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REFERENCE PRIORS FOR THE ORBIT IN A GROUP MODEL

By TeD CHANG! AND Davip EavEs?

University of Virginia and Simon Fraser University

For a group model in which the group G acts freely on the parameter
space (), this paper considers a prior which is a product of right Haar
measure on G and a limiting form of Jeffreys’ prior for the maximal
invariant. When the parameter of interest is the orbit of G in Q, it is
shown that such a prior is the reference prior defined by Bernardo. A
method of calculating this reference prior is given which avoids the neces-
sity of working in a parameterization of @ which expresses @ as a product
of G and a cross section. Examples of the multivariate normal distribution,
with the parameter of interest being the correlation matrix or the eigenval-
ues of the covariance matrix, are discussed.

Introduction. In this paper we consider the choice of a noninformative
prior in group models in which the parameter of interest indexes the orbits in
the parameter space. An example of this situation is the bivariate normal
distribution model with mean vector p and positive definite covariance matrix
V. This model is naturally a group model using the affine linear group which
consists of the pairs (a, A) where A is a 2 X 2 matrix and a is a 2-vector.

By letting the group G vary over various subgroups of the affine linear
group, one obtains several useful examples. If G consists of the pairs (a, A) for
which A is diagonal, the orbits are indexed by the correlation coefficient p. If
instead, G consists of the pairs (a, A) for which A is orthogonal (that is, the
columns of A form an orthonormal basis of Euclidean 2-space R?), the orbits
are indexed by the eigenvalues of V, that is, by the variances of the population
principal components. Finally, if we restrict the parameter space to pairs (p, V)
with V of the form o2l and let G consist of the pairs (a, A) with a = 0 and A
being a multiple of an orthogonal matrix, the orbits are indexed by the
noncentrality parameter 8 = p‘p /o2

Let © denote the parameter space and ©/G the orbit space: that is, the
collection of orbits of G in Q. We shall use the notation w for the elements of
Q, g for the elements of G, 6 for the elements of Q/G, g - w for the action of
& on w, X for the sample space and x for the generic element of X. Multiplica-
tion in G of g, and g, will be denoted g,g,. If G acts freely on Q (that is,
g ' w = w for some w implies g = 1), one can usually find (at least locally in
Q) a decomposition @ = G X Q/G with G acting on Q by left multiplication
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in the first factor. The prior we propose will be defined by:

1. The conditional distribution of p(g|8) of g given # will be a right Haar
measure, independent of 0. That is, although Haar measure on G is defined
only up to multiplication by a constant, the same right Haar measure will
be used for each 6.

2. The marginal prior p(6) of 8 will be the limit (as n — «) of Jeffreys’ prior
for the sampling distribution of the maximal invariant y, of the G action on
a random sample of size n, that is, the orbits of the action of G on the
Cartesian product X”. More precisely, if 1,(0) is the information matrix of

Y., p(0) =lim, \/det(In(O))/n .

We show, in the Appendix, that the prior defined by conditions 1 and 2 is
minimally informative about @ in the sense of Bernardo (1979). Berger and
Bernardo (1989) contain a clarification of the Bernardo approach when, as in
the present case, nuisance parameters are present. Berger and Bernardo also
use this approach to find a reference prior for a pair of independent normal
distributions when the parameter of interest is the product of the means.

For example, in the bivariate normal case if 6 is the correlation coefficient p
[and G consists of pairs (a, A) for which A is diagonal], the prior defined by
these constraints is the Lindley (1965) prior (1 — p?)~lo; 05! du, du, doy
doy dp. Lindley’s prior has also been derived by Bayarri (1981) using the
Bernardo approach.

If one starts with the parameter 6, conditions 1 and 2 appear to depend
upon several arbitrary choices: the choice of the group G and the choice of the
decomposition @ = G X Q/G.

With respect to the choice of the group G, the authors believe that many
statistical parameters 6 are interesting precisely because they represent the
invariants (also known as orbits) of a specific important group G. In other
words, is not an uncommon situation that 6 has a natural group G attached to
it. For example, the correlation coefficient is interesting because it is a mea-
surement of linear relationship which does not depend upon the location and
scale of the components of x. Thus the group G = {(a, A)|A is diagonal}, which
represents the location and scale transformations in the components of x, is
the natural defining group of the correlation coefficient. Principal components
analysis arises out of an attempt (after first centering the variables by their
means) to rotate the axes in the data space so as to capture certain important
information: the direction of the maximum variation in x. Thus the group
G = {(a, A)|A is orthogonal} is the natural defining group for the variances of
the population principal components. Finally, the noncentrality parameter &
arises in the study uncorrelated normal variables (namely the components of
x) with equal variances o 2. The theory of the normal linear model is vitally
tied into the metric and linear properties of Euclidean space (scaled by the
constant o). Since the orthogonal transformations are exactly the distance
preserving linear transformations of Euclidean space, the scaled orthogonal
transformations are the natural defining group of the noncentrality param-
eter §.
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With reference to the apparent dependence of condition 1 on the decomposi-
tion @ = G X Q/G, let (g,,8) and (g,, 6) be the representations of w under
two decompositions of Q. It can be shown (see Proposition 4 in the Appendix)
that g, = g,5(8) for some map s: /G — G. Thus if p(gl|@) is right Haar
measure in some decomposition of ) as G X Q/G, it will be the same right
Haar measure in all such decompositions. Priors satisfying condition 1 have
the additional advantage [see Dawid, Stone and Zidek (1973)] that marginaliza-
tion paradoxes for 6 will not occur. That is: starting with a prior in w and
using the sampling density of f(x|/w) has the same marginal posterior for 6 as
marginalizing the prior and using the sampling density f(y|8).

