominal significance level indicated.

The factor tr (M2) appears in the expression for the variance of the stopping
time. The matrix M shows the effect of the shape and orientation of the
standardized accuracy set A’ on the stopping times. If A is spherical and the
components of X are independent, then M is a diagonal matrix and 2 tr (M?) =
2/p. Alternatively, suppose that the components of X are highly positively
correlated. Then most of the variance is accounted for in the first principal
component and the stopping times will be essentially determined by the
variance of the first principal component. In this case, then, 2 tr(M?) will be
close to two, resulting in the variance for the one-dimensional procedures of
Cox (1952) and Hall (1981).

The one-dimensional results of Hall follow as special cases of the results in
Theorem 2. Let z be the (1 — y)/2 critical point of the standard normal
distribution. Then A’ =[-z2, 2] and M = 1. Evaluating the integrals in Theo-
rem 2, Elt;()]1=N+ (- 2)/c+3 +o0() and P(X,; — 0 €4 =
y(2¢NV27 )~z exp(—22/2)2] + ¢ — 5 — 22]. Thus the triple-sampling proce-
dure which uses I;=(5+ 22— ¢)/2 will have coverage probability y +
o(N~1), as obtained by Hall

Hall recommends using 3 L for c. _An alternative choice uses the distribution
of N. Since the distribution of N is approximately .#(N,2N2tr(M?2)/m),
(2.2) implies that [1 — z(2/m)/2]N is a conservative (1 — &) lower confidence
bound for N, where z, is the appropriate normal percentile. This suggests
taking c to be 1 — z,(2/m)"/2.

Table 1 compares the properties of multivariate double- and triple-sampling
procedures and Finster’s (1986) purely sequential procedure. The quantity I,
is messy to calculate exactly but may be bounded by p + 2 + pK, where K is
the radius of the smallest sphere which will circumscribe the standardized
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TaBLE 1
Properties of the double-sampling, triple-sampling and purely sequential procedures for
multivariate estimation

Double Triple Purely
sampling sampling sequential
Correction 13— 2tr(M?) g ls—p
factor [
Regret rN/m r/c r
Asymptotic
variance of 2trM2)N2/m 2(trM?)N/c 2trM?)N
stopping time
Approximate Linear .
distribution of combination Normal Normal
stopping time of x2
Coverage y +o(m™h y +o(NY) y +o(N7Y
probability

The size of the first sample is m, c is the fraction of observations taken in the second sample,
N is the “best” fixed-sample stopping rule, p corrects for the discreteness of the purely sequential
stopping rule and r = (trM2/2{—p + [E, [I,)]7E, [2p + LxTx]}.

accuracy set A'. In practice, we may use the radius of the smallest sphere
circumscribing the sample standardized accuracy set [¢5(0)2']'/?A instead
of K.

3. Proofs. Throughout, assume without loss of generality that 6 = 0 and
that T = L. Theorem 1 implies that P(X, ;) € A) = E[ f(¢5(1), D], where f is
defined in (1.2). The coverage probability may then be evaluated using the
moments of ¢4(1) by taking a Taylor series expansion about the first argument,

P(ita(l) EA) =f(N,I) + fi(N,D) E[¢5(]) — N]

+ E[ fu(n*, D(ts(1) - N)?| /2.

Here n* is between t5(I) and N, and f; and f;; denote the first and second
partial derivatives of f with respect to the first argument.

Recall that t4(1) = [N(W)], with W = (1 + [/¢,)%, and N = N(I). We find
the moments of ¢4(1) via a Taylor series expansion of N((1 + ! /t3)ﬁ‘,,3) about I,
using Fréchet derivatives to ensure that all matrices will be positive definite.
Define the function

(3.2) ~(g) = N(eW + (1 — ¢)I),

for positive definite W and 0 < ¢ < 1. Here [[»(1)]] = ¢53(1) and ~(0) = N, so
the moments of ¢4() may be approximated using a Taylor series expansion of
» about 0. The derivatives of ~(g) are more easily evaluated and bounded in a
different coordinate system. Let A be the matrix of eigenvalues of W and P the
matrix of eigenvectors of W. Then ¢éW + (1 — &)I = PTL(¢)P, where

