The Annals of Statistics
1990, Vol. 18, No. 3, 1259-1294

NONPARAMETRIC BAYES ESTIMATORS BASED ON BETA
PROCESSES IN MODELS FOR LIFE HISTORY DATA

By NiLs Lip HjorTt

Norwegian Computing Centre and University of Oslo

Several authors have constructed nonparametric Bayes estimators for
a cumulative distribution function based on (possibly right-censored) data.
The prior distributions have, for example, been Dirichlet processes or, more
generally, processes neutral to the right. The present article studies the
related problem of finding Bayes estimators for cumulative hazard rates
and related quantities, w.r.t. prior distributions that correspond to cumula-
tive hazard rate processes with nonnegative independent increments. A
particular class of prior processes, termed beta processes, is introduced and
is shown to constitute a conjugate class. To arrive at these, a nonparamet-
ric time-discrete framework for survival data, which has some independent
interest, is studied first.

An important bonus of the approach based on cumulative hazards is
that more complicated models for life history data than the simple life table
situation can be treated, for example, time-inhomogeneous Markov chains.
We find posterior distributions and derive Bayes estimators in such models
and also present a semiparametric Bayesian analysis of the Cox regression
model. The Bayes estimators are easy to interpret and easy to compute. In
the limiting case of a vague prior the Bayes solution for a cumulative
hazard is the Nelson—Aalen estimator and the Bayes solution for a survival
probability is the Kaplan—Meier estimator.

1. Introduction and summary. Let X,,..., X, be independent and

identically distributed (iid) with an unknown cumulative distribution function
(cdf) F on [0,*) and suppose the data may be subject to right censoring. The
problem of constructing nonparametric Bayes estimators for F involves plac-
ing a probability distribution on the space & of cdf’s, i.e., viewing F as a
stochastic process. Ferguson (1973) introduced the class of Dirichlet pro-
cesses and used these as priors for F. Later Doksum (1974), Ferguson (1974),
Susarla and Van Ryzin (1976), Ferguson and Phadia (1979), Dykstra and Laud
(1981) and Padgett and Wei (1981) contributed new versions of prior processes
and corresponding Bayes estimators for F.

The approach of Ferguson and Phadia (1979) was to write F(¢) =1 —
exp{ —B(¢)} and let B be a Lévy process, i.e., one having independent nonnega-
tive increments. They showed that B is still of the Lévy type given the data
and they provided formulae for the posterior expectation of exp{—B(¢)}. One
may also take interest in the hazard rate (or intensity, or force of transition)
a(t) = F'(t)/F[t,») in the model above. « is as basic as F when it comes to
understanding the survival phenomenon under study, and the hazard rate
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concept is more easily and understandably generalized to more complicated
models like Markov chains with several possible states for each individual.
Now a(?) is as difficult to estimate with good precision as is the density F'(¢),
so we prefer working with the cumulative hazard A(t) = [{a(s) ds. When F is
continuous, A is just the B = —log(1 — F) mentioned above. The cumulative
hazard can be defined even when F has no density, and such a general
definition is necessary since most of the cdf’s and cumulative hazards encoun-
tered in the present article happen to be discrete with probability 1. General
correspondence formulae are

dF(s)

A(t) = f[o,t]m’ F(t)=1- [g]{l — dA(s)},

as discussed in Section 3. One consequence of the discreteness is that A is not
equal to B = —log(l1 — F) anymore. We view the hazard rate, canonically
defined as above, as a quantity of central importance in models for life history
data and choose to concentrate on A instead of B. Thus a natural task to
undertake is the nonparametric Bayesian estimation of A in the simple
survival model above and later on in more complex models, like the competing
risks framework, time-inhomogeneous Markov chains and regression models
of the Cox variety.

It turns out that a particular class of prior distributions for A is particularly
well suited to this task. The class is rich, each member has large support, its
parameters are easily interpreted and explicit Bayes estimators can be derived,
both for A and for related quantities. These processes produce cumulative
hazard rates whose increments are independent and approximately beta dis-
tributed and are termed beta processes. A particular transformation of a given
Dirichlet process produces a special case of the beta process, but the beta
processes form a much larger and more flexible class.

The beta processes are discussed in Section 3. They are constructed and
perhaps best understood as fine limits of time-discrete processes. The time-dis-
crete case, reaching in generality to time-inhomogeneous Markov chains, is
treated separately and briefly in Section 2 and has some independent interest.
Section 4 considers posterior distributions and Bayes estimators in the simple
time-continuous survival model mentioned first. The principal result is that if
A is a beta process a priori, then it still is a posteriori. Section 5 extends the
results to time-inhomogeneous Markov chains. The classical Nelson-Aalen
nonparametric estimator of a cumulative hazard rate emerges as the Bayes
solution in the limiting vague prior case and, correspondingly, Kaplan—-Meier
type estimators are limits of Bayes estimators for survival probabilities. Next,
Section 6 gives a brief description of a Bayesian semiparametric treatment of
Cox’s regression model, in which the baseline hazard is given a beta process
prior and the B coefficients a general prior density. This extension from
homogeneous models to regression models is important and demonstrates the
wider applicability of beta processes. Finally, some problems for future re-



NONPARAMETRIC BAYES ESTIMATORS 1261

search are briefly discussed in Section 7, along with some complementing
remarks.

2. Nonparametric time-discrete survival analysis.

2.1. A time-discrete model with censoring. Let X be a variable taking
values in 2°= {0, b,2b, ...} and let

J
f(jb) = Pr{X =jb},  F(jb) =Pr{X <jb} =} f(ib),
i=0

(2.1)  a(jb) = Pr{X =b|X > jb} = f(jb)/F[jb, ),
J
A(jb) = X a(id),
i-0

for j > 0. « is the hazard rate, while A will be called the cumulative hazard
rate. Note that F and f can be recovered from knowledge of A:

F(jb) =1~ l]o{l — a(ib)},

(2.2) -
-
f(jb) = [l_!){l - a(ib)}}a(jb), Jj=0.
Let X,,..., X, beiid from this distribution, but assume that the observations
are subject to right censoring. Thus what one observes is (T}, 8,), ..., (T, 6n)

where T, = min(X;, ¢;), ¢; being the censoring time for individual number i,

12202

and §;, = I{X; < c,}. Consider the counting process N and the number-at-risk
process Y, gl'ven by

N(jb) = Y I{T, <jband §; = 1},
(2.3) =l
Y(jb) = ¥ HT;=jb}, j=0.
i=1
We will sometimes write dN(jb) for the increment N(jb) — N((j — 1b) at

time jb.
The likelihood of what is observed can be written

L(data) = [ NG b)” (b, oo)]
(2.4) _ ﬁ ﬁ {1 — a(jb))HU<tori=s and 8,=0) o (jb) 1=t and 5,1
i=1j=0
_ ﬁ [{1 _ a(jb)}Y(jb)—dN(jb)a(jb)dN(jb)]’

~
[
=]



1262 N. L. HJORT

utilizing (2.2). Of course, the product is really a finite one, every factor after
the largest 7T, being 1.

REMARK 2A. Let us comment upon the assumptions implicit in the deriva-
tion above. First, if we imagine a small time interval [ jb, jb + ¢) during which
two events are possible for an object still at risk at jb, viz. that it ‘““dies” or ““is
censored”, then it is assumed that the force of transition a(jb) gets its chance
before the censoring mechanism. Alternatively, if the model is the result of a
discretization of an essentially time-continuous process and if an object is
censored in [jb,(j + 1)b) and then dies before (j + 1)b, then it is assumed
that this information will be available after all. Second, very general censoring
mechanisms are allowed; (2.4) remains true as long as the censoring only
depends upon the past and outside random variation [(Aalen (1978a); Gill
(1980)]. Sometimes it is useful to model the behavior of the censoring variables
¢; themselves. For the present Bayesian purpose it is, however, simpler to
allow ourselves to condition on their observed values.

We may express the content of these conditions in another useful way. Let

Fp = o N(ib),Y(ib); i < j}

be the processes’ history up to and including time point jb. Then Y is
predictable (or pre-visible) w.r.t. this increasing sequence of o-algebras, i.e.,
Y(jb) is F;_, ,-measurable (known at time (j — 1)b) and

(2.5) dN(jb)|F;- 1y ~ bin{Y(jb), a(jb)}.

It is immediate from (2.4) that the nonparametric maximum likelihood (ML)
estimator of a(-) is given by a*(jb) = dN(jb)/Y(jb). These are the familiar
occurrence/exposure rates. The ML property transfers, by (2.1) and (2.2), to

7o dN jb dN
(2.6) A*(jb) =) — and F*(jb)=1—]_[[1——, Jj=0,

0 Y 0 Y
in obvious notation. These are the proper time-discrete analogues of, respec-
tively, the Nelson-Aalen estimator [ dN/Y and the Kaplan-Meier estimator
1 - II§[1 = dN/Y]; cf., for example, Andersen and Borgan (1985). One can
indeed go on to the derivation of large-sample and other properties of A* and
F*, paralleling those known in the continuous case, but this will not be
pursued here.

2.2. Nonparametric Bayes estimators. The present aim is to construct a
class of nonparametric Bayes estimators for the cumulative hazard A (and for
a and F).

Let a(;jb) be independent for j = 0,1,..., with a(jb) having prior density
h;,(s)ds on [0, 1]. This defines a probability distribution &, with expectation
operator &, on the space {[0, 1], (%9,1)”} in which the hazards « = {a(jb);
J = 0} live. Now X, ..., X, are iid with distribution (2.2) given «. This defines
a simultaneous probability distribution &’ on {Z°" x [0, 1], '™ X (Zp,1)"), in
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which T is the o-algebra consisting of all subsets of 2, by

P{X, <jib,..., X, <j,b,a€G)= fF(jlb) - F(j,b)P(da)
(2.7 G
= &F(j,b) -+ F(j,b){e € G},

for integers j; and G € (% ;)" The proof of the following result utilizes (2.4)
and the formula above.