As the prior defined by conditions 1 and 2 does not depend upon the
decomposition @ = G X Q/G, it would appear aesthetically advantageous to
have a way of computing it which does not depend upon using such a
decomposition. Such a method is described in greater detail in Section 1
together with the example of the noncentrality parameter in a noncentral
spherically symmetric bivariate distribution. Indeed, a differentiable decompo-
sition @ = G X /G often does not exist globally on Q, but rather must be
pieced together from local decompositions. Because condition 1 has a meaning
independent of the particular choice of decomposition, this lack of a global
decomposition does not affect the validity of condition 1 as a defining charac-
teristic for a prior. Nevertheless, the common lack of such a global decomposi-
tion indicates that a method of computing the prior defined by conditions 1
and 2, which is decomposition independent, would often be more convenient.
Section 1 contains an example, the well known Hopf fibration from topology
recast into a statistical context, which vividly illustrates the problem of the
lack of a generic decomposition @ = G X Q/G.

The reference prior we propose is a modification of Jeffreys’ prior. One of
the motivations for the Jeffreys’ prior is its independence of the choice of
coordinates for @ in which it is expressed [see Jeffreys (1939, 1946)]. In a
similar spirit, our approach also emphasizes a coordinate-independent refer-
ence prior. Kass (1989) gives an extremely lucid introduction to the geometric
ideas underlying both the Jeffreys’ prior and the present paper.

Section 2 contains certain specific calculations for use in multivariate
normal models. These calculations can be extended to other multivariate
location and scale models if the information matrix can be calculated. The
calculations in Section 2 are applied in Section 3 to find noninformative priors
for the correlation matrix and for the eigenvalues of the covariance matrix in
the multivariate normal model. Appendix A describes in substantial detail the
method topologists have devised to handle the generic lack of a global decom-
position @ = G X Q/G. The remaining proofs are contained in Appendix B.

We note that a theorem of Stein [see Chang and Villegas (1986)] states that
if a prior satisfying condition 1 is used and if equivariant credibility regions are
used, then credibility conditional on 6 coincides with coverage probability
conditional on the maximal invariant y. Although the prior we define will
satisfy the hypotheses of the Stein theorem, the Stein theorem is actually a
statement about inference on the G factor in a decomposition of €.
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1. Calculation of the reference prior for an orbit. We assume that
the group G acts freely on 2. We will also assume that G acts freely almost
everywhere on X.

The condition that G acts freely almost everywhere on X can usually
be arranged by taking a big enough sample. If x, and x, are in X, then g -
(x,x,) = (g x,, 8 X,). It follows that the isotropy subgroup of (x,x,)
[that is, the elements of G that fix (x,,x,)] is the intersection of the isotropy
subgroups of x; and of x,. Thus, unless some element (besides 1) of G fixes
every element of X, a general position argument can usually establish that G
acts freely almost everywhere on X. For example, if G = GL(p), the nonsingu-
lar p X p matrices acts on the space X = R? in the usual fashion, then as long
as we take a sample of size n at least p, the action will be free except on the
set of measure zero consisting of those n-tuples of p-vectors which do not
contain a spanning set of R”.

If some element (besides 1) of G fixes every element of X, the collection K of
such elements (known in the literature as the ineffective kernel) will form a
normal subgroup of G. If g € K, then g-w and w will yield the same
distribution for every w € . It follows that one should replace G by G/K and
Q by Q/K (the orbits of @ under K).

We denote by -2 (G) the vector space of tangent vectors to G at the identity
1 of G. Let A €_Z(G) and let a(?) be a curve in G with «(0) =1 and
a'(0) = A. Define a vector field A* on Q by

A*(w) =i a(t) *w, forw € Q.
dt|,_o
We further define for g € G, the linear transformation ad(g): -£(GQ) - -£(G)
by

d()A-d (t)g™!
ad(g) A= gal)e™.

Let A,,..., A, be a basis of .Z(R), £ = dim G and define
J(w) = det A¥(0)" - I(w) ‘A7 (w),

where I(w) is the Fisher information matrix at ». Here I(w) and A} (w) are
matrices calculated using any parameterization of . It is not necessary to
calculate them with a parameterization of 0 which decomposes Q in the form
G x Q/G.

ProposITION 1. (a) If a,(t) are curves in G with a,(0) = 1and a!(0) = A,,

then
Al () I(w) - Af(w)
s=0}‘

dlog f(x;a,(t) -w)| dlog f(x;a;(s) - w)

© at im0 ds
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() J(w) does not depend upon the choice of parameterization used to
calculate I(w).

(¢) If G acts freely on Q, then J(w) > 0. 3

(d) Let J(w) be calculated using the basis A,,..., A, and let C be the
matrix defined by C - A; = A,. Then J(w) = (det C)*J(w).

(e J(g w)= det[ad(g_l)]ZJ(w).

(f) If G is unimodular, then J(g - ) = J(w).

THEOREM 2. Suppose G acts freely on Q and freely almost everywhere on
X. Let p(w) be overall Jeffreys’ prior. Let p(w) be the prior defined by:

(i) The conditional distribution of p(gl6) of g given 6 is a right Haar
measure, independent of 6.

(ii) The marginal prior p(8) of 0 is the limit of Jeffreys’ prior for the
sampling distribution of the maximal invariant.

Then p(w) is the Bernardo minimally 6-informative prior. Furthermore, it
can be calculated by

p(w) = p(w)J(w) /2

ExampLE (Noncentrality parameter in a spherically symmetric noncentral
bivariate distribution). Consider a bivariate distribution of the form

f(xln,0) @ o~2 - exp[g((x — u)'(x - u)/0?)].
The parameter of interest is the noncentrality parameter § = p‘pn /o2 If

_[|pcos® —psin6|
G- {[psino p cos 6 ]_A(p’o)}

acting on X by matrix multiplication and on Q by A(p, 6) - (u, o) = (A(p,0) -
i, po), we have a group model and & parameterizes the orbits of G in €.
In the coordinate system (u,, o, o), the information matrix is of the form
o~ 2diag[k, k, k,], where
k,= —2E[g'(2) + 2g8"(2)],

ky = —2E[1 + 32g'(2) + 2z2g”(z)],

z=(x-p)(x—-pn)/o?