(3.3) L(e) =¢[A-I]+ 1

(3.1)
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Define the set

(3.4) A*(n,¢) = [nL7Y(e)]*PTA
[throughout, A* without arguments refers to A*(~(¢), £)] and the function
(3.5) g(n,e) =f(n,eW+ (1)),

Then g(n, ¢) may be rewritten as
g(n,e) = [ (n/2m)""IL(e)|” " exp(~ (n/D)x" L (e)x} dx

= ®[A*(n,¢)]

and the derivatives of g and »~ found directly.

LemMa 1. Let »(¢) and g(n, &) be defined in (3.2) through (3.5) and let K
and H denote

(3.6) K(e) = L™2(¢)[A — I]L12(¢)
and
(3.7) H(e) = (#'(e)/~(€))I - K(¢),

respectively. Then
gi(n,e) = Egg ol1:1/2n,
8a(n,e) = _EA*(n,s)[Kx]/z’
gu(n,€) = Egn |12 — 2p] /477,
812(n,8) = —Epn oK, 1, — 2x"Kx|/4n,
Goa(n,8) = Epen o[ K2 + 2tr K? — 4xTK2x| /4,
g111(1,€) = Basr, o[ 13 — 6PL, + 8p]/8n,
»'(€) = 2(£) Ep[K,1/En[L],
"(¢) = »(€){2y tr(H?) — Ep[HZ - 4(HK), |} /2E[L],
2"(8) = n(e)[4Ex[1,]] En[tr[24{~"(e) /2 (s)}H — 8H? — 24H2K]
+12H,(HK — {»"(¢) /2(e)}T), + 24({»"(¢) /= (e)} K — HK?), — H(].
The integral E,.[I,], appearing in the denominators of the expressions for
»'(e), »"(¢) and »"(e), is always greater then zero but can be small. To
facilitate finding bounds for the derivatives of =, we apply Stokes’ theorem, as
quoted in Spivak (1965), to express them as integrals over the boundary of A*.

Here, dx¥ is written for dx,dx, -+ dx,_1dX,;,; '** dX,, dA* represents
the boundary of A* and d®®(x) = (2m)~*/2 exp(—xTx/2) dx®.

LemMa 2. Let »(¢),g(n,¢), K(e) and H(e) be defined in (3.2) through
(8.7), let g, denote g{(=(¢),¢), and let H; and K; denote the ith diagonal
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entries of H and K. Then
(@) g, =22 (- 1YY x,d DO (x).

(b) #"(e) = [4g){ E (-1 B, [z [x"Hx — or(HD)
+2H, + 4K,] doO(x) ).

(c) »"(e) = [8&:]7"

+12% (- Hl (o) /2 ()} [ xxTx + 2] d0O(x)

+24) (—1)"_1K,:({m”(e)/m(s)} - H,-Ki)fwx,. d ®9)(x)

~L(-D7H [ x| HR)” + (4H, - 26r[H])x" Hx
+8H? + 4tr[H?] — 4H tr[H]| dq><i>(x)}.

We are now in a position to bound the derivatives of »~(¢) for all values of &
between 0 and 1. Let

(3.8) A = max(A,, 1)

and

(3.9) A = min(A,, 1),

where A; > Ay > -+ > A, are the eigenvalues of W. For any matrix C, let

ICll represent the supremum norm of a. matrix; || Cll. = max|C,;|.

LEMMA 3. Let 0 <& < 1 and let L(e), K(¢), H(g), A and A be as defined in
(8.3) and (3.6) through (3.9). Then

(a) AI < L(e) < AL

(b) AN < ~(e) < AN.

©) 12'(e)/7(e)l < IK(e)lw.

(@ IH()I < 2(K(e)llw.

(e) There exists a constant K, independent of €, such that a € A*(N,0)
implies a’a < K and a € A*(=(¢), ) implies a"a < (A/MK.

() |="(e)l < ~(eXA /MK, |K(e)2, where K; = 2p + 8 + 2K.

