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SEQUENTIAL CONFIDENCE REGIONS IN INVERSE
REGRESSION PROBLEMS

By Jiunn T. HwanGg! anp HUNG-KUNG Liu
Cornell University and SUNY at Stony Brook

In inverse regression problems (or more generally, the estimation of
ratios of regression parameters) and errors-in-variables models, it has been
shown by Gleser and Hwang that the length of any confidence interval with
positive confidence level is infinite with positive probability. Therefore the
confidence sets derived using asymptotic theory, although having correct
asymptotic coverage probability, typically have zero confidence level when
the sample size is fixed.

Is it possible to construct a sequential confidence interval with finite
length and 1 — a > 0 confidence level? The answer is no for any finite
stage sequential sampling. The answer is, however, yes for a fully sequen-
tial scheme, as demonstrated by Hwang and Liu. For the inverse regression
problem, and more generally the set estimation of a ratio of regression
parameters, we construct a (1 — a) confidence sequence. Applying such a
confidence sequence, we can construct a (1 — a) sequential confidence
interval with the length less than a prespecified quantity.

1. Introduction. In this paper, we deal with the problem of constructing
sequential confidence intervals for ratios of regression parameters. Solutions
to such problems can be applied to inverse regression problems (calibration
problems) and biological assay problems. See Malley (1982) for extensive
discussions about applications in a nonsequential setting. Often in biological
assay, one is interested in comparing the potency of a new treatment to a
standard treatment in terms of a ratio of parameters. Usually, the experiment
is done in a sequential manner so that the experiment can be terminated as
soon as enough evidence has been accumulated to ensure that the better
treatment can be applied to patients early.

Gleser and Hwang (1987) considered the same models and other related
models such as errors-in-variables models, except that they took a finite-sam-
ple (nonsequential) approach. They proved that any confidence sets having a
positive confidence level 1 — a will suffer the inevitable property that there is
a positive probability of having infinite length. (A confidence level of a
confidence set is the minimum coverage probability over the parameter space).
Consequently, many confidence sets with asymptotic coverage probability
1 — a have in fact zero confidence level (with respect to the finite-sample
probability), since they usually have finite length for almost every observation.

In this paper, we address the question as to whether the sequential ap-
proach could be used to construct a nontrivial sequential confidence set, i.e., a
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1390 J. T. HWANG AND H.-K. LIU

finite-diameter confidence set with positive confidence level based on a sam-
pling that stops with probability 1.

As it turns out that it is still impossible to construct a nontrivial confidence
set using a two-stage sequential procedure or, in fact, using any finite-stage
sequential procedure. The results hold for a wide class of models, having the
same generality as the main theorem in Gleser and Hwang (1987). These
models include inverse regression models, multivariate linear and most nonlin-
ear errors-in-variables models and estimation of principal component vectors.

What if one uses a fully sequential procedure? The answer is then yes for
at least two models: structural multiple linear errors-in-variables and the
estimation of ratios of multiple regression parameters. This existence result
and the nonexistence result regarding finite-stage sequential rules (depicted in
the last paragraph) are not reported here due to the limitation on space. See
Hwang and Liu (1989). In the present paper, we construct, for the ratio
problem, nontrivial confidence intervals based on a result of Sinha and Sarkar
(1984).

Before discussing the significance of the construction, we mention some
earlier results. A recent reference for the confidence set construction in the
inverse multiple regression problem is Oman (1988). As implied by Gleser and
Hwang (1987), these proposed intervals inevitably share the undesirable prop-
erty that their diameters may be infinite. Earlier, realizing the problem, Perng
and Tong (1974) considered a simple inverse regression model and used two
fully sequential samples to construct a confidence interval of a prespecified
length . As I — 0, the coverage probability was shown to converge to1 — a >
0. Much later Levy and Samaranayake (1988) provided a multivariate general-
ization of the results of Perng and Tong (1974).

We consider, in the present paper, a standard multiple linear regression
model

(1.1) ¥y, = X, B + €,

nx1 nXp pX1 nx1

where y, = (yy,...,5,), B=(By,...,B,) and & = (ey,...,¢,), where ¢; are
iid with mean 0 and variance o.”. Let p, <p and By, = (B, ..., B, Under
the assumption that b'B,,# 0, we construct a confidence sequence for
a'Bay/b'Bay, where a and b are p,-dimensional vector. [We could have taken
By = B, but considering B, gives us more flexibility]l. We achieve three goals
that were not previously achieved.