Note that %2, and %, do not depend upon (u, uy, o).
Let a,(t) = A(1,¢) and a,(¢) = A(e’,0). The tangent vectors at the identity
of G to @, and a, are A; = 3/96 and A, = d/dp. Therefore

A(]-’t) ' (IJ‘Iy /J'Z,a') = [_“2’“1, O]ta
t=0

AT (py, 1 0)=i
1 1> #2» dt

A(e‘,O) : (/'l'l’ #210-) = [/‘Lh /1'270']t

" d
A2(I‘L1’ M2, 0') = EE
t=0
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and hence

) 0
J(I~L1,I-L2,0') = det[ 0 k2 + klé] = kla(k2 + kla)

Overall, Jeffreys’ prior is p(uy, g, 0) = 073k y/k, and hence the minimally
S-informative prior is

PRy g, @) = 02y (kgd + By32) %,

If g(z) = —z/2, so that the underlying distribution is normal, 2, = 1 and
ko = 4. After a G-equivariant sufﬁciency reduction, the orbits of the action of
G on X" can be parameterized by ¢t = X'X/s2 where s> = L(x; — ¥)'(x; — X)/
(2n — 2). int has a noncentral F dlstrlbutlon with noncentrahty parameter
né and (2, 2n — 2) degrees of freedom. It follows that Vn(t — 8)hasa llmltlng
normal distribution with mean 0 and variance 45 + 62. Thus Jeffreys’ prior
for 8 has a limiting form of d&/ V46 + 62.

Q can be parameterized globally as G X Q/G using p = {u? + u3, ¢ =
arctan(u,/u,) and 8. Then making the change of variables,
2dp,duydo dé dpdo

o345 + 82 Vas + o2 P

We recognize dp d¢/p as Haar measure on G thus verifying directly proper-
ties (i) and (ii) in Theorem 2.

One might consider for this problem the prior du,du,do/o. Since
du,dpysdo/o=pdpde - d5/(26), the conditional distribution along an
orbit is not Haar and hence a marginalization paradox with respect to 8 can
occur.

p(pip2,0)duduydo =

ExampLE. (The Hopf Fibration). The Hopf fibration is a low dimension
example which is commonly used to illustrate the techniques topologists have
evolved to handle the usual lack of a global decomposition @ =~ G X @ /G. In
this example we discuss a close cousin of the Hopf fibration in a statistical
context which could plausibly arise in tectonic studies.

Let S? denote the unit sphere in Euclidean three-dimensional space and

assume v, ...,V, are independent points on S? with each v, having a Fisher
distribution with modal vector Au; and a known concentration parameter .
Here u,,...,u, are known fixed points on S? and A is a rotation of S2

written as a 3 X 3 matrix. It is well known that A is a rotation if and only if
AA’ =] and the determinant of A is 1; the collection of such matrices is
usually denoted by SO(3). In our notation © = SO(3). Suppose the parameter
of interest is A‘e;, where e; = [0 0 1]

Chang (1986) discusses inference on A. The problem arises in connection
with the determination of the errors in the reconstruction of the past position
of tectonic plates. In that context, A represents the rotation which rotates the
present position of a tectonic plate into its past position and we are now
interested in finding a minimally informative prior for the present location
Ale, of a point whose past location is e.
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This statistical model is naturally a group model with group SO(3). SO(3)
acts on Q and on each v; by left matrix multiplication. It follows that Jeffreys’
prior is Haar measure on Q. Thinking of SO(3) as an embedded surface in the
nine-dimensional Euclidean space of 3 X 3 matrices, -Z(SO(3)) = {E|E +
E’ = 0}. Given E, a(t) = exptE = L, t"E"/r! is a curve in SO(3) with a(0) = I
and ¢’(0) =E. If A € Q, AexptE is a curve in @ and it is shown in Chang
(1986) that

(AexptE) = —n(kcothx — 1)Tr(EXE),

t=0

d A tE)' - I(A d
Zi| (Ae®14) 5

where £ = ¥, u,;u’/n. In our notation,

d d
E*(A) = = (exptE)A = —
0

dt

Aexp(tA'EA).
t= t=0

Therefore
E*(A)’ - I(A) - E*(A) = —n(«xcoth k — 1)Tr(EAZA’E).
It is easily shown that A‘e; = B’e; if and only if B = CA for some
sin® cosf® O

CeG-= .
0 0 1

G is the collection of rotations which fix e . Restrict the action of SO(3) on Q
to an action of G on Q. Then the orbit space /G consists of the right cosets
GA of G in SO(3) and /G = S? with the correspondence taking the right
coset GA into A’eg.

cos@ —sinfd O

0 -1 0
E=]1 0 0
0 0 0

is a basis for _Z(G) and hence
J(A) = —n(«kcoth x — 1)Tr(EAXA’E)

= n(k coth k — 1)(Ale;)’(I — T)(Ale;).

Since the overall Jeffreys’ prior on © = SO(3) is Haar measure, the minimally
informative prior about A‘e; has density J(A)~'/? with respect to Haar
measure. Since the eigenvector corresponding to the largest eigenvalue of X is
at the center of the points u ;, we see that this minimally informative prior has
greatest density at rotations A which move the center of the points u; to e;.