(@) l2"(e)| < 2 ()K(ENZA/A)?K,, where K, is a constant.

(h) Kl < A~ YW — I|| for any matrix norm || - |l.

ProoF. (a) Follows immediately from (3.3).
(b) Suppose (&) > AN. Then using (a),
y = ®[[ ()L (e)]/*PA| > @[[Le(e) /A]/*PTA| > ®[NV/2PTA] = ,

a contradiction. Therefore ~(g) < AN; the other inequality is proven simi-
larly.

1/2
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(¢c) From Lemma 1,
»'(e) = 2(e)[ L K,(e) Eps1 - ][ X Epl1 - #2]] < (K

The integrals E,.[1 — x?] are all strictly positive since A* is an accuracy set.
(d) Follows immediately from part (c), the definition of H and the triangle
inequality.
(e) Using (a), (c) and the definition of A’ = N1/2A,
A* = [ () /N]V?L~12(e)PTA c (3 /2)*PTA".

Recall that the standardized accuracy set A’ is a constant, bounded set as N
tends to infinity and is thus contained in a ball of radius VK for some K < .
Since P is orthogonal, a’a < K if a € A*(N,0), and a%a < (A/MK if a €
A*(2(e),e)and 0 < ¢ < 1.

(f) From Lemma 2,

-1

(&) = ”(3){22 (-0 [ = d¢<i>(x)}
X{Z (—l)i_lHi/A*xi[—tr(H) + 2H, + 4K, + x"Hx] dCD(i)(xj}.

Now by (d),
|H,[—tr(H) + 2H, + 4K,]| < 4(p + 4)|K(¢)|> fori=1,...,p.
Also, Stokes’ theorem implies that

(—1)"‘1f x;x? dOO(x) = B 23(1 — x?)] > 0,
dA*

SO

Yy (—1)‘—1H,Hjj x,22 dO(x)
JA*

<HIEY (-7 [ xx"x doO(x).
0. *

Let y(u), u € #7~1, be an orientation-preserving parameterization of the
boundary dA*, with I' the region of integration for u. Then

Y (-1t j(;A*xixTx ddD(x) = fripT«[z exp(—y¢Ty/2)d(u) du,

where J(u) is the Jacobian of the transformation. Now J(u) is always positive;
hence for all u in T,

¢T(w)y(u)exp(—yT(w)y(u)/2)d(u) < (A/2)K exp(—¢T(u)y(u)/2)d(u),
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by (e) since y?(wy(u) € A* whenever u € I'. Thus

lx (-1 'H, j x,xTHx d®D(x)
0A*

<(AA)KIHIZY (-1 '[9A*xi ddD(x).

As aresult, | "(z)/=(e)| < 2p + 8 + 201 /M) K)IK(e)Z.
(g) Proven similarly to (f), using Lemma 2 and parts (d) and (f) of Lemma 3
to show that

|="(e)] < = (e)|K(e)||5(A/A)°[14K2 + (104 + 16p) K + 196 + 52p].
(h) Follows from (3.6), part (a), and Theorem 5.6.7 of Graybill (1983). O

LEmMMA 4. Supposen > 0 and 0 <& < 1. Then

(@) 0 < g(n,e) <p/@2n). 3
®) |gn(n,e)|<@n)"Ap®+2p + (n/m(g))2(A/A)2K2].
© |gi(n,e)|<@n)3pldp + (n/~ (A /MK

ProoFr.
|g11(n,€)| =|(2n)_2EA*(n’S)[Ii - 2p] |
- 2

<(2n) 2[p2 +2p + E(n/”(e))l/zA*[(xTx) ”

Now by Lemma 3(e), x”x < (A/A)K on A*. Hence
- R
|gn(n,€)| < (2n) 2[2p +p%+ (n/m(s))z(/\/A) K2].
(c) As in the proof of part (b),

|g111(n,8)| < (2n)_3fA*(n 8)[P[p2 + (XTX)2] + 6p[p + xTx] + 8p] dd(x)

(b)

< (2n)*[15p° + p(n/2(£))*(A/A) K*
+6p(n/=(2))(A/2)K]. O
To find the expectations of the derivatives of »~ we work in the usual inner
product space of p X p matrices, with
(D,,D,) = tr[D,D,] = (vecD,)” (vecD,).
Recall that if D is any p X p matrix, then
T
vecD = [D11D21 D, DDy - DyoDyg ---Dpp] .