(I) We construct fully sequential confidence procedures of finite length
or length less than a prespecified quantity with coverage probability at least
1 — a > 0. (Yes, this is true for any parameter configuration and this is an
exact and nonasymptotic result).

(II) We actually discover a confidence sequence. A sequence of confidence
intervals C, for 0 is called a (1 — a) confidence sequence if for some m,

(1.2) P(6eC,,Yn=>2m)=>1-a.
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Here m is the prespecified minimum number of samples taken. Note that (1.2)
implies that for any stopping rule N such that P(m < N < ®) =1, Cy will
always have at least 1 — @ coverage probability. For discussion of confidence
sequences, see Robbins (1970), Lai (1976), Kahn (1978) and Sinha and Sarkar
(1984). See also Farrell (1962, 1964).

A confidence sequence is therefore very flexible, since we can implement
according to any stopping rule, or even any unspecified or partially unspecified
stopping rule. Although at the expense of the procedure’s efficiency, the
flexibility is important especially in clinical trials, since in such studies, there
are many factors such as side effects and financial cost that affect the decision
to terminate a study. For detailed discussions about other situations where it
is difficult to follow a specific rule, see, for example, Jennison and Turnbull
(1984, 1989).

(III) The confidence sequences in Section 2 cover not only one ratio of
parameters but simultaneously ratios of any linear combinations. Therefore
these intervals are valid even if they are used repeatedly for different a and b.
This is a sequential version of Scheffé’s (1959) simultaneous confidence inter-
vals for our problem. A sharper confidence sequence for a given pair of ¢ and
b is given in Section 3.

2. Scheffé type simultaneous confidence sequences. In this section,
for model (1.1), we construct a confidence sequence simultaneously for
a'By/b'B 1y, where a and b are any p,-dimensional vectors with &’ /3(1) # 0. We
assume that the matrix X, has a full rank p, and that e; is normally
distributed with mean 0 and variance o2. Let [3 be the least squares estima-
tor of B, i.e., [3 =(X,X, ) 1X,, ¥, Also let 62 be the unbiased estimator for
o?. Hence 6-2 ly, — X [3,,[ /(n —p). Let By be the intuitive estimator of
B, namely, B. = (B(l)rn B(Z)n) and 3(1),. is the vector of the first p, compo-
nents of j3,. Write the covariance matrix of B(l)n as 023, ,, which is the
P, X p; principle submatrix of the covariance matrix 02(X X)) of B
Sinha and Sarkar (1984) exhibited a confidence sequence S, for B, with

(2.1) P, {ByyE€ES,,VYn=2m}=>1-a,

where m > p + 1 is a prechosen lower bound on the sample size n. Actually,
the procedure S, depends also on m, wh1ch is suppressed in the notation.
Their confidence region is, V n > m,

(2~2) Sn = {3(1)3 (B(l)n - B(l))lzl_ll,n(é(l)n - 3(1)) = cn,aa'nz),

(1+ pyo )m/n |31, m I/n_l,
m(m — p) Izll,nl

where

(23) Cn,a = (n _p)
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a is the unique solution of

a -m/2
a=P(F, , ,>a)+ (1 + - )
m-—p
(2.4) p
a pix \™
Xj; (1 + - —p) for, m-p(x) dx,
and F, ,,_, hasan F-distribution with p, and m — p degrees of freedom and

fp, m—p 18 its density function.
Based on S,,, we can define an interval I ,

_[%Bw
(2.5) I = {b'B(l) :Bay € Sn}.

COROLLARY 2.1.
{ a,ﬂ( 1)
b'Byy

>1-a.

Pﬁyo
(2.6)

€I, forall a and b such that b'B;, + 0 and ¥V n > m}

Proor. Obviously B;, € S, implies a'Bay/b'Byy € I, for all a, b as long as
b'Byy # 0. O

It is also possible to obtain an explicit expression for I, as in Theorem 2.2.
In doing so, we consider only the case where b'Buy # 0 for every By, € S,,.
(Here, a fully sequential stopping rule can be taken so that this will happen.)
Note that by Scheffé’s (1959) results (a statement which is repeated in Lemma
A.3), this assumption is equivalent to

(2.7) zero is separated from b'ﬁ(l)n + 6,( cn,ab’zuynb)lﬂ.