In topology, a close cousin of the projection 7: SO(3) = SO(3)/G is known
as the Hopf fibration. Topologically, SO(3) is a real projective 3-space and G is
a circle S!. Since S! X S? is topologically quite different from SO(3), no
topological decomposition SO(8) = S! X S? is possible. The Hopf fibration is
described in Steenrod [(1951), pages 105-108] in its usual form S32 —
S3/8! = S2; the relationship between SO(3) and S? is given in Goldstein
[(1950), pages 109-111].
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Let U,=S? — {—eg) and U_= S? — {e;} be the complements of —e, and
e, respectively. Let ¢ ,: G X U,—» 7 X (U,)and ¢ : GX U_- 7w XU_) be
defined by

[ (e5 + u)(e; + u)’
‘P+(gau) =8 egu +1 -
and
[ (e5 — u)(e; —m)’
v (g,ma)=g" 2 - 2 + I,
esu-—1 ]

respectively. ¢ , are local trivializations of m: SO(3)'— SO(8)/G. Notice that
¢ , satisfy:
(@) ¢, are differentiable, one-to-one, onto maps of G X U_— 7w (U ,)

with differentiable inverses (that is, ¢ , are diffeomorphisms).
(b) ¢ ,(g,u) = u, that is, ¢ , takes each G X u one-to-one onto the fiber

m~ (a).
© & ¢,.(g,u) = ¢, (gg,0), that is, ¢ ;' takes the action of G on Q into

group multiplication in G.
d ¢ ' ,(g,u) = (gs(m),un), where s: U, N U_— G is

(e3—u)(e; — u)’
elu-1

(e; + u)(ez + u)’ B

+I].
efu+1

s(u) =

m: SO(3) — SO(3)/G is typical of a general phenomenon. Usually differen-
tiable trivializations @ = G X Q/G can only be found locally and even local
trivializations [that is, maps ¢ which satisfy (a), (b) and (c) above] may only be
definable, as in this example, in some arbitrary manner. Appendix A contains a
proof that (under mild conditions) a locally trivial structure to the orbit
projection m: 0 — Q/G always exists and that any two local trivializations
will be related by a condition analogous to (d) above. In topology, m: @ — Q/G
is said to have the structure of a fiber bundle. In view of Proposition 1(b),
Theorem 2 gives a method for calculating p(w) which does not depend upon
the choice of parameterization of ). Thus we can be sure that the prior p(w)
is intrinsic to the fiber bundle 7: @ - Q/G and does not depend upon any
choices of local trivialization.

2. Some calculations for the multivariate normal distribution. We
parameterize the p-dimensional multivariate normal distribution by (p, V),
where p is the mean and V is the covariance matrix. Let AL(p) be the group
{(a,A)}, where a € R? and A € GL(p). AL(p) acts on the sample space
X =R?by(a,A) -x=a+ Ax.If n > p + 1, the resulting action of AL(p) on
X" is free except on the set of measure zero consisting of all n-tuples
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(xy,...,x,) such that x, — x;,...,X, — X, span a subset of R? of dimension
less than p. The action of AL(p) on Q is (a,A) - (n,V) = (a + Ap,AVA)).
Overall, Jeffreys’ prior on  is

(1) p(n,V) = (det V) ~®*272,

The tangent space -Z(AL(p)) at the identity (0,I) of AL(p) is a product
RP X M(p), where M(p) is the collection of p X p matrices. If a,b € R?, let
a(t,s) = (ta + sb,I) € AL(p). Then d/dtl;—o a(¢,0) = (a, 0) and
d/dtls—0 a(0, s) = (b, 0). It follows that

s=0]

((2,0)*(r, V)" - I(r, V) - ((b,0)*(n, V))

E [ﬂog f(x;pn + ta,V) dlog f(x;p + sb,V)
s at ds

s,t-O:I

1
- E(x —p—ta—sb)’V'i(x—p—ta- sb)]

t=0

E [62 log f(x;n + ta + sb,V)

dtds
82
_Ex
dt ds

1 1
= Ex[ga’V‘lb + Eb"V‘la] = a‘'V~1b.

(2)

s,t=0

If A € M(p), then a(t) = (0,exptA) = (0,L , t'A”/r!) is a curve in AL(p)
with «(0) = (0,I) and «'(0) = (0, A). Thus

((a,0)*(», V)" - I(r, V) - ((0,A)*(n, V))

82
= —Ex[m log f(xl(exp tA)p + sa, (exp tA)V(exp tA)t)]
s,t=0
E > logd A . A !
(3) = — xmst%— og det exp ¢ —E(x—(expt )p — sa)

X (exp — tA")V~!(exp — tA)(x — (exptA)p — sa)]

1 1
= EpfA’V_Ia + Ea’V_lAu =a'V 'Apn.

In (3) we have used the identities exp(—¢A) = (exp tA)~! and det(exp tA) =
exp(¢ Tr A). Similarly, letting aft, s) = (0, exp(¢A + sB)) = (0,I + A +



1604 T. CHANG AND D. EAVES

sB + 1ts(AB + BA) + -+ ), we get
((0,A)*(p, V)" - I(, V) - ((0,B)*(p, V))

1
— Tr(tA + sB) — ETr(x — (exptA + sB)p)

s,t=0

2
= -E,
dt ds

X(x — (exp tA + sB)u)t(exp( —tA — sB)t)V‘1

(4) X (exp(—tA — sB))

1
3z {utAtV_pr, + KBV 'Ap

+Tr|VA'V-B + VB‘V~'A

1 1
+ 5 V(A'B + BAYV ! + —VV Y(AB + BA)]}

= Tr[AB + VA‘*'V~!B] + WA’V 'Bpu.

Multiplication in AL(p) is (b, B) - (a,A) = (b + Ba, BA). Letting a(t) be
the curve in AL(p) defined by a(¢) = (ta, exp tA), where (a,A) € R? X M(p),
then,

(b,B)(ta,exptA)(b,B) "

t=0

ad(b,B) - (a,A) =%

d
(5) a7l

= (Ba— BAB~'b,BAB™!).

(b + tBa — B(exp tA)B~'b,B(exptA)B~!)
0

REMARK. These calculations can be extended, in a manner similar to that
used in the previous section, to models of the form

(6) f(xlp, V) = c(det V) ?exp g((x — p)'Vi(x — n)).

Let W=V~'2(x — p) and write W = [w,,...,w,I". The density of W is
f(+ 10, I). Define constants k,, k,, k3 and k, by

ky = —4E(g"(W'W)w?) - 2E(g'(W'W)),
ko= —2E(g'(W'W)w?),

ky= —4E(g"(W'W)wiw?),

k,= —4E(g"(W'W)w}) — 3k,.