Let ® represent the left Kronecker product on matrices and let C be the
p? X p? commutation matrix. In the following, let = denote convergence in
distribution.
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LeEMMA 5. Suppose that nvec(W — I) = #1(0,I® I + C) for some n in-
creasing to infinity and that the moments of W are bounded. Then for
j=0,1,...,(m —p)/2and i, k=0,1,2,...,

(a) E[X¥A~n*IW - TIE] < 257" (az)™* + o(1),
where a,, is the 2kth moment of the standard normal distribution.
(b) E[(n~'(0)/N)?] = 2tr[M?] + o(1).

(¢) E[n22"(0)/N] = (4 -p)tx(M?) —p - 2
+E,[2p(trM?) — 4 + 2p
+1 [xTx(trM? + 1) — 2xTMx]]/EA'[Ix]
+0(1).

Proor. LetQ =W —Iandlet R=(~'(0)/N)I — Q.

(a) Note that A~! < tff[W~!]. Since n vecW —I) = #(0,I® I + C),
n(tr{W~'] — p) = .#10, 2p) by the delta method. Thus by dominated conver-
gence, E[A ] < E[(tr W~1)/] = p/ + 0(1). The entry (nQ, ;) has either .#70, 1)
or #(0, 2) as its limiting distribution, so dominated convergence implies that

E[n2*1QII2*] < 22*p2a,, + o(1). Thus by the Cauchy-Schwarz inequality, (3.8)
and (3.9),

E[#a-ntQIE] < {E[2-¥]E[(1 + 1Q1)* nHIQIZ])

< {[p¥ + 0o(1)][2%* P2y, + o(1)]}1/2.

(b) Changing variables, we rewrite »'(0) = N tr(QM). The asymptotic vari-
ance of n tr (QM) = n(vec M) (vecQ) is

(veeM)"(I ® I + C)(vecM) = 2tr[M?].
(c) Again changing variables and simplifying,
n22"(0)/N = n?[2y tr(R?) — Ey[R2]]|/2E,[1,] + 2n® tr(RQM).

We find the expectation of each term. The asymptotic variance of (n vecR) is
2[(tr M2)(vec D(vec )T — (vec M)(vec DT — (vecIXvecM)T] + I ® I + C. Thus,
by dominated convergence,

E[n? tr(R2)] = tr E[n®(vecR)(vecR)" |
=2p(trM?) — 4 + p(p + 1) + o(1).
Also,
E{n?E,[R2]} = 2(tr M?) E,[I2] — 4E,[I,M,] + 2E,[p - 2x"x + (x"%)7).
Finally, part (b) implies that
E[n? tr(RQM)] = E[{n tr(MQ))* - n? tr(MQ?)]
=2tr(M?) — (p + 1) + 0o(1). ]
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The moments of (1 + / /t2)2 are needed to evaluate E[(0)]. Because of
the sequential nature of the procedure ﬁ‘, does not follow a Wishart distribu-
tion, but in fact is a systematically blased ‘estimate of 3.

LEmma 6. Let X4, =X, 2(1) =3, and let X, and f?(z) be the least
squares estimates of the mean and covariance using only the observations in
the second sample. Then

() £,= (- {(m -1+ (t,-m - 1E,
il - - s 1T
+m(ty —m)t; 1[X(l) - X(2)] [X(l) - X(2)] }

(b) E[(t, - 1)it2|im] =(m-1)(%, -1)+ (¢, - DL
LemMA 7. Suppose the conditions of Tlheorem 2 hold. Then
(a)  E[it, — Npltz*] = o(N/7#)

: fork=0,1,2,...,[(m-p)/2]-1,j=1.
(b) E[t;*] =N;*+o(N7*) fork=1,2,...,[(m—p)/2]- 1.