ProposiTiON 2.1. Let a = {a(jb); j = 0} have the prior distribution de-
fined above. Then, given the censored data set (T, 8,),...,(T,,8,), the a( jb)'s
are still independent, with posterior densities

h*,(s) = const. s?NUP(1 — s)Y(jb)_dN(jb)hjb(s).

The class of beta distributions now suggests itself. Let us write
(2.8) A ~ beta{c, Ay}

to indicate that the cumulative hazard A, viewed as a stochastic process, has
independent summands

a(jb) ~ beta{c(jb)ay(jb), c(jb)(1 — (b))}

Then &a(jb) = ay(jb) = dA,(jb) is the prior guess and &A(jb) = Ay(jb),
whereas Var a(jb) = ay(joX1 — ay(jb))/(c(jb) + 1) is the prior uncertainty.
Our previous considerations imply
2.9 Aldata ~ bet YECdA°+dN
. ~ + — 1,
(2.9) |data ~ be a{c 2 Y }

that is, the beta processes (2.8) constitute a natural class of conjugate prior
distributions. (Time-continuous beta processes are studied in Section 3.) Fur-
thermore, the nonparametric Bayes estimator of A becomes

. , L c(ib)ag(ib) + dN(ib)
A(jp) = (A data) = ¥ == s

(2.10)
cdAy + dN

c+Y

Jjb
=) ,
0
in obvious notation. Also, the conditional variance of A(jb) is T dAQ -
dA)/(c + Y + 1), and is useful, for example, when constructing (Bayesian)
confidence bands for A.

REMARK 2B. It is interesting to note that the Nelson—Aalen estimator A*
emerges as c(-) tends to zero and that A becomes the simple prior guess A,
when c(+) grows large. Thus c(jb), j = 0,1,..., are parameters that measure
strength of belief in the prior guess. Extending the informal Bayesian notion of
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prior sample size a bit, we see that ¢(jb) can be interpreted as the number at
risk at jb in an imagined prior sample with intensity «,: The combined sample
would then consist of ¢ + Y at risk, ¢ of them having hazard «, and Y of
them having hazard dN /Y. Thus Pr{die at jb|at risk at jb} = (¢ /(c + Y )a, +
(Y(c + Y))dN /Y, giving the Bayes solution (2.10).

Before going on to Markov chains, let us point out that a class of nonpara-
metric Bayes estimators of the cdf F is an easy spin-off of the considerations
above. For, let A ~ beta{c, A} be the prior (which transforms into a prior for
F, but this is not really needed). Then by (2.2) and (2.9),

F(jb) = &'{F(;b)|data)

(2.11) cdA, + dN

c+Y

J Jb
=1-J][1- &{a(ib)|data}] =1 - []|1 -
i=0 0

The Kaplan—-Meier estimator and the prior guess F, = 1 — [1(1 — a,) come
forward in the limiting cases c¢(:) — 0 and c¢(-) — «, respectively.

2.3. Time-inhomogeneous Markov chains. The methods and results of the
previous subsection will now be generalized considerably. Let X = {X(ub);
u=0,1,2,...} be a Markov chain in the state space {1, ..., k} with transition
probabilities

P, ;(ub,vb) = Pr{X(vb) =j|X(ub) =i}, O<uc=<v, i,j=1,...k.

The situation of Section 2.2 corresponds to state space {1,2} and 1 — 2 being
the only possible transition. The natural analogues of the hazards a(jb) in
(2.1) are simply the one-step probabilities «;,(vb) = P,;((v — 1)b, vb). The
corresponding cumulative hazard rate from i to j is

(2.12) A;;(vb) = Zv a;;(ub), wv=1.

u=1

These are of fundamental interest in many applications, for example, in
demography, quantitative sociology and actuarial statistics. Plots of A, ;) for
perhaps different j’s, give information about when individuals tend to leave i
and for which destinations. Studying these hazard rates if often judged more
informative than studying transition probabilities.

One cannot expect to be able to observe the Markov chain X for all time
points 0, b,2b, ..., at least not when no absorbing states are present. Assume
that X is observed up to and including time wb and put X, = {X(ub);
u=0,1,...,w}. We are to estimate the A, ;’s using data of this type collected
for n individuals (or objects), moving around in the state space independently
of each other, each with transition probabilities P, GGy
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To do this we need a workable expression for the likelihood, as in (2.4). Let
the data be

(2.13) X@, = {X“(ub);u=0,1,...,w(a)}, a=1,...,n.
Define first

dN,;(ub) = f H{X@((u - 1)b) =i, X(ub) =j},
(2.14) ot

Y(ub) = Y {X“(u—-1)b) =i,u<w(a)}, u=x1

So Y.(ub) is the number of individuals at risk in state i just before time ub;
these are exposed to the & — 1 forces of transition «,,(ub), j # i [and may
remain in i, with probability «;(ub)=1—-X,,,a,;;(ub)]l. Not counted in
Y,(ub) are those that had X“((u — 1)b) = i, but were censored before ubd.
The increments dN; ;(ub) add up to counting processes N, ;; N;;(vb) counts the
number of transitions i — j seen in (0, vb].

Using the Markov property and independence between individuals, one

arrives at the likelihood
L(data) = [ [T=*(x(0))| I ﬂaij(ub)dN”‘””),
a=1 =11i,j

where 7@ is the start distribution for X®. Assumptions about the censoring
mechanisms that ensure the above likelihood are as in Remark 2A; see in
particular (2.5), the parallel of which in the present situation is

{d]\ﬂj(ub);] = 1"")k}l‘9\(u—1)b
~ multinomial{Y,(ub); a;,(ud),...,a;,(ub)}.

(2.15)

Here &,, is the complete history of Y;’s and N;;’s up to and including time
ub. We shall also assume that the start distributions contain no information
about the hazard rates.

To parallel the theory of Section 2.2, define first

a(ub) = {aij(ub);i,j =1,...,k} =P((u— 1)b,ub), u>1.

Let .#, be the space of such size & Markov matrices. Delete the diagonal to
get a®(ub) = {a,(ub); i = 1,...,k, j #i}. If a prior distribution & for the
sequence of matrices a(ub) is established, in .#};’, a simultaneous distribution
' can be defined, along with expectation operator &, for both « and Markov
chain data (2.13), in analogy to (2.7). In the following proposition, which
generalizes Proposition 2.1, (Z,,...,Z,) ~ Dir{B,,..., B,} is used to indicate
that ©%_,Z; = 1 and that (Z,, ..., Z,_,) has Dirichlet density

F(Z?Zl BJ) B—1 B 1 k1 Pt
1~ ... k-1 1 - R R
F(31) F(Bk)21 i ngzj
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in the simplex where z,,...,2,_; are nonnegative and have a sum not
exceeding 1. The proof of the proposition requires more formalism than
ingenuity and is left out here. Details are available in Hjort (1984).

PrOPOSITION 2.2. Let the hazard rate matrices a(ub) be independently
distributed in #,,.

(1) Then, given the n abridged sample paths (2.13), the a(ub)’s are still
independent.

(ii) If the distribution of a(ub) is given by a prior density h ,;,(s) = h ,({s; I
i #j)) for a®(ub), then a°(ub) admits a posterior density

k
h*,(s) = const. ]_[1 [{ l;[.s;ijN,-,(ub)}(l — 5, ) Yub)=dN, @b h,u(s),
i= J#i

where s, =¥ ;,;s;; and N, =¥ ;;N;;.
(iii) If in particular the rows of a(ub) are independent and Dirichlet

distributed, then this is true also a posteriori. Specifically, if the ith row

a;(ub) ~ Dir{c,(ub)a, ;(ub),...,c(ub)a, ; (ub)}, then the updated parameter

i i 0,:1 i 0,k
vector is

{ci(ub)ay 1(ub) + dN;y( ub),...,c;(ub)ay ;,(ub) + dN;,(ub)}.

It is now easy to match (2.8) and (2.10). Assume that a prior distribution for
the k(k — 1) cumulative hazard rates A;; is chosen which specifies that its
summands are independent and that the & rows of a(ub) are distributed as in
(iii) above. Note that &a; (ub) = ay ,;(ub), so A, (vb) =L} _ aq,;(ub) is
the prior guess for A,;. If the A,;’s are to be estimated under a loss function
which is quadratic in A,;;(ub) — A, (ub), or equivalently quadratic in the
terms &, ,(ub) — a;,;(ub), then the Bayes solution has

ci(ub)ao,ij(ub) + de(ub)

&"{a;;(ub)|data)} = c:(ub) + Y(ub)

This leads to

2.16 A, (vb) =
(2.16) ;j(vb) % Y

, v=>1,

in natural notation. Similarly, if a Bayes estimate is required for the waiting
time distribution F; for state i, i.e., F(vb) = Pr{X leaves i before time vb},
then the answer is :

. vb ¢; dA, ;.+ dN,
F(vb)=1- 1 - 2"
1(vb) I;[[ 1Y ]
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ReMARK 2C. The interpretation of the strength of belief parameter c(-) in
Remark 2B can be invoked and yields qualitative meaning to the parameters
c,(*), ..., c;(*) entering the present situation.

Remark 2D. Let c¢,(-) tend to zero in (2.16). Then the non-Bayesian
estimator A}, (vb) = T dN, ;/Y; emerges. This is the time-discrete analogue
of Aalen’s nonparametrlc estlmator JdN;;/Y; [Aalen (1978a, b)]. One can
prove that these sums of occurence/exposure rates are ML estimators for Al j
by maximizing each term of the likelihood while using that «,;’s and dN;;’s
sum to. 1 over j for fixed i. This is a modest generalization of a result by
Fleming and Harrington (1978), who assumed that all chains were observed
over the same time span.

ReMARK 2E. To estimate the hazard rate i — j, using either the Aalen
analogue A¥; or the Bayes solution (2.16), one needs only a portion of the data,
viz. the I'lSk set for state i (the process Y;) and the times at which transitions
i = j occur (the N;; process). Thus the original, intended data collection (2.13)
need not be complete i.e., it may be censored in some respects, as far as the
calculation of a specific A* or A ; is concerned.