The constants %, k,, k5 and k, are components of the information matrix I.
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Then .
((a,0)*(n, V)" - I(r,V) - ((b,0)*(p,V)) = k,a’'V~'b,
((a,0)*(n, V)" - I(n,V) - ((0,A)*(p,V)) = k,a’V~'Ap,
((0,A)*(n,V))' - I(1, V) - ((0,B)*(n,V))
= (ky + k3)Tr[AB + VA'V™!B], +k,;pA'V'Bp + k3, TrBTrA
+ k, Tr((V-V2BVY/2)*(V~1/2AV1/2)),

Here A*B denotes the Hadamard product of the square matrices A and B:
namely, the matrix C, whose entries are c;; = a;;b; .

Since AL(p) acts transitively on Q, (1) is still Jeffreys’ prior for group
models of the form (6). )

3. Some noninformative priors for the multivariate normal distri-
bution. Let G < AL(p) be the subgroup of matrices {(a, A)|A is diagonal
with positive entries}. Then G acts freely on @ = {(n, V)} and the orbit space is
parameterized by the correlation matrix p.

Given (p, V) € Q@ consider (— p,I) € G. Now -Z(G) = {(a, A)|A is diagonal}
and by (5), ad(— p, D) - (a,A) = (a — Ap, A). It follows that det(ad(— p,I)) = 1.
Since (—p, D - (n, V) = (0, V), we have by Proposition 1(e)

J(p,V) =J(0,V).
Using equations (2) and (3)
((a,0)*(0,V))" - 1(0,V) - ((b,0)%(0,V)) = a‘'V~'b,
((3,0)*(0,V))t : I(O:V) : ((O,A)*(O,V)) = 0.

Let E; be the diagonal matrix with all 0’s except for a 1 in the (j, j)th spot.
Then using (4),

((0,E;)*(0,V))" - 1(0,V) - ((0,E;)*(0,V)) = Tr[E,E; + VEV'E,]
=8, +v,vY,

where V = [v;;]and V! = [v¥/].
Thus J(0,V) = det(I + V*V~1)/det V and using (1),

p(r,V)dp dV = (det V) " P+ P/2(det(I + V*V~1))~
= ZP[H(‘Ti_Id/»LidUi)]

X [(det p) _(p+l)/2(det(l + p*p_l))_1/2 [1dp;;|.
i<j

1/2

dpdV

(7

Recognizing [1,(0; ! du; do;) as right Haar measure on G, we get

p(p) = (det p) ~P*V/%(det(I + p*p~1)) /.
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The prior (7) is inequivalent to priors of the form (det V)" dp d'V considered
by Geisser (1965) and Dawid, Stone and Zidek (1973). When p = 2, marginal-
ization paradoxes with respect to p are avoided only when r = — 3 and this is
the prior recommended by Geisser. Then
do, do, dp

71 72 (1-p%)

(et V) " 32dpndV = 4du,du, 573
whereas the prior (7) is Lindley’s prior

do, do, dp
o, 09 1—0p

Now let G < AL(p) be the subgroup of matrices {(a, A)JAA’ = I}. The orbits
of G in Q are in one-to-one correspondence with the p-tupleso; >0, > -+ >
o, of eigenvalues of the covariance matrix V. G does not act freely on (.
Nevertheless, if AA? = I and V is diagonal with distinct entries, then AVA’ = V
implies that A is diagonal with entries +1. Let Q, = {(n, V)|V has distinct
eigenvalues}. If (p,V) € Q,, its isotropy group G, v, ={g € Glg - (n,V) =
(p, V)} is isomorphic to (Z,)? and has order 27.

Recall that two subgroups H, and H, of G are said to be conjugate if there
isa g € G so that H;, = gH,g~!. If G acts on Q with all isotropy subgroups
conjugate to the finite subgroup H, then all the orbits are of the form G/H,
with the action of G on an orbit being left multiplication of left cosets. In our
example, H = (Z,)?. Then under reasonable conditions (see Appendix), one
can find local decompositions @ = G/H X Q/G, with G acting on the first
factor only. We have the following extension of Theorem 2:

2dp,dp,

P

THEOREM 3. Suppose G acts on Q with all isotropy subgroups conjugate
to the finite subgroup H and freely almost everywhere on X. Let p(w) be
overall Jeffreys’ prior. Let p(w) be the prior defined by

(1) In any local decomposition @ = G/H X Q /G, the conditional distribu-
tion of p(gH|0) of gH given 0 is the measure induced on G/H from a right
Haar measure on G which is independent of 0.

(ii) The marginal prior p(8) of 6 is the limit of Jeffreys’ prior for the
sampling distribution of the maximal invariant. Then p(w) is the Bernardo
minimally 6-informative prior. Furthermore it can be calculated by

p(0) = p(0)d(0)

In our case, G is unimodular. Hence using Proposition 1(e) and equation (5)
to calculate J(p,V), we can restrict ourselves to the case p = 0 and V is
diagonal. From equations (2) and (3),

((a,0)*(0,V))" - 1(0,V) - ((b,0)*(0,V)) = a'V~'b,
((a,0)*(0,V))" - 1(0,V) - ((0,A)*(0,V)) = 0.

Z(G) = R? x .Z(0(p)), where -Z(0O(p)) = {A € M(p)IA + A’ = 0}. Let E;;
be the matrix with 1 in the (i, j)th place and —1 in the (j, i)th place. The E,;
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for i < j form a basis of .Z(O(p)). Then using (4),

((0,E,,)*(0,V)) - 1(0,V) - ((0,E,)*(0,V)) = 0, ifi#korj=+l,

¢ A Aj
((0,E;;)*(0,V)) - 1(0,V) - ((0,E;))*(0,V)) = = + = — 2,
J i
where V has eigenvalues A4, ..., A,
It follows that

A, A _ .
J(0,V) = {I?[A—l][g(A—’ + )TJ - 2)] = (detV)™* i]:[j()\i - 1)

-1

and therefore p(u,V) = (det V)7'TT, _ A, — A}l
APPENDIX A

Topological preliminaries. In this section we assume the action of G
on Q has all isotropy groups conjugate to a fixed group H and that Q is a
connected differentiable Cartan G-space [see Palais (1961)].