(c) E[£,] =1I-2M/N, + o(N"Y).
Proor. Let
= (N> m)
and let

Lemma 3(b), with W = £_, implies that IN-N |Io < N/2. Using Cramér’s
theorem on large deviations [see Varadhan (1984)],

P{C°} < 2p%exp{—(m — 1) /24}.
Hence
P{D?} < P{{IN = N| > N — m} n C} + P{C*} < 2p®exp{—(m — 1)/24},
for sufficiently large N. Since m — « as a fractional power of N, we have
Elty = Nyl /t}Ipe] = (e(N = m)/m)’P(D*} = o(N/™*)
and

E[It2 N2|Jt2"ID] —E[Il[c(N m)] —c¢(N — m)| /{le(N — m)] + m) ID]

<E[(1 + el - N’ /()]

E[IN — NIV /N*] = o(N7=*) by Theorem 2 of Lohr (1988), completing the
proof of (a).
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Part (b) follows from (a) by applying the binomial theorem to E[t;*]=
Nz_kE[{l - (t2 - Nz)/tz}k]-
For part (c), Lemma 6 and successive conditioning imply that

E[$,] =1+E[(t,- D) '(m - 1)(£, - 1)]
=1+ (m-1D)N;2E[(, - D{-(t, - N,)

+(t2 - 1)—1(t2 - Nz - 1)2}] .
Now
E[(2, - D)(t, - Ny)| =cE[(£,, - I)(N - N)] +o(D).
Write .
(K =N) =2'(0) + »"(e*) /2 = tr[ NM(2,, - I)] + ="(e*) /2,
where ~(¢) is defined in (3.2) with W = ﬁ and where ¢* is between 0 and 1.
Then E[(E — D(ty, — Np)] = 2¢N(m — 1) IM + r, with |r] < E[NA2A~3
I£, — 1|12 = o(N/m) by Lemmas 3 and 5(a).
To show that E[(ﬁ — Ity — D"ty — N, — D?1=0o(N/m), let &=
m=12 and let B={I2,, —Ill. < 8) N D. By Cramér’s Theorem, P{B°} <
(2p + pPexp{—m'/ 4/12} and E[I2, — Il(t, — D"Wt, — N, — D)%) <
83N,/(1 — 8), so E[lI2,, — Illt, — 1)~ 1(t2 - N, — 1% =0o(N/m). O

Proor oF THEOREM 2. Recall from (3.2) that for triple sampling,
(3.10) =(g) = N(e(1 +1/t,)%,, + (1 - &)1},

so that Lemmas 1 through 5 may be applied with W = (1 + /t2)2 For any
constant n, Graybill [(1983), Theorem 10.10.1] implies that E[ﬁ ]— I and
Cov(vec ) =(n — 1)"I ® I + C). Thus Anscombe’s (1952) theorem implies
that

(3.11) VIV vee[(1 +1/t,)%, — 1 = #(0,I8 1+ C).

Dominated convergence may be applied throughout the proof; the moments
of X, are finite by Lemma 6(a) and successive conditioning.

(a) The mean value theorem implies that ~(1) — N = ~'(¢) for some &
between 0 and 1, so by Lemma 3(c),

|ts(1) = N| <1+ (X/2)N|(1 + /)%, - 1| .

Now (1 + 1/ tz)ﬁ‘,tz converges almost surely to the identity matrix since ﬁ?m -1
almost surely and since ¢, is defined to be larger than m. Also by Lemma 3,
/D) <@+ 1K + 1/, — TX + 125! — Tk, so [£5(D) -~ NI/N - 0 al-
most surely.