3. The time-continuous case.

3.1. Cumulative hazard rates and the product-integral. Let T be a ran-
dom variable with cdf F(¢) = Pr{T < ¢t} on [0,%) and F(0) = 0. The cumulative
hazard rate for F or T is a nonnegative, nondecreasing, right continuous
function A on [0, ) which we should like to satisfy

dA(s) = A[s,s + ds) = Pr{T € [s,s + ds)|T > s} = dF(s)/F[s,»),
in analogy with the discrete counterpart (2.1). So we define

B dF(s)
(3.1) Ala,b) _j[a'b)F[s,w)
and also have
(3.2) Fla,b) =f F[s,©)dA(s), 0<a<b<om.
[a,b)

If F is absolutely continuous, then it is easily seen that A(¢) = —log{1 — F(¢)}
or F(t) = 1 — exp{ —A(¢)}. We shall, however, encounter cdf’s having jumps, in
which case this classic correspondence no longer holds and we prefer (3.1) as
the starting point for interpretational reasons.

We need to know that F is uniquely determined by A. F is indeed
restorable from equation (3.2), whose solution, for our purposes, is most easily
given using the product integral:

(3.3) F(t)=1- []{1-dA(s)}, t=0;
[0,1]
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compare (2.2). See, e.g., Gill [(1980), Lemma 3.2.1]. One can show that
I, b]{l — dA(s)} = exp{—Ala, b]} if and only if A is continuous, so that A =
—log(1 — F) holds under this assumption. In general, we infer from 1 — x <
exp(—x) that F(¢) > 1 — exp{—A(#)} or —log{l — F(¢)} > A(¢). Gill and Jo-
hansen (1987) give a good account of the properties of the product integral.

3.2. Lévy processes. We now turn to the construction of prior distributions
for A.

Let % be the set of all cdf’s F on [0, *) having F(0) = 0 and let & be the
set of all nondecreasing, right continuous functions B on [0, ») having B(0) =
0. We can always write F =1 — exp(—B) with a B in & [and we allow
B(x) < w0 or F(») < 1]. We also need to define

(3.4) /= {those A in & for which (3.3) leads to an F in 7).

This is the space of cumulative hazard rates. We are to place a probability
distribution on {7, 3}, where 3, is the o-algebra generated by the Borel
cylinder sets. Such a probability distribution, say &, is determined if the
distribution of every finite set of increments Ala -1, @;) is specified, as long as
this is done in a Kolmogorov-consistent way. In other words, we demand
Ala,c) =; Ala,b) + A[b,c) when a < b <c¢, in which =, means equality in
distribution; see Ferguson (1973,1974) and Doksum (1974).

The natural analogues of the prior distributions considered in Section 2 are
the nonnegative, nondecreasing processes on [0, ©) that start at zero and have
independent increments. Term these Lévy processes. Such processes were
studied extensively by Lévy (1936) and have been utilized in nonparametric
Bayesian analysis by Doksum (1974), Ferguson (1974), Ferguson and Phadia
(1979), Kalbfleisch and Prentice [(1980), Chapter 8] and Wild and Kalbfleisch
(1981). Ferguson’s Dirichlet processes (1973) are the most widely used ones in
this context. These are related to Lévy processes in that —log(1 — F) is Lévy
when F is Dirichlet.

These authors use Lévy processes as priors for B = —log(l — F), the
reason for this being a fundamental result due to Doksum (1974) and Fergu-
son and Phadia (1979): If B is a Lévy process, then given a set of possibly
censored observations from F, the B process is still Lévy. We shall deviate
slightly, but significantly, from this approach, starting with A instead of B.
The reasons for this are the desire to parallel the construction and results of
Section 2, A being more easily interpreted as cumulative hazard than B =
—log(1 — F), and the fact that A is easier to generalize to more general
models like the competing risks framework or time-inhomogeneous Markov
chains. Other authors have mainly been interested in F, while we prefer the
hazard rate and the cumulative hazard rate as the fundamental concepts with
which to construct, interpret and analyze models for life history data.

The A approach entails some mathematical difficulties, but they can be
managed and the gain will be substantial. The first inconvenience we en-
counter is the observation that not every Lévy process can be used as a prior
for A. The gamma process, for example, which has independent increments of
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the form G[s, s + &) ~ gamma{cG s, s + ¢), ¢}, does not have paths that a.s.
produce proper cdf’s F =1 — ITj, .{1 — dG(s)}, i.e, the subset o/ of # does
not have outer measure 1. Remark 3A gives a characterization of the subclass
of Lévy priors for A that yield paths in &/ with probability 1. We shall first
confine ourselves to the construction of a particular rich class that resembles
the beta process priors used in the time-discrete case [see (2.8)] and whose
paths certainly lie in 7.

3.3. A beta process with independent increments. What is needed, then, is
a beta process on [0, »), with paths in 7, which has independent increments of
the type

(3.5) dA(s) ~ beta{c(s) dAy(s),c(s)(1 —dAy(s))},

infinitesimally speaking. The existence of such a process is not at all obvious,
since beta distributed variables have cumbersome convolution properties. (The
Dirichlet process has marginal distributions of this type, but with dependent
increments.)

Let A be any Lévy process. There exists a separable version with right-
continuous paths [Breiman (1968), page 299], i.e., #(#) = 1, where & is the
probability measure governing A. Let & be the expectation operator associ-
ated with & and let ¢,,t,,... be the times at which A a.s. is discontinuous,
say with jumps S; = A{t;} = A(¢;) — A(¢; — ). Then A admits a Lévy represen-
tation

Jit,<

(3.6) & exp{—0A()} = te”exp(—OSj)Jexp{—/;m(l — &%) st(s)},

t>0,6>0,

where {L,; ¢t > 0} is a continuous Lévy measure. This means that L, for each ¢
is a measure on (0,), L,(D) is nondecreasing and continuous in ¢ for each
Borel set D in (0,»), and L,(D) = 0. It holds that A(¢) is finite a.s. whenever
/&s/(1 + s)dL(s) is finite. In the Lévy formula (3.6), which follows from
Ferguson [(1974) page 623], it is assumed that A contains no nonrandom part.
The distribution of such a & is specified by {¢,,¢,,. ..}, the distributions of
S,,8,,... and {L,; t > 0}.

REMARK 3A. The Lévy measures {L,}( can of course have full support [0, ).
The gamma process mentioned above, for example, has & exp{—0G(¢)} =
(c/(c + 6))°C" = expl{—c log(1 + 8/c)}G((t)], which can be written in the
form (3.6) with dL,(s) = cs ™! exp(—cs) dsG(t), valid for s in [0, ). Theorem
3.1 gives an explicit construction of a time-continuous beta process aiming at
(3.5) and developed as a fine limit of time-discrete ones, and one conspicuous
feature of the result is the fact that the accompanying Lévy measures are
concentrated on [0, 1]. It is indeed the case that the condition L,(1,%) = 0 for
all ¢t is necessary and sufficient for a Lévy process to be a.s. a proper
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cumulative hazard. This can be proved using a representation theorem for
such processes by Ferguson and Klass (1972). The general A process of (3.6),
after removing the S; jumps at the nonrandom jump times, admits a repre-
sentation as a countable sum of random jumps at a countable collection of
random sites. Using methods of proof from Ferguson and Klass one can show
that the largest of all the jumps occurring in the interval [0, T'], say, has
probability distribution ${J < x} = exp{ —L[x, »)}. The characterization fol-
lows since this largest jump must be in [0, 1] a.s.

THEOREM 3.1. Let A, in & be continuous, and let c(-) be a piecewise
continuous, nonnegative function. Then there exists a Lévy process A(-), whose
paths a.s. fall in o7 and whose Lévy representation is

& exp{—0A(t)} = exp{—fl(l — e %) dL,(s)}

(3.1 (T(m)T(e(2))
- [ (-1 m,[ Tm 7 o(5) (z)dAo(z)],

ﬁl"ls

1
where

_ I —1(1 _ o)e@-1
3.8) dL,(s)—{Oc(z)s (1-s) dAO(z)}ds,
t>0,0<s<1.

PROOF AND CONSTRUCTION. For each n, define independent variables X, ;
~beta{a,, b, ;}fori=1,2 ..., where

ﬂl’ ﬂl
i1—1
an,i=cn,iA0 s |

n n
i—-1 i i—1/2
bnl=cnll_A0( y — ) Cnl=C( )-
’ ’ n n ’ n
Let
(3.9) A, (0)=0 and A,(t)= ) X,, fort>0.
i/n<t

Then A, has independent beta increments and its jumps become smaller
[expected size is Ay((i — 1)/n,i/n] at i/n], but occur more often, as n
increases. We have

A ()= ¥ Ao(i;l, |

l
i/n<t n

- AO(t)’

(3.10) VarA (1) = ¥ Ao(i—1’2-(1—Ao(i;l,é})/(cn,i#1

i/n<t n
5 ft dA(s)
oc(s) +1°
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and shall see that {A,} converges in distribution in each of the spaces D[0, R],

R > 0, to a Lévy process A having the required properties.
Fix ¢ for the moment. We show now that

(3.11) & exp{ —0A, ()} — exp{—folu — o) dL,(s)},

for each 0, where L, is as in (3.8), and intend to employ Lemma A.1 in
the Appendix. The right-hand side involves

[ A=y dLs) = £ (1" (6m/mD) ['smdL (),
0 m=1 0
where

folsmst(s) - fot/olc(z)sm-lu — 8)°21ds dA(2)

L(m)T(e(z) + 1)
- fo I'(m +c(2))

dAO(z) ’

by Fubini’s theorem; this verifies the second equality in (3.7).-The left-hand
side can be written &£I1; ,, ., exp(—6X, ;) =TI, ,, . (1 + 2, ), where

F(cn,i)

1
1+ = —0x an,—1(1 — by, —1
S A A R A

[ 0m
=1+ Z (_l)m_yn i(m)’
m=1 m! ’
in which
i (an’l+1)"'(an’l+m_1)
‘nf(c,;+1) (e, ;+m—1)"

1—1
yn,i(m) =A0(
n

It can now be seen that

(m =~ 1)!dA,(2)
c(z) +1) - (c(z2) +m—-1)°

)y yn,i(m) - /;t(

i/n<t

implying by Lebesgue’s theorem on dominated convergence that

0 0m
Z 2n,i = X_: (_l)m—

!
i/n<t m=1 m:

Y yoi(m) > -/01(1 —e79) dL(s).

i/n<t

It is not difficult to show that the rest of the assumptions of Lemma A.1 are
satisfied, proving (3.11) as required.
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It may be shown by similar arguments that

k B
éOexp{— Yy 0jAn(aj_1,aj]} - exp{— Yy fo(l — e %) dL 4, ,.q, ](s)},
=1 j=1

j=

ie., the finite-dimensional distributions of {A,} converge properly. Further-
more, {A,} is tight in the space D[0, R] of all right-continuous functions on
[0, R] with left-hand limits, equipped with the Skorohod topology [see Billings-
ley (1968), Chapter 3]. To see this, note that €A, (s, t1A, (¢, u] =
Ao(s,, t,]A(t,, u,] <{Ayu,) — Ay(s,)?, writing s, = [nsl/n, t, = [nt]/n,
4, = [nul/n. This can be seen to imply tightness in D[0, R] by the arguments
used in the proof of Billingsley’s Theorem 15.6 (but not quite by Theorem 15.6
itself).