Following standard notation, we shall write G, for the isotropy subgroup of
w € Q (that is, G, = {g € Glg - © = »}). We note that G,., = gG,g". In
other words, g - @ and @ have conjugate isotropy subgroups.

The assumptions ensure that /G is a differentiable manifold and that the
map 7: Q@ - Q/G, which takes each w € Q to its orbit, is differentiable. The
differential structure on Q/G is defined in such a way that a real valued
function f on Q/G is differentiable if and only if f# is. Indeed, much more
can be said about the structure of 7. Let N(H) be the normalizer of H (that is,
NM®H) = {g € GlgHg ™! = H). N(H)/H has a natural right action on G/H,
the left cosets of H. That action is for g € G and n € N(H): (gH) - (nH) =
gnH. We have:

PrOPOSITION 4. 7: Q — Q/G is a differentiable equivariant fiber bundle
with structure group N(H)/H and fiber G/H. That is:

(i) Every point in Q/G has an open neighborhood U in Q/G such that
there exists a diffeomorphism ¢: G/H X U —» w~XU) with the properties:
(@) If , is the projection of G/H X U onto its second factor, then mwy = Toy.
) Ifg € G, ¢y(ggH,0) = g - p,(§H, 0). That is, under ¢y, the action of G
on Q corresponds to left multiplication of left cosets.

(ii) If U and V are open sets in Q/G with charts ¢y and ¢y, respectively,

-then there is a differentiable map s: U NV - N(H)/H such that

oy(gH,0) = ¢y (gHs(0),0) foralld e UNVandg € G.

(In particular, if G acts freelyon Q,s: UNV - G.)
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Furthermore, the fiber bundle structure on w: Q — Q/G is unique in the
sense that any two maximal collections of local trivializations {(U, ¢y;)} satisfy-
ing (i) and (ii) are the same.

Proor. If G is compact, Proposition 4 is standard. It can be found, for
example, less the statement of uniqueness, as Corollary 2.5 on page 309 of
Bredon (1972). The compactness condition is used only to show that slices
exist at each point of Q. The existence of slices is guaranteed by the assump-
tion of Cartan action [Palais (1961), Proposition 2.2.2].

Let w € @ and pick g € G so that g - o has isotropy group H. Section 2.2
of Palais shows that the Cartan condition is sufficient to insure that there is a
submanifold, called a slice, S of @ and a differentiable equivariant f:
GS = {g - slg € Gand s € S} - G/H such that GS is open neighborhood of
o in Q@ and S = f~1(H). Since f is equivariant and all isotropy subgroups are
conjugate to H, S intersects each orbit in GS exactly once and each element
of S has isotropy group H. Then (see Palais, Remark 2.2.3) Fg: G/H X S —
G S defined by Fg(gH, 0) = g * » is a diffeomorphism.

Let U = w(S) = w(GS). Then U is open in the quotient topology of Q/G
and the restriction 7|g of = to S is a homeomorphism of S onto U. Define
eoy:G/H X U > w~U) = GS by ¢,(gH, 0) = Fs(gH, (]s)~1(6)). It is eas-
ily shown that ¢, is a homeomorphism and that (i)Xa) and (i)(b) hold.

If S, is any other slice, then since Fg is a diffeomorphism and both S, and
S are fixed by H, there is a differentiable fg 5 from S N GS; into N(H)/H
such that for each w € 8 N G S, 0 = f5 5(w) * w; With 0; €S, N Go.

We note that N(H)/H is a group and (rls,) " (7|sX®) = f5 s(w) ™" - @ on
S N GS,. It follows that differentiability on /G can be unambiguously
defined by demanding that each w|s be differentiable. It is now easily shown
that a function f on Q/G is differentiable if and only if f= is differentiable,
that each ¢, is a diffeomorphism and that (ii) holds.

Now suppose ¢y: G/H X U - 7~ XU) is any diffeomorphism satisfying
(iXa) and (iXb). Then S = {¢,(H, ) for u € U} is a slice and the uniqueness
of the fiber bundle structure follows. O

REMARK. Proposition 4 does not require the finiteness of H. If € is not a
differentiable Cartan G-space but merely a topological one, Proposition 4 is
true without differentiability in its conclusion.

The assumption that all points in @ have isotropy subgroups conjugate to
some fixed subgroup H, can also be usually finessed using the principal
isotropy group (p.i.g.) or principal orbit type (p.o.t.) theorem. That theorem
asserts that if G is compact, then there is a subgroup H of G and an open and
dense subset Q, of Q, such that each point of @, has isotropy subgroup
conjugate to H. Under the assumption of differentiability, the p.i.g. theorem
has an elementary proof which can be found in tom Dieck [(1987), page 43] or
Bredon [(1972), page 179-180]. The proof only uses the existence of slices and
the compactness of all isotropy groups and hence the condition that G be
compact can be replaced by the Cartan condition. The p.i.g. theorem is actually
true without differentiability restrictions; see Borel (1960).



REFERENCE PRIORS IN A GROUP MODEL 1609

APPENDIX B

Proofs. In this paper, we assume:

(i) G is a Lie group and the action of G on the sample space X is assumed to
be free and such that a measurable cross section X = G X X/G exists. Bondar
(1976) discusses conditions which ensure the existence of a measurable cross
section.

(ii) We assume the necessary regularity conditions to ensure the correctness
of asymptotics for both the statistical models (©2,X) and (Q /G, X/G). Lehmann
[(1983), pages 406-415] gives these conditions in greater detail.

