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ADECOMPOSITION FOR THE LIKELIHOOD RATIO STATISTIC AND
THE BARTLETT CORRECTION—A BAYESIAN ARGUMENT

1. Introduction. Let X = (X,,..., X,) be a vector of observations with
joint density p(x, 8), 6 € ® open C R”, where we do not assume a priori any
particular structure on p(x,6). Consider the hypothesis H: 6 =0y,.
6* = 9%. Suppose that maximum likelihood estimates 8 and OH for € ® and
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Let 1(8) = n~ ! log p(x, ) be the log likelihood of an n- dlmensiopal X
under a p-dimensional 6. Let 0 be the mle under H;: 0t =03,...,67 =6}
and 6, be the unrestricted mle Define T as

[2n{2(8;-1) - 1(9,)}]""* sen(8)_, - 04).

Let T = (T},..., T,). Then under regularity conditions, the following theo-
rem is proved: Under 6 =0, T is asymptotically N(n‘l/ 2ay + n71a,

J + n713) + O(n~3/2) where J is the identity matrix. The result is proved
by first establishing an analogous result when 6 is random and then
making the prior converge to a degenerate distribution. The existence of
the Bartlett correction to order n~3/2 follows from the theorem. We show
that an Edgeworth expansion with error O(n~2) for T involves only
polynomials of degree less than or equal to 3 and hence verify rigorously
Lawley’s (1956) result giving the order of the error in the Bartlett correc-
tion as O(n~2).

0 € H, respectively, are well defined. Then let

(1.1)
(1.2)
(1.3)
and

(1.4)

the usual likelihood ratio test statistic. All these quantities, of course, depend
on n but we suppress this dependence to ease the notation. There is a common
approximation to the distribution of A which has the status of a folk theorem:

1(6) =n"'log p(X,0),
1(8) = maxg 1(0),
1(6) = max, 1(6)

A= 2”(1(5) - l(éH))

Ly(A) = X
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for 6 € H. Theoretically this can be interpreted, for 6 € H, as
(1.5) Py[A < t] = x2(¢) + o(1)

as n — . This result was proved by Wilks (1938) and extended by Wald (1943)
in the iid. case, extended to the Markov case by Billingsley (1961) and
subsequently extended to many other dependent and nonstationary situations.
Bartlett (1937) noted, in the particular case of the hypothesis of the equality of
variances for k£ + 1 normal populations, that the y2 distribution was a far
better fit to the distribution of kA/E,A than to A itself. Following work by
Box (1949), Lawley (1956), by ingenious and difficult cumulant calculations,
“established” the folk theorem that quite generally

kA
(1.6) Po[f < t] = xi(t) + 0(n7?),

where

A

. b
E=Fk+ — = Ey(A) + 0,(n™3%)

and b is a suitable estimate for the coefficient » of n~! in the expansion of
E,(A). Departing from an asymptotic formula for the conditional density of X
given an ancillary due to Barndorff-Nielsen (1986). Barndorff-Nielsen and Cox
(1984) showed that (1.6) can be expected to hold quite generally and they
derived formulas for estimating b in one important class of models. Efron
(1985) established (for an important special case) a related result. Let

T = A2 sgn(6' — 6Y).

Then
(1.7) P[T<t]=® t_;('%(_)ﬂ) +0(n~%?),
where

n(0) = j'Lf/(Tﬂ) * al,(la) +0(n"%?),

c(9)

a?(6) =1+ — o(n=%?),

where a,, a; and c are suitable functions of 6, not depending on n. As P.

McCullagh pointed out to us, this result implicitly already appears in Lawley

(1956) and, in fact, a, = 0. It is easy to see that, for £ = 1, (1.7) finally implies

(1.6) [with O(n~?) replaced by O(n~3/2)] with b estimating a2(8) + c(6).
Our aim in this paper is:

1. To give a generalization of Efron’s result to vector parameters. A closely
related result appears in Barndorff-Nielsen (1986) and is again foreshad-
owed by Lawley (1956).

2. To apply this extension to establish the validity of Bartlett’s correction for
the p variate joint distribution of the A statistics (deviances) arising from
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testing the nested hypotheses H,: 6/ = 8}, j = 1,..., k, within H,_; for
k =1,..., p. That is, to show that, when the deviances are standardized by
their asymptotic expectations to order 1/n, their joint distribution under 6,
differs from that of p independent identically distributed x? variables by
an error of order n~2. This result is also implicit in Lawley (1956) although
the calculations are purely formal. For the case of a single statistic A, this
can be obtained in a rigorous fashion under appropriate regularity condi-
tions from Chandra and Ghosh (1979).