(b) Lemma 3 also implies that (t3(l)/N )? is dominated by (1 + A)? for
g>0andby 1+ @1 +1/m)Q1 + IIE“ — I|l.)? for g < 0. The expectations of
both dominating functions are finite by Lemma 5(a), so by part (a) and
dominated convergence, E[(¢5(1)/N)?] - 1as N — o,
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(c) The proofs of parts (c) and (d) use the following third-order Taylor series
expansion of »~ about 0,

(8.12) 5(1) = N = (t5(1) — (1)) + 2'(0) + (3)2"(0) + (3) =" (e),

where ¢ is between 0 and 1.
Define H(x) = P{~(1) < x} = P{f(x,W) > y}. From Hall (1981), the expec-
tation of [ 2(1)] — ~(1) is

lw
- 'y
0 =

and the integral does not exceed [J|H"(x)|dx in absolute value. Applying a
Helmert-type transformation, £, = (n — 1)71Z7°1Y,Y7, where Y, = {i(i +
D}y Y2GX,,; — £:_,X)), so that the Y, are independent #7(0,1) random
vectors. Let R = {V: ®(V~!/?A) > y}. Then H(x) = P{X, /x € R} =
E[P{(¢, - D"YZY, YT + (m — DE,}/x € RI£,}] and the conditional proba-
bility may be written using a Wishart (¢, — m — 1, 1) distribution. By changing
variables and differentiating, it is shown directly that [J|H"(x)|dx = o(1),
proving that E[(¢5(1) — ~(1)] = 3 + o(1).
Lemmas 3(b, g, h) and 5(a), together with (3.11), imply that

k+1H”(x —r)(x —k— 3)dxdr
0 k+r

B[N/l "(e)] < N3/K,E[#9(1 + 1/m) %, — 1[] = 0(1),
SO
Ell»"(&)l] = o(1).
Thus
E[ty(1) - N] = 3 + E[2'(0)] + (3)E[»"(0)] + o(1).

E[~"(0)] is evaluated explicitly in Lemma 5(c), so the proof of (c) is completed
by evaluating, using Lemma 7,

(3.13) E[~'(0)] = Ntr[ME{(1 + 1/t,)%, - I}] = i/c - 2[trM2] /c + o(1).
(d) We square terms in (3.12) to give
E[(t:(1) - N)| = E[{»'(0)) + (}){~"()}? + »'(0)="(s)].

E[{~'(0)}?] is shown to equal 2N tr{M2]/c + o(N) in Lemma 5(b) and the
other terms are shown to be o(N) by applying Lemmas 3 and 5.
(e) By equation (3.12),

VN; (85(1) = N)/N = N, [t5(1) = (1) + »'(0) + (3)»"(¢)] /N,

for some & between 0 and 1. Now /N,~'(0)/N = /N, tr{(1 + l/tz)ﬁ‘,,zM]
converges in distribution to a .#(0, 2 tr{M?]) random variable by Anscombe’s
(1952) theorem and E[|~"(e)l] = o(1) by Lemmas 3(f) and 5, so the limiting
distribution of /N, (¢5(1) — N)/N is 410, 2 tr[M2]).
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(f) Since f(n,X) = g(n,0), (3.1) may be rewritten as
PR, € A} =y + &(N, 0 E[t;(1) = N] + (3)gn(N, 0 E[(t5() ~ N)’|
+(3)E[{gn(n*,0) — gu(N,0)}(ts(1) = N)7],
where n* is between #4(/) and N. Using results (c), (d) and Lemma 4,
E[g(t(1),0)] = v + g((N,0){l/c — 2(trM?) /c + 3 + E[ 2"(0)]}
+(3)en(N, 0 E[(»(0))*]
+(%)E[{g11(n*’ 0) — g1.(N,0)}(¢5(2) — N)Z] +o(N7Y).

The derivatives of g and the expected values of [ ~'(0)]? and »"(0) are given
in Lemmas 1 and 5. The proof is completed by showing that E[|g,,(n*, 0) —
g11(N, 0)l(¢,(1) — N)?] is also o(N~1'). Because » is continuous, n* = ~(&*)
for some £*. By the mean value theorem and Lemma 4(b, ¢),

E[lgii(n*,0) — g14(N,0)I(ts(1) — N)|
< E[SU;PIglu( ~(&%),0)I(¢5(1) — N)z]

< B[ sup (2 () 240 + (2 () /M) (1/2) K] (ta() = NY?)

where the supremum is taken over all ¢* between 0 and 1. Thus E[|g,,(n*,0)
— 81N, 0I(#;(I) — N)?] = o(N~!) by Lemmas 3, 4 and 7(a). This completes
the proof of the theorem. O

Proor oF CoroLLARY 1. Using the mean value theorem and implicitly
differentiating N,
N[(1+13/t,)8,] = N[(1+15/t,)%,]
= N[(l + l:’f/tz)itzl[tz + 1317l — 1y),
for some [} between ] 5 and /5. Applying Lemma 3, then
IN[(1+13/t5)8,] - N[(1 +13/2:)E, ]|
< (N/t)||(1 + (15 + 15)/m)E,, || )5 — 4.