This entails that for each R, {A,} converges in distribution to a random
element of D[0, R], say A, This process has finite-dimensional distributions
arising as limits to those of A,. Thus we may take A g, to be simply the [0, R]
restriction of a Lévy process A on [0, ©) with Lévy representation as given in
the theorem.

It remains only to show that A is in the space .7 of cumulative hazard
rates with probability 1. But .27, the space .27 restricted to [0, R], is closed in
D[0, R] w.r.t. the Skorohod topology, according to Lemma A.2 in the Appendix,
and A, certainly lies in 7, for all large n. That Z{A € 7} = 1 follows now
from Billingsley’s Theorem 2.1. Another but less direct argument can appeal
to Remark 3A. O

Agree to say that the Lévy process A constructed in the theorem, i.e.,
satisfying (3.7) and (3.8), is a beta process with parameters c(-) and Ay(-) and
write this as A ~ beta{c(-), Ay(-)}. The construction in the proof of Theorem
3.1 indeed aimed at the fulfillment of (8.5) in some sense. We check below that
some of the beta characteristics are preserved. Although (3.5) is a useful guide
and provides interpretation for the process A, one should bear in mind that
A(s, s + €], say, is generally not exactly beta distributed.

From (3.7) and the Lévy structure, it is clear that & exp{—0A(a,b]} =
exp[ — [o{1 — exp(—0s)}d(L, — L,)Xs)]. Differentiating w.r.t 6, putting 6 equal
to zero and using (3.8) gives

&A(a,b] = flsd(Lb —-L,)(s) |
0

- f,,b/;ISc(z)s_l(l —8)* ds dAy(2) = Ao(a, ol,

earning A, the “prior guess” label again. Differentiating once more leads to
Var A(a, b] = [, ,;dAy(s)/(c(s) + 1), in harmony with (3.5) and (3.10), since
dA(s)X1 — dAO(s)B = dA(s) in the continuous case.
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We have assumed so far that the prior guess A, is continuous. We find in
Section 4 that if A ~ beta{c, A,} and a sample is drawn from F = F,, then the
posterior distribution of A is such that the jump A{x} is positive, whenever x
is a point at which an observation occurs. Thus the posterior guess &{A(-)|data}
has fixed points of discontinuity. It is therefore necessary to extend the earlier
definition by allowing A, a finite number of discontinuities.

DEeFINITION. Let A, be a cumulative hazard with a finite number of jumps
taking place at £,,¢,,..., and let c(-) be a piecewise continuous, nonnegative
function on [0,x). Say that the Lévy process A is a beta process with
parameters c(-), Ay(+), and write again

(3.12) A ~ beta{c(-), Ay(*)}

to indicate this, if the following holds: A has Lévy representation (3.6), with
(3.13) S; = A(t;} ~ beta{c(t;) Ao{t,}, c(t,)(1 — Aqft;}))

and

(1 G = [T A (o) d

fort>0and0 <s <1,
in which Ay (t) = A(t) — X, _,Acl¢;} is Ay with its jumps removed. This
can be rephrased as follows:

(3.15) A(t) = X S+ A1),

¢ <t

where the jumps S; are independent and distributed as above, and A, is
beta{c(-), A, ()} of the earlier type.

Note that the existence of this more general beta process is guaranteed by
Theorem 3.1 and that the definition is in harmony with (3.5). Furthermore,

(3.16) CA(t) = T &8, + Ay (1) = Ay(t)

t,<t

by previous efforts, i.e., A, is still the prior guess, and the generally valid
formula for the variance becomes ‘

tdAo,. 1dAy(s)(1 — dA,

compare again with (3.5) and (3.10).
Consider finally the random distribution function F(¢) = 1 — [Ty, {1 —

dA(s)} which has a beta process as its cumulative hazard. Let Fy(¢) =
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&F(t) be its expectation. Then by (3.2) and the property of independent
increments, Fy(a, b] = [, 4 F(s,©)dA(s) for 0 <a <b. But according to
Lemma 3.2.1 in Gill (1980), this implies that F; is the edf having A, as its
cumulative hazard, i.e.,

(3.18) EF(t) = Fo(t) =1 - [1{1 - dA,(s)}.
[0,¢]

This proves in particular that the order of expectation and product can be
interchanged. See also Remark 7A.

4. Posterior distributions and Bayes estimators.

4.1. Posterior distribution of a general Lévy process. The main aim in this
subsection will be to find the distribution of a beta process A, given a set of
possibly censored observations having A as a cumulative hazard, thus provid-
ing a time-continuous analogue of the basic result (2.9). We will, however,
study more general Lévy processes as priors for A.

We show next that if A is Lévy and is a.s. a cumulative hazard, then A is
still Lévy given the data, and provide formulae for its revised Lévy representa-
tion. Accordingly this subsection may be regarded as a parallel to the work by
Doksum [(1974), Section 4] and Ferguson and Phadia [(1979), Section 2]. These
authors use B = —log(1 — F') instead of A, and show that B Lévy a priori
implies B Lévy a posteriori. There is indeed a connection between our result
and theirs, since one can prove that A is Lévy if and only if B is Lévy, using
the relations dB(s) = —log{l — dA(s)}, dA =1 — exp{—dB(s)}. Thus we
already know that the property of being Lévy (i.e., having independent,
nonnegative increments) is preserved for A, passing from prior to posterior
distributions. However, the formulae involving &{exp(—6B(t))|data} obtained
by Ferguson and Phadia cannot easily be translated into formulae for
&{exp(—0A(t))|data}, which are the ones we shall need. Therefore, a new proof
is given.

We now describe the general class of possible prior distributions for A. Let
A have fixed points of discontinuity M = {¢,,...,¢,}, with jumps S; = Alt;}
that have densities f;(s)ds in [0, 1]. The process

(4.1) A(t) =A(t) - T 8

t,<t

is free of fixed discontinuity points and has Lévy formula
(4.2) ¢ exp( ~04(1)) = exp| - ['(1- &) dL(s)},
0

where the continuous family of Lévy measures {L,; ¢t > 0} is assumed to be of
the form

43) dL,(s) = fo‘a(s,z) dH(z)ds, t>0, ifse(0,1),

=0, if s > 1.
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Here H is a continuous nondecreasing function having H(0) = 0 and a(s, 2) is
some nonnegative function, assumed to be continuous in (s, z) except possibly
on the line segments where z € M and chosen such that [js dL(s) is finite.

Observe that A ~ beta{c, A,}, according to its definition in Section 3.3,
corresponds to the case where the f;(s)’s are beta densities and a(s,z) =
c(2)s~ U1 — §)*@~1, H=A,. Note further that the main restriction on A
above is not the regularity conditions involving ¢ and H, but the assumption
that all Lévy measures L, are concentrated in (0, 1), as opposed to the general
case (3.6). This is done to ensure that #(&7) = 1; see Remark 3A.

Let X,,..., X, beiid given A, i.e., with the common cdf F = F, defined in
(3.3). Similarly to the discrete case (2.7), this defines a simultaneous probabil-
ity distribution &' on {[0,®)" X &, €, X 24}, in which &, denotes the Borel
sets on [0, ©)” and 3, is the o-algebra generated by the Borel cylinder sets on
4, the function space defined in connection with (3.4), as follows:

(X, eD,,...,X,eD,, AcG) = [F(D,) - F(D,)?(dA)
(4.4) ¢
_ 6F(D,) -~ F(D,){A € G},

for Borel sets D, and G € 2 4.

We will attack the case of n = 1 observation X first. The result can then be
applied repeatedly to establish the posterior distribution given a full sample.

We are concerned with finite measures on {#, = z}. Such a measure, say &,
with integral operator &, defined by &,y(A) = [Y(A)F(dA), is known when
all finite-dimensional #(Ala;_j,a;) €D;,j=1,..., k} are specified. But
this equivalent to giving the Laplace transforms &, exp{—X j?= 10Ala;_y,a;))
It is convenient to put this in the following way: Knowledge of
&, exp{— [26(2) dA(2)}, for all 6(z) of the type 6(z) = L5_,0,[{z € [a;_;,a))},
is sufficient to specify &, on {Z, 3 5} completely. For example, the general A
defined in (4.1)-(4.3) is seen to have

cfexp{—j:oo(z) dA(z)}
= [tJI;[Mgexp{—o(tj)Sj}]e” exp{—‘/:oo(z) dAc(z)}

= M@” exp{—0(tj)Sj}]exp{—folf:(1 — e %) q(s,z) dH(2) ds}.

t;€

The number of times we encounter integrals like this excuses our using

(4.5) R, lg(s,2)] = /;)lfbcg(s,z)a(s,z) dH(z) ds
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as shorthand notation. Thus

eoexp{ —/OOO()(z) dA(z)}

(4.6)

= tl;—[M(fexP{_o(tj)Sj}]exP{_R(o,m)[l _ e—O(z)s]}

defines the prior distribution & for A. Observe that & is specified by the
finite set M, the densities f;(s) of the jumps and the functions a(s, 2), H(2).
It is convenient to term these quantities the parameters of &, even though a
and H are not quite uniquely determined by &, since only the product
a(s, z) dH(z) matters.