(iii) We assume the action of G on Q has all isotropy groups conjugate to a
fixed group H, that H is finite and that Q is a connected differentiable Cartan
G-space [see Palais (1961)].

It is well known [see Amari (1985), Kass (1989)] that Fisher information can
be considered as a Riemannian metric on Q: that is, for each w € Q, Fisher
information defines an inner product on the tangent vectors T ,Q to @ at w.
To emphasize this coordinate-free viewpoint, if X,Y € T, Q, we will write
I (X,Y) for the Fisher information inner product of X and Y. In the main
body of this paper, I.{X,Y ) was denoted X’ I(w)-Y. When there is no
danger of confusion, we will usually omit the subscripted ». Thus if ¢,(¢) and
c,(t) are curves in Q with ¢,(0) = ¢5(0) = w,

s=0]

dlog f(x;c(2))
at

For g€ G, let L,: @ > Q be the map L (w) =g - and DL, T,Q —

T,.,Q be its derivative defined by

dlog f(x;c5(s))
as

(8) KX,Y) =Em[

t=0

g c(t),

t=0

d
DL (c'(0)) = —

where we notice that g - ¢(¢) is interpreted as a curve in Q. It is well known
that I is G-invariant, that is,

(9) 1, (DL, X,DL,Y) =I1(X,Y).

Since Jeffreys’ overall prior on Q is the volume element on Q induced by I, it

is also G-invariant.
For w € Q, let ¢,: G/G, — Q be defined by

$.(8G,) =g .
Since G, is finite, the Cartan condition implies that ¢, is nonsingular.
Proor oF ProposITION 1. Part (a) follows trivially from (8) and (b) from

(a). The nonsingularity of ¢, implies that (c) is true. The truth of (d) is
immediate from the bilinearity of I{ , ).
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We have for A € Z(G) and «a(t) a curve in G with «(0) = 1 and «'(0) = A

. d d
A*(g ) =— 0cv(t) (gr0) == g(g la(t)g)
t= t=0

= (DL,)(ad(g7") A)*(),

and (e) follows from (d) and (9). Since G is unimodular is equivalent to
detfad(g ~ 1] = +1, (f) is immediate from (e). O

Let T,Q = {X € T,Q such that I{X, A*(w)) = 0 for all A €_Z£(GQ)}. Us-
ing (9), DL, takes T,Q into T, ,0. T,Q is a vector subspace of T,Q of
dimension equal to dim @ — dim G. Since the vectors of the form A*(w) span
the vectors tangent to the orbit at w, 7, Q is a complementary subspace to the
tangent vectors to the orbit. Define a new inner product [ (X,Y) on each
tangent space to by

KX,Y)=KX,Y), ifXorYisinT,Q,

[(A*(0), B*(0)) = I{A*(w), B¥(0))/J(w)"*,
where & = dim G. Jeffreys’ prior p(w) dw is the volume element of @ using
the Riemannian metric I. Let p(w)dw be the volume element of Q using the
metric I. That is, if M(I(w)) is the matrix of the Riemannian metric I using
any parameterization of Q,

(10) p(w)dw = det(M(I(w)))*d

LEMMA 5. (a) Suppose G, = H. Then the measure induced by I on the
orbit through o is, after pulling back to G/H using ¢,, a right Haar
measure which does not depend upon .

() p(w) = ple)d(w) 172

Proor oF LEMMA 5. Let A € Z(G) and a(¢) be a curve in G with a(0) = 1
and «'(0) = A. Extend A to a right invariant vector field on G by A(g) =
d/dtl;—o a(t)g. Let q: G > G/H be projection and define a Riemannian
metric I; , on G by

15 . A(g),B(g)) = KD(¢,9)A(g), D($,9)B(8)).
Now D(¢,q)A(g) = A*(g - ») and hence

det[ I, (A(8), A,(8))] = det| I(A(g - w), A%(g - w))] = 1.

It follows from the way volume elements are constructed from Riemannian
metrics that I; , defines a right Haar measure on G and that this right Haar
measure is 1ndependent of . In other words, I and ¢, define a measure on
G/H which pulls back (under q) to a constant right Haar measure on G. This
is part (a). Part (b) is immediate. O

Although (10) defines p(w) d v independently of the parameterization of Q,
to prove Theorems 2 and 3 we can use Proposition 4 and assume that we are
working in a fixed local decomposition GU = G/H X U for U open in Q/G.
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We will use 6 for the generic point of U and will write @ = (g, 8) to mean that
(gH, 0) is the representation of w in this local decomposition.

LEMMA 6. If the conditional prior on each orbit is a constant right Haar
measure, then p(w) is the 0-noninformative prior as defined by Bernardo
(1979).

Proor oF LEMMA 6. Let w = (g, 6) be a point in © and pick local coordi-
nate systems (parameterizations) ¢,;: R* > G/H and ¢,: R™ — Q /G, where
k =dimG = dimG/H and m = dim @ — dim G. Let ¢(v,) = § and ,(v,)
= 6. We denote by D, , (#; X ¢,) the derivative map R* x R™ - T,Q
defined by

d .
D(ul,uz)(‘ﬁl X ‘1[’2)(‘)’{(0)’ 'yé(O)) = a - (¢1(71(t))7 ‘/’2(‘)’2(t))),

where y,(t) and y,(¢) are curves in R* and R™, respectively, with y,(0) = v,
and y,(0) = v,.

Let M(I(v,,v,)) be the information matrix (using these coordinate systems)
at (v,,v,). When A is a (B + m) X (k + m) matrix, let A,, be the lower
m X m submatrix of A.

Let p: T ,Q — T_Q be orthogonal projection under I. The matrix of inner
product { , >, v,y On R™ X R™ given by the composition

R™xXR™ =5 ({0} xR™) X ({0} XR™) c (R*XR™) x (R*xR™)

Dy, g, v, W1 X W2 X b1 X t3)

TaxT,02% FaxTa5R,
is
M(I(U17U2))22 - M(I(UDUZ))ZI ) [M(I(U17v2))11]_1 'M(I(vl,vz))m

-1
= [M(I(v19v2)) 1]22 .