We show that |{; — I5| is small except on a set of small probability. Let
8=m"Y% and B ={|£, - Ill. < 8). Note that using Lemma 3(b) and the
relationships between different matrix norms, .

”(t3(0)/N)1/2$}2/2 —1| Iz <2yps/(1 +59).

Thus the symmetric difference of the sets A’ and A’ is contained in 2y/p 8/
(1 + 8)A’ on the set B. By Lemma 3(e), then,

I <2/ps/(1+8)K.

(3.14)

/A xx” dd(x) - /A xxT dd(x)



ACCURATE MULTIVARIATE ESTIMATION 1631

This result then implies that
(3.15) Ly — 1,15 < r(5)

for r(5) a nonrandom function of 6 which tends to 0 as 6 — 0.
We then show that |/5 + ;] is bounded by a function of A on B°. By Stokes’
theorem, Lemma 3(e) and Equation (2.3),

—ELL]] 'E,[2p - 4 + I(xTx — 2x"Mx)]
< [EA,[I,C]]*[Z (=17 [ xx"Mx dOO(x) + 2E,[M, ]

< |M|l.K + 2tr(M?)
< pK + 2.
Similarly, using Lemma 3(e),
—3[E4l1,]] 'Exi[2p — 4 + L(x"x — 2x7NIx)] < pKAA !+ 2.
Consequently,
(3.16) (Is+15) <p+ 6+ 2pKa At
Equations (3.14), (3.15) and (3.16) imply that
IN[(1 +15/t)%,,] - N[(1 +13/t,)%,]|
< t;'Nry(8) + t;'NA2A~Y(p + 6 + 2pK) (1 + ry(8))Ipc,

where r/(8) and r,(8) are nonrandom functions of § which tend to 0 as § — 0.
Inequality (3.17) and the fact that P{B°} = o(1) by Chebychev’s inequality
are then used to prove the corollary. The first-order asymptotic results of parts
(a) and (b) follow immediately from (3.17) and Lemma 3.
To prove (c), note that

E[t3(23) - ta(la)] = E[t3(f3) - N[(l + ia/tz)i@”
— E[ty(13) ~ N[(1 +15/t)%, ]
+E[N[(1+13/t,)%,] - N[(1 +15/t,)%,]].

The first two expectations on the right-hand side are both equal to 3 + o(1) by
the proof of Theorem 2(c). The Cauchy—Schwarz inequality, inequality (3.17)
and Lemmas 5 and 7 imply that

E[|N[(1 +Iy/t,)8,] - N[(1+ 13/2:)%,]]
< NE[tz_l[rl(S) +A2 " Y(p+6+2pK)(1+ r2(6))IBc” =o0(1),

(3.17)

proving (c).
It is similarly shown that
(3.18) E|(t5(1) — t5(15))"] = o(N)

and that E[\/N, lto(13) — t5(13)| /N1 — 0 as N — w, proving parts (d) and (e).
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Because the stopping rule ¢; is an increasing function of [, a first-order
Taylor series expansion about the first argument gives

E[g(t5(15),0)] = E[g(ts(15),0)] + E[g1(t5(13),0)(t5(15) — £5(15))],

where 13 is between [, and ;. Lemma 4(a), (3.17) and the Cauchy—-Schwarz
inequality imply that

E[g(ts(13),0)|ta(I5) — t5(15)|] = o(N7Y).
Thus
E[g(t(15),0)] = E[g(t5(15),0)] + o(N"Y) =y + o(N7?),

N

by Theorem 2(f) and the definition of /3. O
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