Here, for any real numbers k£, and k, > 0, k, + k, represents the interval
(ky — ky, ky + k). Since b is a nonzero vector, we may assume without loss of
generality that b, # 0. Let a = (a,...,a,), b=1(b,..., by @ =
(@y,...,a,) and by = (b,,...,b,,). We also define

(28) A=A, = (ﬂA(,l)nEI_I{nBA(l)n - cn,a&nz)zl—lfn - zl_l%nﬁ(l)nﬁ’\(/l)nzl_ll,n'
Partition A as ,
Ay Ap
(A21 Ay )’
where A, is a scalar. Let
B = (A11/b%)b(2)b(’2) = (2/b1)be)Asp + Ay,

(2.9) v= (All/bl)b(Z) - (1/b1)A21,
d=vB"'v— A, /b} and a, =agy — (@,/b,)bg,.
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THEOREM 2.2. Assume that b'B;, # 0 for every B, € S,. Namely (2.3)
holds. Then d > 0 and

1/2

(2.10) I, = ((ay/b,) + ayB~ ') + (da;,B~'a,) ’".

Theorem 2.2 is proved in the Appendix.

As established in Corollary 2.1, I, n > m, is a confidence sequence. There-
fore I, for any stopping rule N, m < N < «, will have guaranteed coverage
probability. This is due to the obvious inequality that P(a'B,/b'B, € Iy) is
greater or equal to the left-hand side of (2.6). In particular, we can use the
following two stopping times:

N, = the first n > m such that I, has finite length, i.e.,
(2.7) holds, and

N, = the first n > m such that I, has length no greater
than a prespecified length [, ie., (2.7) holds and
2 (da'yB 'a, )2 < 1.

It can be argued that N; and N, will stop with probability 1 for b8, # 0 and
under the assumptions on X, that implies the consistency of B,,. As an
example, a typical assumption is that (X, X,)"! = O(n™?), i.e., each and every
element of (X, X,,)/n approaches a finite number as n — «. In fact, Theorem
2.3 holds if

(2.11) (X,;Xn)_1 =0(n"¢) forsome e > 0.

THEOREM 2.3. Assume that b'B, # 0. Then P(N; < ©) = P(N, < ©) = 1.

Proor. Since N, > N, it suffices to prove that N, is finite almost surely.
Obviously,
P(N, < ») > P(dia(I,) <), V n.

The lower bound approaches 1 as n — =, since dia(Z,) — 0 a.s. due to the fact
that the volume of S, approaches 0, an assertion proved below. Note that the
volume of S, is proportional to

A 1/2 2
arfllzll,nl (cn,a)pl/

— AP1 1 p.a o 1/n 1/py—1/n 1/py
=0,'(n +m— (DTI R D = 1Z41,al

p1/2

p

5P n(kY/npPre/p1=1/n) _ e }Pl/zo( 1),

where & = (1 + p,a/(m — p)™|%; ,|. The last displayed expression can be
shown easily to approach 0 for ¢ > 1. When ¢ < 1, the same assertion can be
established by using L’Hospital’s rule. This completes the proof. O
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3. A sharper confidence sequence. In the last section, we exhibit the
Scheffé-type sequential confidence sequence for ratios of parameters. Even
though it has the flexibility of dealing with infinitely many ratios simultane-
ously, it may be unnecessarily wide if one is only interested in a particular
ratio. In this section we construct a sharper confidence sequence solely for
a'B/b'B, where a and b are fixed vectors which are linearly independent. (The
problem is trivial if @ and b are linearly dependent.)

We make a transformation n = PB, where P is a nonsingular matrix with
the first two rows being a’ and &'. Therefore the first two components 7, and
ny of m are a'B and b'B, respectively. Write y, = (X, P~")n + ¢. The problem
is then to set a confidence limit for 8 = a'8/6'8 = 7, /7,.