THEOREM 4.1. Let X given A be distributed according to F in (3.3) and let
A be a Lévy process as defined in (4.1)-(4.3), or equivalently, (4.6).

(i) Given X > x, A is still a Lévy process with posterior parameters M*,
{f*(s)}, a*(s, 2) and H*(2) as follows: M* = M, H* = H,

. const.(1 —s) f;(s), ift, < x,

o (o) = {fj(S), ift, > x,
* _ [(L=s)a(s,2), ifz<nx,
(4.8) a*(s,z) = {a(s,z), oo

(ii) Given X = x, where x = t; is among the prior jumps M, A is still Lévy
with posterior parameters M* = M, H* = H and a*(s, z) as in (4.8) and

const.(1 —s) f;(s), ift; <x,
(4.9) f*(s) = { const. sf;(s), ift; =x,
f;(s), ift; > x.

(iii) Given X = x, where x is not among the prior jumps M, A is again Lévy

with posterior parameters M* = M U {x}, a*(s, 2) as in (4.8), H* = H once
more and

const.(1 —s) f;(s), ift;<x,

.* =
) =1 £(s), ift; > x,
while the new jump S = A{x} has density
(4.10) f*(s) = const. sa(s, x), s € (0,1).

Proor. The simultaneous distribution of (A, X) is defined by #'{X € D,
A€ G} = F(D){A € G}, for D in [0,) and G € 3. In particular, the
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marginal distribution of X is

Fy(x) = &F(x) =1 — [tl_[ e - Sj)]exp{—R(o’x)[s]},
using Lemma A.3 in the Appendix and with notation as in (4.5). Now define
2(G) =P (X>x,AcG) =& T1{1- dA(z)}]I{A cG).
[0, x]

This is a finite measure on {#, 3} with integral operator &}, say. By exten-
sion, &Y(A) = £l (1 — dA(sHY(A) for every measurable bounded . In
particular,

&, exp{—/:o(z) dA(z)}

cf[ IT{1- dA(z)}]exp{—/:o(z) dA(z)}

[0, x]

[ 10 - Sj)exp{—ﬂ(tj)sj}][tjl:[xé’exp{—ﬂ(tj)sj}]

t,<x
xexp{—R, »[1 — e % + se” " J}exp{— R, .,[1 - e @s]},

where Lemma A.3 is used again. 8(z) = 0 gives &1 = Fy(x, ), as it should,
and the following analogue to (4.6) comes forward for the posterior distribu-
tion Z'{A € G|X > x} = Z(Q)/Fy(x,®):

5’[exp{—£°0(z) dA(z)}‘X > x]

&yexp{ — [50(2) dA(2))

&1
-1l e izfxf{g.g(tj)Sj} I1 & exp{-0(2)5}

exp{— R o[l — e + se~?®*]}
eXp{_R(o,x)[s]} .

Since the ratio in the middle equals exp{—R ,[(1 — e *®*)1 — s)l}, this
proves, using (4.5) and by analogy with (4.6), that statement (i) of the theorem
is true.

Case (ii) is similar, but requires slightly lengthier arguments. The following
is a sketch. Consider the finite measure '

exp( Ry, o1~ e 7]},

PG) = P{X=x,AcG) = &| 1 {1-dA(2)}|A{x}I{A € G)
[0, x)
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on . It has integral operator satisfying

&y exp{—/owf)(z) dA(z)}
_ 5[{(}:{6){1 _ dA(z)}]exp{—/[‘o’x)()(z) dA(z)}

(411) X &A{x}exp| —0(x)A{x}]cfexp{ —/(x’m)()(z) dA(z)}

I[Te@- Sj)eXp{_o(tj)Sj}]

X &S, exp{ —0(x)Si}[ [1# exp{—o(tj)Sj}]

xexp{—R [1 — e7%* + se~ = ]}exp{ R, ,[1 — e =]},

by elaborations similar to those in the proof of Lemma A.3. 6(z) =0
yields Fy{x}. Dividing these expressions leads to an expression for
&'lexp{ — [56(2) dA(2)}|X = x], which, by comparison with the general formula
(4.6), is seen to imply (ii).

The most difficult case is (iii), conditioning on the event {X = x} when this
has zero probability. What needs to be proved is that

P{XeD,AcG) = [ Z*AeG)F(dx),
D

where &* is the candidate for &'{-|X = x} given in the theorem, for all Borel
sets D and every G in 3 4. In view of (ii) it suffices to show this for D = (a, b],
an arbitrary interval free of points from M. Define

PXe(a,b],AcG) =& T1{1-dA(2)} - TT{1- dA(z)}]I{G € A)
[0,a] [0, 8]

and &3Y(A) = [Y(A)F5(dA). The problem is reduced to that of showing

&, exp{—j:f) dA} - /(avb][@z* exp{—f:o dA}]FO(dx)

for all right-continuous step functions ending in zero, where &* is expectation
evaluated according to &2*. This is demonstrated via heroic integrations in
Hjort (1984).

Another and more intuitive approach is based on evaluating

6”'{exp( —/Owo dA)'X e [x,x+ s)}

and its limit as & goes to zero. This can be handled by arguments resembling
those used to prove (i) and (ii) above. One arrives at an expression similar to
(4.11), but instead of &S, exp{—6(x)S;}, it includes a factor which is close to
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(respectively, converges to)

EA[x,x + €)exp{ —0(x) Alx,x + &)} fos exp{ —0(x)s}a(s,x) ds
EA[x,x + &) - [dsa(s, x) ds ’

and this agrees with statement (iii). This line of reasoning is included here
because it is more intuitive than the formal proof and leads in a simpler way to
the correct answer; because similar arguments are helpful in the more compli-
cated world of Markov chains discussed in Section 5; and finally because I
believe even a formal proof can be constructed based on the ¢ — 0 arguments,
with the additional help of general results in Pfanzagl (1979) or Diaconis and
Freedman [(1986b), Section 4]. O

Let us next consider a full sample. Let X,,..., X, be iid given A and
assume that (T, 8,),...,(T,, 8,) is observed, where T, = min( X}, ¢,), §; = [ X;

<c;} and c,,...,c, are the censoring times. Define, analogously to (2.5) and
(2.6), the counting process N and the left-continuous at-risk process Y:

n n
(4.12) N(t) = Y I{T,<tand$, = 1}, Y(t) = Y KT, >t}.
i=1 i=1
In particular, dN(¢) = N{¢t} is the number of observed X,’s at the exact spot ¢.
The following theorem parallels Proposition 2.1 and also resembles Theorem 4
in Ferguson and Phadia (1979). It is proved by repeated application of Theo-
rem 4.1, conditioning first on (T, §,), then on (T, 8,), etc. The only difficulty
lies in carefully sorting out the factors contributing to the density of a new
jump.

THEOREM 4.2. Let the Lévy process A have prior distribution as in
(4.1)-(4.3), but with no fixed points of discontinuity, i.e., M is empty. Let
ujy,...,u, be the distinct points at which noncensored observations occur.
Then the posterior distribution of A is a Lévy process, with parameters
M* ={uy,...,u,}, H* = H and a*(s,2) = (1 - $)¥9a(s, 2), and Alu;} has
density

f*(s) = const. s¢N@I(1 — 5) "IN g (5 y ).

The typical application will start out with a continuous prior guess A,,
making this theorem appropriate. However, a version also including a
nonempty M of fixed points of discontinuity can be given. If ¢ € M is such a
point, with prior density f,(s) for the jump S = A{#}, then the posterior
density of S can be shown to be

(4.13) ft*(s) = const. st(z)(l _ s)Y(t)_dN(t)ft(s).

The next result parallels the time-discrete result (2.9) and should become to
the beta processes what Theorem 1 in Ferguson (1973) is to the Dirichlet
processes.
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COROLLARY 4.1. Let A ~ beta{c(-), Ay(-)}, as defined in Section 3.3. Then,
given the data (T, §,),...,(T,,5,),

n’ n

(ycdA, + dN
A~beta{c(')+Y(-),fo _C:FY—}

Proor. Considering jumps first, what must be shown is that A{¢}|data is
distributed as a beta variable with parameters c(¢)A{t} + dN(¢) and c(¢)X(1 —
Aft) + Y(#) — dN(2); cf. (3.13). This follows from Theorem 4.2 when At} =
0, since a(s, z) = c(2)s M1 — )1 and from its appendix (4.13) when A{z}
> 0. Next, consider intervals between fixed jump sites. According to (3.14), one
must demonstrate that the posterior Lévy formula can be written in the form

% — ¢ -1 c(z2)+Y(2)—-1 C(Z) dAO,c(z)
dLy(s) —fo{c(z) +Y(2)}s (1 — 5) Y@ R (O

But this follows also from Theorem 4.2 O

REMARK 4A. By convention, a beta{0, b} variable is equal to the constant 0
a.s. and a beta{a, 0} is equal to 1 a.s., when a and b are positive parameters.
In particular, for all but a finite number of ¢’s it is the case that F'{A{t} =
O|data} = 1. Nevertheless, in addition to the jumps that occur for A whenever
A,{t} and/or dN(¢) are positive, it will with probability 1 have infinitely many
tiny jumps at a random collection of sites. This is a fact following from the
Lévy process property.