We claim that < , ), v, and hence [M(I(vy,v,))~']l3" do not depend upon
v,. Indeed, given v}, let g be so that y,(v{) = g - ¢¥4(v,) and let a,(¢) and ay(?)
be curves in R™ with «;(0) = v,. Then using the invariance of I [equation (9)]
and that in each trivialization given by Proposition 4, the action of G on  is
left multiplication in the first factor

d
P(D(vi,uz)(‘/h X 1//2)(0,a§(0))) =P dr B [‘/’1(”1): lf’z(ai(t))])

t

et (a0

=0\ t
d
=p DLga t=0[l//1(v1), ‘l’z(ai(t))])
d
= DLg{p(‘d—t t=0[¢1(v1)’ ‘pz(“i(t))])}

= DL {p( D, oy(¥1 X $2)(0, 21(0)))}.
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Hence
(@1(0), @5(0) s, v
= I {P(Dog,up(¥1 X $2)(0, 2§ (0))), p( Dy, (91 X #12)(0, @5(0))) )
=I,., (DL p(Dy,, ., (41 X ¥2)(0, @} (0))),
DL ,p( Dy, (1 X ¥5)(0, a3(0))))
= I,(p( Dy, 0y (1 X 95)(0, 2§ (0))), p( Dy, up(¥1 X $12)(0, @5(0))) )
= (a{(0), @5(0))ew,,vp)-

Furthermore we note that p is also an orthogonal projection under I and I
and I coincide on T, Q. Thus we can write

(11) [M(I(quz))_l]g_gl: [M(j(vl,vz))_l];;'

Since the matrices (11) do not depend upon v,, we shall usually write them
with v, deleted.

Let p(v,) be right Haar measure on G/H pulled back to R* using ¢,. Let
p(v,) be the Bernardo (1979) 6-noninformative prior if p(v,|v,) is set to p(v,).
We will show that p(v,)p(v,lv,) dv, dvy = p(vy,vy) dv, dv,, where p is de-
fined using (10).

Following the development of Bernardo, let p*(vylx,) be the asymptotic
posterior distribution of v,. We have that p*(v,|x,) is normal with mean 0,
and precision matrix n - [M(I(:,0,)) " '15;". Its entropy H{p*(v,|x,)} is (see
Section 3.3 of Bernardo)

H{p*(vylx,))} = (m/2)log(2me/n) — }logdet([ M(I(-,0,)) '], ) + o(D).

Given a prior p(v,|v,), the m,(v,) of Bernardo’s equation (17) is proportional
to

exp(%/flogdet([M(I(-,62))_1]2_21) f(x,lvy,vs)p(v4lv,) du, dxn) + o(1)

@ exp(%f}z)(vllvz)logdet([M(I( : vz))_l];;) dvl) + o(1).
Thus if p(v,lv,) does not depend upon v,, the Bernardo prior p(v,) is
p(vy) dv, @ det([M(I( ° vz))-l];;)l/z dvu,.
By Lemma 5, if p(v,|v,) dv; is a right Haar measure independent of v,, then
p(v;lvy) dvy o det(M(I(vy, ~))11)1/2 dv,.
For a square matrix, det A = det A,; - det[(A~1);,']. Using (11),
B(v41v5)B(vy) dv, dvy o det(M(I(vy,v,))) dv, dv, = p(vy,v,) dv, dv,.
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In other words, the volume element determined by the Riemannian metric I is
Bernardo’s minimally informative prior about 6. O

Although we will continue to work in some local trivialization of €, we will
henceforth eliminate explicit reference to the parameterizations ¢, and ,. In
particular, we will use the notation [M(I(-, 8))~1],, for the matrix which was
denoted [M(I(-,v,))"],, in the previous proof. We will continue to denote by
y,, the maximal invariant of the G action on a random sample of size n, that
is, the orbits of the action of G on the Cartesian product X". Let M(IS(9))
denote the information matrix calculated from the sampling density f,(y,|6) of
Y- [n(¥,10) is induced by the quotient map X" — X" /G. Let dgy denote right
Haar measure on G/H.

LEmMmA 7. Suppose that for all n sufficiently large, G acts freely on X"
except for a set of measure zero. As n — o, M(1S(0))/n has a limit M(19(8))
and in a local trivialization, p(w)dw = det(M(16(0)))'/2d 6 dgg.

REMARK. In the notation of the proof of Lemma 6, M(I%()) =
[MI(-, 0) 155

Proor. Let 6, be fixed and let x; have the density f(x|1,6,). Let p(9)dé
be an arbitrary prior in 6 and use the prior p(9) d0 dgz on Q. Let (2, 6) be the
MLE calculated from II; f(x,|1, 6,). Asymptotically, the marginal posterior of
8 is normal with mean # and precision matrix n - [M(I(-,8))~];,. Since right
Haar measure has been used on G/H, this posterior can be calculated using
the f,. [The condition (i) has been used here.] By calculating the log of this
posterior using an expansion of log f,, about 6, we have for each 6,

;[alog L (ynw)] (6 -6) + —(a =) [%’;(ynlé)](e - 0)
= 0= (M), (0 9) + 0,0,
Therefore
[t
is 0,(1) and

1 [d%log f,, . 1 Aly—1] 71
‘2‘;[70:5‘07@”!0)] =~ [MUC,0) 7], + o0,
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Since § = 6, + 0,(1),
1([é%log £,

36,30, ¥al80) | = = [M(I(-,00)) 7], +0,(1)

and hence taking expected values
1 _11-1
~M(13(00)) = [M(I(+,00) '], + (2. 0

Lemmas 5, 6 and 7 complete the proof of Theorem 3 and a fortiori The-
orem 2.
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