Consider a fixed 6, and focus on, for now, the set estimation problem for
M1 — 0om,. Based on y,, its least squares estimator is 4, — 0,75, Where
N1ny @and 7y, are the least squares estimators for n, and 7,, respectively.
From (2.2), a confidence sequence for 1, — 8,7, is described by the inequality
(ﬁl(n) - oo'ﬁz(n) - ("71 - 00’72))2‘ 52

=< Cn,an>
(1, - 00)3,(1, — 6,) ’

where o023, is the covariance matrix of (N1(ny fign))- Hence 3 =
P.(X, X,)" P}, where P, = (a,b). Furthermore, a and C, o are defined in
(2.3) and (2.4) with p, = 1 and |3, jI, j = m, or n, should now be replaced by
(1, — 69)2;(1, — 6,)'. It then follows that for every 1,, 1, and 8, with probabil-
ity at least 1 — « that (3.1) holds for n > m. Setting 6, = 1, /1, = 6, (3.1) now
reduces to

(3.1)

A ~ 2
("71(n) - 9"72(n)) <c
62(1, - 0)3,(1,-06) ~ ™

(3.2)

where

a )m/" (1, -0)3,.(1, -8y " .
(1,-90)%,(1, - 9) ’

Cna = (n _p)l:(l +

, m—p
and a is such that (2.4) holds with p, = 1. The set of # satisfying (3.2) is
denoted by SQ, . Here, @ stands for the quadratic form on the left-hand side of
(8.2). This quadratic expression is the Fieller’s pivot (1954). See also Zerbe
(1978). ‘

CoroLLARY 3.1. SQ, is a confidence sequence of level 1 — a. That is
P6eSQ,,Vn=>=m)>1-a.

The right-hand side of (3.2), in general, depends on 6. To get an interval of
6, one has to solve a high degree polynomial, which can only be accomplished
by numerical computations. There are, however, situations in which a simpler
solution is possible.
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For example, if 3., = £3,,, where the constant £ depends on m and n, then
¢, . will not depend on 6. This is the case for a two-sample problem: X =
(Xy,..., X,y and Y=(Y,...,Y,) and EX, = n, and EY; = n,. For such a
situation, S@, is exactly a Fieller’s set [except, of course, the cut-off point C, ,
in (3.2) is different from Fieller’s cut-off point] and note again that the
confidence sequence is exactly the one-dimensional #-confidence sequence of
Sinha and Sarkar (1984). This is probably the best scalar invariant one-dimen-
sional ¢-interval that can be derived using Robbins’ (1970) techniques.

For a general situation, a slightly more conservative confidence set which
has a simpler form can be derived. Let Maxeig( M) denote the maximum of the
eigenvalues of an arbitrary matrix M. One notes that

m/n
ck .= m;ixcnya =(n —p){(l + (ip) [Maxeig(zmz;l)]l/n -1},

m
Replacing ¢, , by ¢}, in (3.2), we obtain a larger set S@; which is also a
(1 — a) confidence sequence due to Corollary 3.1.

CorOLLARY 3.2. SQF is a confidence sequence of level 1 — a. That is
POeSQYn=m)>1-a.

Since c¥ , does not depend on 6, to get an interval of 6, one only needs to
solve a quadratic inequality, an analytically easy task. This is exactly what was
done in the nonsequential classical example of Fieller (1954). S@;* is probably
not much larger than S@,, especially when n is large. They are identical for
the two-sample problem depicted in the last paragraph.

Based on S@* (and S@,), we can define a sequential confidence interval
with a prespecified length [. Naturally, we take

N, = the first n > m such that the length of SQ, is less
than [, or

N, = the first n > m such that the length of S@Q} is less
than /.

Under assumption (2.11), we can establish the following theorem.

THEOREM 3.3. Assume that b'B + 0, then

(3.3) P(N, <o) =P(Ny, <) =1;
and
(34) EN, and EN, are finite.

Furthermore P(6 € SQy,) and P(6 € SQf,) are bounded below by 1 — a.
Hence SQy, and SQf, are nontrivial sequential confidence intervals with
length no greater than [.
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Proor. We will prove
(3.5) P(N, < ®) =1,
which implies that P(N; < ») = 1 since N; < N,. The fact that SQ, and
5@y, have coverage probability bounded below by 1 — & follows dlrectly from
@3. 3) and Corollaries 3.1 and 3.2. We omlt the proof of (3.4), which is quite

lengthy and is based on the fact that 6,2 has an exponential tail.
To prove (3.5), we note that the left-hand side is bounded below by

(3.6) P(length of SQ* <)
for every n. It therefore suffices to prove that (3.6) approaches 1 as n — «. Let
v;j» 1 i <2,1<j <2, denote the (i, j)th element of 3 . Hence § € SQ} if
and only if

A} — 20,7, + 6°H3 < c:,a&nz(yll = 20V, + 6%vy,),
or equivalently

0%(A3 — e o0, 62vg5) + 20(0 «O2v1g — fiyfig) + A7 — ek ,62vy; < 0.