3. To give Bayesian analogues of both of these results which we believe
provide a key to understanding the Bartlett phenomenon. The Bayesian
analogue is interesting in its own right, is fairly easy to establish and is the
basic step in our arguments for aims 1 and 2.

Here is a discussion of the motivation and the structure of our Bayesian
argument when we restrict to the familiar case of i.i.d. observations from a
smooth parametric family. It has been proved in Chandra and Ghosh (1979)
that the distributions of the likelihood ratio, as well as Wald’s and Rao’s score
statistic, have asymptotic expansions in powers of n~!, which are valid in the
sense of Bickel (1974). These types of expansions have been around for a long
time; see Box (1949). When viewed as formal expansions for the density p,(x?)
of one of these statistics, they are of the form ce %" /2(}2)*/2~Y1 + ¢ (x®)n !
+ - -}, where the coefficients ¢ are polynomials in x2. It is easy to check that
adjustment of such a statistic through multiplication or division by a constant
of the form (1 + bn~!) will knock off the coefficient of n~! in the expansion
for the adjusted statistic, iff ; is linear. By examining various examples one
can convince oneself that ¢; is not linear for Wald’s or Rao’s statistic.
Moreover it is far from clear why ¢, is linear for the likelihood ratio statistic.
This paper is addressed to clearing up mysteries of this kind as well as to
exploring the duality between the Bayesian and the frequentist setup which, to
first order, was studied extensively by Le Cam under the rubric of the
Bernstein—von Mises theorem.

Our Bayesian route could be followed to produce a relatively transparent
proof of linearity of ;. However, since we want to do more, namely, derive the
asymptotic expansion for the joint distribution of the p deviances statistics up
to O(n~2), we first note, in a similar vein, that here also the question boils
down to the structure of the polynomials that appear as coeflicients of powers
of n™! in the expansion. The relevant results for this purpose are Lemmas A2
through A4 in the Appendix. These lemmas need to be applied to the vector
T(6,X) of the signed square roots of the likelihood ratio statistics, defined in
Section 2. That the distribution of these statistics has a valid Edgeworth
expansion can be shown using Theorem 2 of Bhattacharya and Ghosh (1978).
In the frequentist setup the sort of structure one needs for the polynomials is
specified in the conclusion of Theorem 3. It turns out that one needs the
polynomials corresponding to n~1/2 and n~! to be of degree at most 1 and 2,
respectively. To prove this, one first obtains a similar result in the Bayesian
setup, namely, Theorem 1, which provides an expansion for the posterior
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distribution of T'(8,X) given X. The likelihood factor in the posterior exp{nl(8)
— nl()} is exactly the sum of squares of the components of T and so no
expansion is needed. The coefficient polynomlals in the asymptotic expansion
arise only from the Taylor expansions of the prior density (8) around 6 and a
stochastic expansion of the Jacobian of the transformation of (6 — 6) to
T(9, X) viewed as a function of random 6. For reasons that are not hard to
see, in these latter expansions the degree of the coefficient polynomial matches
the power of n~!; vide Lemmas 1 and 2. These facts are at the heart of the
proof of Theorem 1 Theorem 1 would fail for Wald’s or Rao’s statistic because
the likelihood factor exp{ni(6) — nl(6)} cannot be written as the square of
either of them exactly and so an expansion of this term is called for too.
Finally, Theorem 3 follows because Theorem 1 is true for a set of priors which
is dense in the weak topology.

Our expansions may be used to set up Bayesian or frequentist confidence
intervals; see the discussion following Corollary 1.

We propose to carry out our program without relying on the i.i.d. sampling
assumption, under conditions such as those of Bickel, Gotze and van Zwet
(1985) which emphasize that we are, as with the original Wilks result, dealing
with a phenomenon which depends only on tiie asymptotic stability of / and its
derivatives, moderate deviation properties of 6 and related estimates and the
existence of Edgeworth expansions for the distribution of T'. Simple conditions
implying those we give may be specified in the case of Markov and independent
nonidentically distributed observations in the same way as is done in Bickel,
Gotze and van Zwet (1985).