4.2. Bayes estimators. It is now easy to construct large classes of nonpara-
metric Bayes estimators for A and for the accompanying cdf F. Consider the
general A defined in (4.1)-(4.3). Then

SA(t) = ¥ €85, + ['sdL(s) = ¥ &8, + ['['sa(s,2) dsdH(z)
tjst 0 tjst 070

and

EF(t) =1 - €T (1 - dA(2))

[0,¢]
1
=1- t!_s[tcf(l - Sj)[gt[]{l —/Osa(s,z) dsdH(z)}

=1-J]€1- Sj)exp{—ftflsa(s,z) dsdH(z)}.

t;<t 070

Bayes estimators for A and F (w.r.t. quadratic loss functions) are obtained by
applying these formulae to the appropriate a posteriori situations. One can
also compute a posteriori variances (and even higher moments) in reasonable
generality.
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Let A have the prior distribution described in Theorem 4.2, with prior
guess CA(t) = [¢[dsa(s, z) dsdH(z). Define K[z; b, c] = [3s%(1 — s)a(s, z) ds.
Then, in the notation used in Theorem 4.2,

A(t) = €'{ A(t)|data)
_ v K[uj;dN(uJ-) +1,Y(u;) - dN(uj)]

(4.14) "<t K[u;;dN(u;),Y(u;) — dN(u;)]
+/"K[z;1,Y(z)] dH(z),
0
F(t) = &'{F(t)|data)
K[u;;dN(u;),Y(u;) +1 - dN(u;)]
(4.15) =1- ul;[t K[u;dN(u;),Y(u;) — dN(u;)]

xexp{—fotK[z; 1,Y(2)] dH(z)}.

If the prior has a(s,z) = a(s) independent of z [e.g.,, ¢(z) =c¢ in a beta
process], then £A(t) = [3sa(s) ds H(¢) is the prior guess, K[z; b, c] = K[b, c]is
also independent of z and the formulae above simplify. This could be termed
the homogeneous case. For example, if the prior has a(s, z) = 2, so that H is
in fact the prior expectation, then

dN(u;) +1 2dH(z)
Y(u;) +2 fo(Y(z)+1)(Y(z)+2)'

(4.16) A=Y

u;<t

In these equations, note that the typical time-continuous case would have
every dN(u ;) equal to 1. In (4.16) the second term is of smaller order than the
first and the first term uses binomial estimates of the type (x + 1)/(n + 2)
instead of x/n.

The primary special case however, is the following, giving analogues to
(2.10) and (2.11). It follows from Corollary 4.1 upon using equations (3.16) and
(3.18).

THEOREM 4.3. Let A be a beta process with parameters ¢ and A, as defined
in Section 3.3. Then the Bayes estimators of A and F, based on n possibly
censored observations, are

ccdA, + dN

A(t)=j0 F(t)=1-T1

[1 cdA, + dN
c+Y ’ [0, ¢)

c+Y

. A couple of remarks are in order here. Firstly, as ¢(-) tends to zero, A and
F tend to the usual nonparametric estimators of, respectively, Nelson and
Aalen and Kaplan and Meier. These can accordingly be given a Bayesian
justification under vague prior conditions. At the other extreme are the prior
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guesses A, and F,,, which arise as c(-) tends to infinity. In general, c(-) can be
interpreted as the number at risk in an imagined prior sample, as in Remark
2B for the discrete case. Note finally that the precision of the Bayes estimate A
is naturally measured by

+dA(1 — dA)
Var{ A(t)|data} = j;)m

This can also be used to construct Bayesian confidence bands for A. For this
purpose another perfectly feasible approach is to simulate realizations of A(-)
from the posterior distribution.

5. Markov chains. Suppose that X, = {X(¢);¢ > 0} are Markov chains
for a = 1,...,n, moving around in the state space {1, ..., k} independently of
each other and each with the same set of cumulative hazard rates A, ;. Assume
that X, is followed over the interval [0, w,] (but see Remark 2E) and intro-
duce

N;;(t) = number of observed transitions i — j during [0, ¢],

(5.1)

Y;(¢) = number at risk in state i just before time ¢.

We were able to generalize from (2.10) to (2.16) in the time-discrete case and
aim now at a similar generalization from results of Section 4 to the present
setting. To establish such results for Markov chains, quite a bit of ground
needs to be covered, partly parallelling the work done in Sections 3 and 4. A
brief outline is given here, with most details left behind in Hjort (1984).

The beta process was obtained in Section 3.3 essentially as a fine limit of
time-discrete ones. Thus a natural start of our program is a study of the
limiting processes obtained by letting the time-interval length b tend to zero
for the discrete processes of Proposition 2.2. The following theorem, whose
proof is omitted, parallels Theorem 3.1.

THEOREM 5.1. LetA, ,,..., Ay ,_, be continuous, nondecreasing functions
on [0,x), each starting with the value 0 at zero, and let c(-) be a piecewise
continuous, nonnegative function. Define for each n independent vectors

(X, 1, wr++s Xn,pu) ~Dir{a, ; wroo o Qp s u=12,...,

where a, ;, =cu — 3)/n)Ay ;(u —1)/n,u/n) for j=1,....,k —1 and

Qppw = cu — 3)/n01 - T2 1A0 ;(u—1)/n,u/nl, and construct the cu-
mulative hazard rates

An"](t)= Z Xn,j,u’ tZO,j=1,...,k_1.

u/n<t
Then it holds that (A, ,, ..., A, ,_;) converges in distribution to
(A,...,A,_)), in each of the spaces DIO, R1*~', where A,,..., A,_, are

independent beta processes, with A; ~ betalc, A, ;}.
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This suggests that a natural Bayesian strategy is to start out specifying
k(k — 1) independent beta processes as priors for A;;. A rather long proof of
Theorem 5.2 is available in Hjort (1984). It uses arguments similar to those
given in Section 4, but necessarily becomes more cumbersome notationally.

THEOREM 5.2. Let A;; for i #j be independent beta{c,;, A, ;;} processes
and assume that the prl.or guesses A, ;; and A, have disjoint sets of
discontinuity points when j # 1 (they will often be chosen continuous). Then,
given data collected from the n individual Markov chains, the A;;’s are still
independent and

‘¢;;dA, ;, + dN,,
A,;j|data ~ beta{c f J 0y }

c;; + Y,

Bayes estimators for the cumulative hazard rates are

A _ B t€;jdA, ;; + dN;;
(5.2) A;;(t) = #{A;;(¢)|data} = /;) ¢, + Y,

Further, the conditional variance of A, ;(¢) given data can be written /; dA, ;@
—dA, )/(c;; +Y, + 1). We can also derlve a Kaplan- Meler-resembhng non-
parametric Bayes estimator of the waiting time distribution in state i, i.e.,

Gi([s,t]) =Pr{X(z) =iin[s,t]|X(s) =i} = [] {1 —dA,.(2)} fort=>s.

[s,¢]
The result is
Ci dAO’i.“l' dNi.

5.3 Gi([s,t]) = 1- :
(53) A0s,t) = TT .
where N; =X ;,;N;;, Ag;. =L ;.;Ao;; and where for simplicity c; = c,;.

6. Semiparametric regression models. Assume that a covariate vector
z; is recorded for individual number i and that these measurements are
believed to influence the individual’s hazard function. Among several possible
semiparametric models appropriate for such situations the most famous one is
the Cox model, which postulates that

Fy(t,®) = F(t,0)™F =1, n,

for some parameter B, where F, is the cdf for individual i and F is the cdf
for an individual having covariate vector zero. This relation translates into 1 —
dA(s) = {1 — dA(s)}*®#=) in terms of hazard functions; cf. (3.3).

Suppose first that B is known and that A has a beta process prior with
parameters ¢ and A,. We shall find the Bayes estimator for A, the baseline
hazard for individuals with covariate vector zero. Data are in the form of
t; = min(x,, ¢,), 8; = I{x; < ¢;} again. If we momentarily think of an observed
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life time ¢; as the event X, € [¢,,¢; + €], then number i contributes

Flt, t;+e]l= T1{1—-dA(s)}™P[1 - T {1-dA(s)}eP#=

[0,¢,) [¢t,,t,+¢]

to the likelihood if 6, = 1 and

F(t;,®) = [T {1 - dA(s))=®®#=
[0,¢,]

if §, = 0. The total likelihood L(data|A, 8) can be written as
[T{1 - dA(s))"?,

out
taken over all s outside the [¢;,¢;, + ] intervals where lifetimes are observed,
multiplied by factors

[T {1-dA(s)}*P — TT {1-dA(s))"P,
[¢,,t,+¢] [¢,, ¢, +el
for each i with §;, = 1, in which R(s, B) = L/ _,exp(Bz,)I{t; > s} and R, (s, B)
is the same quantity but evaluated without number i. It is assumed that the
t;’s with §; = 1 are distinct.

This can be used to work out the posterior distribution of A. We skip the
somewhat laborious details here, but report that A given data is a Lévy
process and is distributed like a beta process {¢c + R, cA,/(c + R)} between
jumps. It has positive jumps A{s} at observed lifetimes, i.e., where dN(s) > 0,
where N is the total counting process for the data. The distribution of such an
A{s} is, however, more complex than a simple beta distribution. Some work
yields the expected value as &(A{s}|data) = J(s, B) dN(s)/{c(s) + R(s, B)},
where

A
c+R—-Ay(c+R)—¢y(c+R-A)’

A(s, B) = 7_1exp(Bz;)I{s = ¢,,6, = 1} and ¢(x) is the digamma function
I'(x)/T(x). We define J(s, B) to be zero when dN(s) = 0. Since the observed
lifetimes are distinct, A(s, B) is equal to exp(Bz;) at the precise point at which
number ¢ dies. Combining our efforts we arrive at

A t dAy(s J(s,B) dN
A(t,B) = £{A(t)|data, B} = fo C,(S) c((s)):R((: Z)) &

This can be compared with the traditional estimator [{ dN(s)/R(s, B). The
expansion §(z) = logz — 3 /z — 15 /22 + -+ - can be used to show that J(s, B)
is reasonably close to 1 for most values of ¢ and R and A (and is exactly equal
to 1 when A = 1).