The following argument relies heavily on the assertion that
(3.7 ¢k 3, > 0.
This assertion can be proved using (2.11) and the identity

[Maxeig(3,,3;)] " = [Mineig(z,3;1)] ",

where Mineig(-) represents the minimum eigenvalue. The detailed calculation
is similar to the proof at the end of Theorem 2.3.
As an application of (3.7), we have as n — o,

75 = [ 02vey — M3 = (58)* > 0.
When 73 — ¢ ,6,2v,, > 0, the solution of ¢ form an interval with half-length
[(c2 o821 — Aha)” = (82 = e u6200a) (72 — 2. u8201)]
fiz = Cr a 62vas
where, for any number a,a, denotes max(a,0). By (3.7), the half-length in
(3.8) approaches 0 and hence (3.6) approaches 1, completing the proof. O

(3.8)

’

One can use the idea to construct a confidence sequence simultaneously for
a finite number of ratios.

APPENDIX

ProoF OF THEOREM 2.2.
The proof is based on the following lemmas. Let C, be the cone containing
S,; ie,
c.= U {B(l)/t: Ba € S,.}-

teR
t+0
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LEMMa A.l. C, = {x: x’Ax < 0, x # 0}, where A is given in (2.8).

Proor. Obviously,
C, = {x: f(¢t,x) <c, ,62 for some t € R},

where f(t,x) = (ﬁ(l)n - tx)’El‘lfn(ﬁ(l)n — tx). Due to the fact that for each
fixed x, the infimum is attained for some ¢,

C,= {x: inf f(¢,x) < cn,a&f}.

—o<lt<oo

Now f(¢, x) is minimized at ¢ = (x’Eflfné(l)n)/(x’Eflfnx). Hence

:2_1 3 2
inf  f(¢t,x) = __(QLBL")_

+ A, E_1 A .
Co<t<o x’zl_ll,nx B(l)n 11,nB(l)n

Consequently,

C,= {x: xlzfﬁnﬁ(l)nﬁ('l)nzl_ll,nx = (B(’I)nzl_lfnﬁ(l)n - cn,a&nz)x’zl_ﬁnx}’
which implies the lemma. O
Before attacking I,, we consider a related set, an ellipsoid, E = {B,/(bB,):

Bq, € S,}. Note that I, = {a'x: x € E}. Using C,, we can have a representa-
tion of E. This is also due to the statement that

(A1) x€Ee=xe(C,and b'x =1,
which can easily be proved by simple analytic arguments.
LEMMA A2,
1 — biyXe
b,

where B, v and d are given in (2.9).

E = {x: X, = and (x(z) - B'lv)’B(x@) - B‘lv) < d},

ProoF. From (A.1), we will consider the intersection of C, and the plane
determined by &'x = 1. The last equation is equivalent to x; = (1 — b/3x(3))/b;.
Using Lemma A.1 and substituting this for x in the inequality x'Ax < 0, we
obtain

, 1 —bjyx
1 - b(2)x(2) x, All A12 —b_(2)—(.2—) < 0
b, AN Ay Ag ! -

X
which, by completing the square, is equivalent to
(A.2) (%@ — B'lv)'B(x(z) -B ') <d.

Here d is positive; otherwise E is an empty set or a point set which implies
the same for S,,. But S, is neither. O
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Now we can complete the proof of Theorem 2.2 by resorting to Scheffé’s
(1959) lemma.

LEMMA A.3. Let S be a set consisting of x such that (x — vy)D(x — v,) < c,
where v, is a fixed vector, D is a fixed positive definite matrix and c is a
positive constant. Then for a fixed vector I, the set of Ix, x €S, is l'vy +
(cI'D~)'/2,

Proor oF THEOREM 2.2. Now the interval I, consists of a'x, where x € E.
Note that

!

’
ax=a,—F———

+ Al Xoy = — + @l X
bl @2)7(2) b1 *7(2))

where a, is given in (2.9). Since x,, satisfies (A.2), by Lemma A.3, the set of
a\ X is

a,B W + (da, B 'a,)">.

Equation (2.10) then follows. O
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