This generalizes some of the results of Section 4 and can be viewed as
parallelling work by Wild and Kalbfleisch (1981). These authors found it
necessary to assume that covariates were constant in time, whereas they can
be time-dependent in our reasoning above.

J(s,B) =
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Of course B is seldom known in practice. Any reasonable estimate 8 based
on the data produces upon insertion in A(¢, ) an empirical Bayes type
estimator for A. B could, for example, be of the Bayesian variety
IBL(B)m(B)dB/[L(B)m(B)dB studied in Hjort [(1986a) Section 4], where
L(B) =T1,. 5,_exp(Bz;)/R(¢t;, B)} is Cox’s familiar partial likelihood. But a
more complete semiparametric Bayesian treatment is possible and works out
as follows. Place a prior distribution w(8)dB on B in addition to the beta
process prior on A and take B and A to be independent. Lengthy arguments,
involving L(data|A, ) and reasoning similar to that of Section 4, in addition
to technicalities similar to those spelled out in the proof of Lemma A.3 in the
Appendix, yield the posterior density for 8 as

w(pldata) = const-exp[—f:{t//(c(s) + R(s,B)) — ¢(c(s))}e(s) dAy(s)
x TT [w(e(t:) + R(t:,B))

_(/’(c(ti) + R(tiyﬁ) - A(thB))]Tr(B),

provided that A, has a continuous hazard rate «, and that ¢’s with §, = 1
again are distinct. The semiparametric Bayes estimator for A becomes

A(t) = #{A(t, B)|data} = fA(t,ﬁ)w(mdata) dg.

It is perfectly possible to compute this posterior average by simulation, by
some appropriate acceptance/rejection program.

It is similarly feasible to estimate more complex parameters. As an example,
consider « = F(¢,)®™P(#2) the survival probability for an individual with co-
variate vector z. The Bayes estimator is

R = &&{k|data, B)
1 c(s) dAy(s) + J(s,B) dN(s) ]=P#2
[ ) ¢(s) + E(s, B)

The expression for the posterior density above represents an interesting
spectrum of possible curves as c¢(-) varies. When ¢ tends to zero it reduces to
IT;. 5,_1[¢(R(¢;, B) — y(R(t;, B) — exp(Bz,))] times the prior and a multiplica-
tive factor, and to a first order approximation this is equal to the ordinary
partial likelihood L(B). When c¢ grows to infinity one can show that the
posterior density becomes proportional to Ly (B)m(B), where L,(B) is the
likelihood under the assumption A = A,. This is similar to what Kalbfleisch
and Prentice [(1980), Section 8.4] found starting out with a gamma process
prior for —log(1 — F). In our view the estimators obtained here, particularly
for the cumulative hazard, seem more natural and are easier to interpret,
which suggests that the beta process approach is preferable to the gamma
process approach.

=fn

[0,¢]

m(B|data) dg.
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Diaconis and Freedman (1986a, b), Hjort (1986b) and others have shown
that semiparametric and nonparametric Bayesian schemes sometimes lead to
estimators that are either plainly inconsistent or consistent for certain least
false parameters that depend on the construction of the prior distribution. In
this particular situation nothing dramatic happens, however, as one can show
that (1/n)log{w(B|data)/m(0|data)} has exactly the same limit as that of the
corresponding expression for Cox’s partial likelihood L(B), under reasonable
regularity conditions. In particular, regardless of c(-) and Ay(-), as long as
c(+) stays bounded as n grows, the Bayes solution 3 = &{B|data} and the Cox
estimator are consistent for the very same least false/best fitting parameter
value B,. This can be demonstrated using techniques of Hjort (1986a).

7. Further developments. In this section some topics for possible fu-
ture research are discussed briefly, along with some complementing remarks.

TA. Generalized Dirichlet processes. Let A be a beta process with parame-
ters c(-) and Ay(-) and consider the random cdf F(¢) = 1 — [Ty, (1 — dA(s)}.
It has expectation Fy(¢) =1 — Tl {1 — dAy(s)} irrespective of c(-). It is
interesting to note that F is simply a Dirichlet process with parameter 2F(-),
where £ is a given positive constant, for the particular choice c(s) = kF[s, ).
One way of proving this is to use product integral techniques to evaluate the
Lévy representation for B = —log(1 — F),

¢ exp{—6B(t)} = £{1 - F(2)}’ = [T #{1 - dA(s)})’,
[0,¢]
which becomes the required T'(R)T(kF[¢,) + 0)/T(kF,[¢,)[(k + 0); see
also the following formula. Accordingly, the class of Dirichlet processes has
been extended. We may term F above a generalized Dirichlet process with two
parameter functions c(-) and Fy(-).

The various probabilistic properties of these generalized Dirichlet processes
may now be explored, in the tradition of Ferguson (1973, 1974), Doksum
(1974), Antoniak (1974), Korwar and Hollander (1973), Hjort (1976) and
others. Furthermore, the list of Bayes estimators based on Dirichlet processes
in different situations published in the literature since and including Ferguson
(1973) could be supplemented with accompanying Bayes solutions using gener-
alized Dirichlet process priors.

Various authors have concentrated on B = —log(1 — F) instead of A, as
mentioned earlier. It is not difficult to find Bayes estimators, etc., for B, using
the following result. If A is a general beta process, as in (3.12)—(3.15), then B
is Lévy with representation

@”exp{—BB(t)}
[n £(1-8) ]exp[ [(e(s) +0) = we(s)))e(s) dA, (5)|.

t <t

7B. Asymptotic distributions. The Bayes estimators of Section 4 are inter-
esting competitors to the traditional nonparametric estimators and one might
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explore their frequentist behavior. Thus let A denote the true, underlying
cumulative hazard and introduce

(7.1) M@pﬂ«ﬂ—j%@ﬁﬂ@% t>0.
0

This is a square integrable martingale w.r.t. the sigma-fields %, = o{N(s), Y(s);
s < t}; cf. Aalen (1978a) and Gill (1980). We have from

A rc(s)dAy(s) + dN(s)
(7.2) MQ=L DRSO

that A(t) — A(t) = [{1/(c + YXdM — cdK), in which K(#) = A(¢) — A,(®).
One consequence, among several, is that E,A(t) = A(t) + [{Ec/(c + Y)dK.
The bias is small when A is close to A, and/or when Y is large compared
with c.

The limiting distribution of A — A may be derived in a framework in which
n, the number of individuals under study, tends to infinity. A standard
assumption often fulfilled is that Y(s)/n — y(s), say, uniformly on bounded
sets, in probability. The martingale techniques of Aalen (1978a) may be used
to show that Vn (A — A) has the same limiting distribution, namely that of a
certain Gaussian martingale, as Vn (A* — A), where A*(¢) = [{ dN/Y is the
maximum likelihood-like Nelson—Aalen estimator; cf. Andersen and Borgan
(1985). The Bayes estimator F' obtained in Theorem 4.3 can be studied
similarly. Martingale techniques may be used to obtain results along the lines
of Susarla and Van Ryzin (1978b).

7C. Dynamic Bayes estimators. The loss function under which (7.2) is the
Bayes solution is

(7.3) L(4,4) = [(A(t) - A(D))* aW(2),

where W is any finite measure. (7.2) was derived when A was given a
completely specified a priori distribution, namely the beta{c, A,}. This is in the
classical decision theoretic tradition of Wald and followers. It should be
pointed out, however, that (7.2) makes perfect sense also when the c(s)
function is allowed to depend upon (portions of) the data. In particular most of
the arguments pertaining to the behavior of A in the non-Bayesian frequentist
framework of 7B go through when c(s) is only assumed to be left-continuous
and progressively measurable w.r.t. {%,;¢ > 0}, or more generally predictable;
cf. Gill (1980). For example, the limit distribution result about vn (A-A4)
mentioned above holds true if only c¢(s)/ Vn — 0 uniformly on bounded sets,
in probability.

But (7.2) is not a proper Bayes solution when c¢(-) depends on the data, at
least not in the traditional framework. In the present situation a full function
A(?) is to be estimated and one could, somewhat speculatively, allow a Bayesian
to gradually adjust his beliefs about the future by also taking into account
information relevant for earlier time points. Specifically, one might propose to
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judge an estimator by its dynamic risk function

R(A,A) = f:EA{(dA(s) — dA(s))

z_}dW(s).

The statistician is to estimate dA(s) = Als, s + ds], say, using prior informa-
tion as well as data observed in [0, s]. The dynamic Bayes estimator becomes
dA(s) = £{dA(s)| F_). If (8.5) is found appropriate for some predictable c(s),
then A becomes as in (7.2) again, but now with c¢(s) more generally inter-
preted. c(s) is, for example, allowed to depend on Y(s).

7D. Empirical Bayes estimation. A statistical formalization sometimes
placed between the pure Bayesian and the classical frequentist frameworks is
the empirical Bayes setup in which data from previous experiments are
available and modelled as being relevant for the present one. Assume that
A ~ beta{c, A,} is one’s prior process (dynamic or not), so that A in (7.2) is the
Bayes estimator. Assume further that A, is unknown, but that m earlier
independent experiments have resulted in observed processes N,(-) and Y;(-),
defined as in (4.12), for j = 1,..., m. Suppose finally that the m cumulative
hazard rates A,,..., A, are each distributed as A. Then an estimator A,
may be constructed, for example,

m -1 m
i - [ £ w0 al £ we).

0lj=1 Jj=1
The insertion of this for A, in (7.2) defines an empirical Bayes estimator.
Similarly, the parameter ¢ can be estimated from earlier data, for example,
when it is modelled as being constant. One may prove, using martingale
techniques again [M in (7.1) is a martingale for given A and A; — A, is also a
martingale], that the procedure outlined here is asymptotically optimal as m
increases. This yields results along the lines of Korwar and Hollander (1976)
and Susarla and Van Ryzin (1978a).

TE. Semi-Markov processes. The present paper has introduced beta pro-
cesses, and Bayes estimators under such, into models leading in generality to
time-inhomogeneous finite-state Markov chains and to Cox-like regressions.
The Markov assumption is sometimes too crude, however, and it appears
useful to generalize some results to semi-Markov processes. This is at least
possible for the case of forward-going semi-Markov processes, the class studied
by Voelkel and Crowley (1984). See Phelan (1990) for a study of Markov
renewal processes using the beta prior.

7F. Double censoring. It would also be useful to find Bayes estimators
based on beta processes in situations where data can be censored also from the
left, providing Bayesian competitors to the maximum likelihood-like solutions
of Turnbull (1974) and Samuelsen (1989). This is a difficult problem to solve in
any generality, although explicit formulae may be derived when the number of
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left-censored data is small. It appears that equations may be obtained from
which Bayes estimators may be computed by numerical iteration procedures.

7G. General Aalen models. The estimator (7.2) can obviously be used as
an estimator incorporating prior beliefs for the cumulative hazard in Aalen’s
(1978a) general multiplicative counting process model, of which the models
considered in this paper are only special cases. I have not been able to
formalize the Bayesian framework in this generality, however, due to difficul-
ties caused by the fact that beta processes (and relatives) are discrete, with
infinitely many jumps on each interval, with probability 1. Work by Jacobsen
(1982) can possibly be exploited to arrive at (7.2) in the most general case.

TH. Admissibility and minimaxity. It is difficult to establish that (7.2) is
admissible under loss function (7.3) in the unrestricted nonparametric sense,
even though it is the almost unique Bayes solution. The (7.2) estimators
probably are admissible; some relevant methods of proof are in Hjort (1976).
Using slightly nonorthodox martingale techniques, in the simultaneous frame-
work in which both A and the data N,Y are random, one can work out an
expression for the minimum Bayes risk under a beta process prior, w.r.t. loss
function (7.3), namely [5/;&c/{(c + 1Xc + Y)} dA(s)1 — dA(s)) dW(t). The
inner integral is maximal for c(s) = Y(s)'/2 This hints at a minimax property
for the estimator

‘3 Y(s) + dN(s)
f VY(s) +Y(s)

These considerations may be formalized, but necessarily involve the dynamic
framework mentioned in 7C.

7I. More general prior processes. The beta processes have several good
properties. Some characteristics may make them inappropriate in some situa-
tions, however, for example, the independent increment property (shared by all
Lévy processes, of course). It would be useful to have in one’s Bayesian toolkit
prior processes with correlated increments. Similarly, in the competing risks
and Markov chain situations of Section 5 we used independent priors for the
cumulative hazards involved, whereas these perhaps should be negatively
correlated, say, in some applications. The possibility offered by the dynamic
beta processes with predictable parameter functions provides a partial answer
to such needs. One could also try out linear combinations of independent Beta
processes. More work is needed.

7J. Estimating the hazard rate itself. We have proposed (7.2) as a non-
parametric Bayesian estimator of the cumulative hazard A. We may write

c(s) Y(s)

o(s) 7 ¥(5) 208 &+ Ty Ty A6,

dA(s) =
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where again A* is the non-Bayesian Nelson—-Aalen solution, in the case of a
prior guess a(s) for the hazard rate a(s) itself. Thus a reasonable nonpara-
metric Bayesian estimator of a is @(s) = ¢(s) /{c(s) + Y(s)}ay(s) + Y(s) /{c(s) +
Y(s)la*(s), in which a*(s) is any of several possible non-Bayesian smoothers
of dA*(s), for example the kernel-type in Ramlau-Hansen (1983) or the
orthogonal expansion estimator in Hjort (1985).

APPENDIX

Lemmas A.1 and A.2 were needed in the proof of Theorem 3.1. Lemma A.3
was vigorously used in the proof of Theorem 4.1 and a more general version of
it was used to obtain the posterior density 7(8|data) in Section 6.

Lemma A.l. Let z,,; be real numbers, for n>1 and i > 1. Assume
that, as n >, ) Z,.;/ncp2,; = 2 (i) max, .;, p <pl2,,| = 0; (iii)
lim SUPY , < /n <bl2n ;| <M < . Then Ha<i/nsb(1 + 2, ;) = exp(2).

Proor. We have log(l +2) =2z — 322 + 328 — .-+ =2 + 22K(2), say,
where K(z) » — 3 as z - 0 and |K(2)| < 1 whenever |z| < 1. For n large
enough, every |z, ; < 3. It suffices to show T, _; ,, 22 ;K(z, ;) — 0. But the

left-hand side is dominated by max, ., ,, <412, J|X 4 <i/n<pl2, |- O

LeMMA A.2. The space o/ of all cumulative hazard rates on [0, R], i.e.,
& restricted to [0, R], is closed in D[0, R] w.r.t. the Skorohod topology.

Proor. Take for convenience R = 1. Let {A,} be a sequence of cumulative
hazard rates, having by definition corresponding cdf’s {F,} that satisfy

F(t)=1- J]{1-dA,(s)}, fort=>0;
[0,¢]
see (3.3). Assume that A, — A in DI[0, 1]; we are to show that indeed also A is
a cumulative hazard rate. In other words, if F defined by
F(¢) =1- J1{1-dA(s)}, t>0,
[0, ¢]

is well defined and lies in .#,, the cdf’s restricted to [0, 1], then the lemma is
proved. .

Let ¢ be a given number in (0, 1). There exist points 0 = ¢, < -+ <¢t, =1
having max; _,, A(¢;_,,t;) < &; see Billingsley [(1968), page 110]. Let us write
F(¢) = K(¢) — 8(¢) as follows: For an arbitrary ¢, say in (¢;, t;,1), let

K(t)y=1- ]f[ {1 A, 6,1} {1 - A, 1]}

One has 0 < 6(2) < exp{A(t)}A(H)max; _,, A(¢;_,,¢;) < exp{A()}A(t)e, accord-
ing to a version of Theorem 2.5 in Johansen (1987).
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Now there is a sequence of strictly increasing, continuous functions A,
having A,(0) = 0 and A,(1) = 1, such that A,(s) > s and A,(A,s) —» A(s),
uniformly [see Billingsley (1968), page 112]. Write

F(At) =1- [T {1-dA,(s)} =K, () - 8,(2),

Ant]

»An

in which

K, (¢)=1- ﬁ {(1-A4,(1.t_1,A,8]) {1 _An(’\ntj’Ant]}
i=1

and
0<6,(t) <exp{A,(A,t)}A,(A,t)max A, (A,t,_1,A,t).
t<m
Keeping m fixed, we get from |F(t) — F,(A,t)| < |K(¢) — K, (8)] + 8(¢) + 8,(¢)
that limsup, _,.|F(t) — F,(A,t)| < 2A(1)exp{A(1)}e, showing us that F, > F

in the Skorohod topology in D[0, 1]. But it is easy to prove that %, is closed in
DI[0, 1], so that necessarily F is a cdf restricted to [0,1]. O

LEmMMA A.3. Let A be the general Lévy process defined in (4.1)—-(4.3), or,
equivalently, (4.6). Then

S TT{1- dA(z)}]exp{—wa()(z) dA(z)}

[0, x]
= [1e1- Sj)exp{—"(tj)sj}tljxfeXP{_B(tj)Sj}

t,<x

Xexp{—R ,[1 — e %@ + se= % }exp{ R, ,,[1 — e *®*]}.

Proor. A, the part of A that has no fixed points of continuity, is
independent of the jumps S; = A{¢;} and is itself a Lévy process [cf. Ferguson
(1974), page 623] with Lévy formula

(A1) e”exp{—fm()(z) dAc(z)} = exp{—R(O’m)[l - e“’(z)s]}.
0

By writing I, {1 — dA(2)}exp{ - [50 dA} as

tl:[x(l - S;)exp( —o(tj)Sj}tE[xexp{—O(tj)Sj}

[0, x]
and using independence and (A1), the problem is reduced to that of proving
#| I (1 - daa)) fowp{ - ["0(2) aa(2))
(A2) [0, x] 0
= exp{—R ,[1 — e %@ + se=0@s]},

<[ TT (1- dAc(z)}]exp{— [[8(2) dA(2) exo{ - [“o(2) da ()},
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Before taking recourse to a rigorous proof we include some arguments
that are heuristic but illustrative. If E exp(—0Y) = exp(—h(68)), then E(1 - Y)
exp(—0Y) = (1 — h'(8))exp(—h(6)). Hence, since

& exp{—0(z) dA.(2)} = exp{—/:(l — e %) (s, z) dsdH(z)}

by (Al) and (4.5), we have
£(1 - dA(2))exp( ~6(2) dA,(2))

= {1 — j:se_a(z)sa(s,z) deH(Z)}

Xexp{— fol(l — e %) g (s, 2) dsdH(z)}.

Multiplying together these infinitesimal factors gives (A2), since Iy ,,{1 —
f(2) dH(2)} = exp{— [§f(2) dH(2)} when the right-hand side is continuous
in x.

These arguments may be formalized as follows. Note first that it suffices to
demonstrate

¢TI0 - dAc(z)}]exp{—oAc[b,c»
(A3) [b,¢)

= exp{—R(b,c)[l —e 0 ¢+ se“’s]}

for a constant 6, since 6(z) is a step function. Write

J = [117_1){1 - dAc(z)}]eXp{ —6A.[b,¢)},

Ji = {1 —Ac[xi—hxi)}exp{ _OAc[xx—l’xi)}’ 1=1,...,m,

where b = x, < -+ <«x,, = c is a fine partition. [} ,J; provides an approxi-
mation to J; in fact it follows from Theorem 2.5 in Johansen (1987) that
[17,J; > J as. when m — » and the sequence of partitions {x;}g’ is chosen
such that the max mesh tends to zero. Since the product furthermore is
bounded (by 1) it follows that £T1%,J; = &J. But

&d, = {1 - R(xl_hxl)[se"’s]}éxp{—R(xl_bxt)[l - e %]}
and

é’_I__IlJi =exp{—R [l — e "]} ]:[1{1 - R(xl_l’xl)[se"’s]}

- el ot~ ool ol )

by Lemma A.1. This proves (A3) and the present lemma. O
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