A feature of our approach is that calculations are kept to a minimum so
that, we believe, the phenomena are transparent. The disadvantage here is
that unlike our predecessors, we do not arrive at formulae for the (estimated)
coefficient & needed in the correction. It is, however, worth pointing out that,
in situations which are like simple random sampling and where computing
power is readily available, we can obtain b without knowing its form by
applying the jackknife for bias reduction; see Efron (1982), for example. That
is, we calculate A_;, the A statistic for the data X;, j # ¢, and put

b = i (A_;) — nk.

The paper is organized as follows. Section 2 contains the statements of the
main theorems plus the necessary assumptions and notations. Section 3
contains the proofs of our results. Four simple technical lemmas are in the
Appendix.

2. The main results. Since we intend to use tensor notation for arrays,
we subsequently identify vector components by superscripts, for example,
0 = (6%,...,6P). For given 6 € 0, define 0 as the maximum likelihood esti-
mate of 9 when 0%,...,0’ are fixed, i.e.,

(2.1) l(é) max{l(7): 1 =0',...,7/ = 67}
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We shall in the sequel assume that these quantities exist and are unique but at
the end of the section will sketch how this requirement can be weakened.
Define T = (T, ..., TP), where

(2.2) 9 = n'72[2(1(8,_,) - 1(8;))] " sen(67_, — ¢%).

Note that T is a function of 8 and X.
Let 7 be a prior density on ©. Let P denote the joint distribution of (6, X)
and P(-|X) the conditional (posterior) probability distribution of (6, X) given X.

Let r = n~'/2 and consider the posterior density of r~ X0 — ) given by
7(h|x) = exp{l(8 + rh) — 1(6)}w(8 + rh) /N(x),

where

(2.3) N(X) = /exp{Z(é +rh) — 1(6)}w(6 + rh) dh.

Let

o(t) = (2m) P exp{—% ¥ (tf)z}
i=1

be the standard p variate normal density. Let 7,(¢|X) denote the posterior
density of T [which exists under our assumptions with probability 1 —
0( rm+1)].

Norarion. We postulate m + 3 continuous derivatives for [(8), 7(0) and
write [, .., for d%1/36" - -- 39+, etc. Following tensor notation, we indicate
arrays by their elements. Thus [’ is a vector, /,; a matrix, etc. We also follow
the Einstein convention of summing over a subscrlpt which is repeated in a
superscript, e.g., ;! t=Y.1,.10% Occasionally we denote a vector array by

1Y
symbols like v;, so that v;t' stands for T ; v,¢'.

Here are the main results stated under regularity conditions which appear
at the end of the section.

TrHEOREM 1. If B,, holds, then
(2.4) Ep [|mr(¢X) — m,(¢,X)|dt = O(r™*1),

where

T, (8,X) =(t)(1 + P, (r,X,7) + Q,(rt,X,7))1(X € S),
P, is a polynomial in r of degree m, @,, is a polynomial in r¢ of degree m
[both without constant terms and with coefficients which are rational func-
tions of [, .. b(B)] and 7, . b(B)/Tr(B) for 1<k<n+2and P[X¢&S]=
o(rm*h) where S is given in Section 3. 1(A), as usual, denotes the indicator
of A.
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Write

Pm(r,X,’iT) = Z Pmk(X’ﬂ-)rk’
k=1

Qm(u’x, 77') = Z melmbk(x’ﬂ-)ubl e ubk
k=1
and note that P, @, and S depend on n.

Nore 1. It is necessary to keep the indicator of S in , since the
coefficients P,,,, @,,;, ..., need not be bounded outside S.

The proof of Theorem 1 actually also yields that if X e S, ie., with
probability 1 — O(r™*1), the random quantity

[Imo(¢X) = 7, (%) | dt
is O(r™*h).

NoTe 2. Since P, and @,,, ..,, depend on r they are not uniquely
defined. Since

(2.4) E{/wm(t,X) dt — 1} = 0(rm*1).

It is easy to see that we can always take P, , = @,,, = 0 and suppose all P, &
for k& odd to be zero. For example, suppose we are given a set of P and
associated @,,. Note that

Plir + meﬂ‘td’(t) dt =0(r?) ifm> 1.
Therefore, P{}} = O(r). Hence we can define the following set P2) satisfying

(2.4): P% =0, P& =PNr + PY +PWr, P2 =0 for & odd and P2 =
P + rP), ., for k even and greater than or equal to 4.

Note 3. Note that (2.4) for m = 2, 3 implies

El[’Trz(t, X) dt -1 =E|P22r2 - Q2ij6ijr2| = O(r3).

In view of Notes 1 and 2 and the above relation we deduce, putting m = 1,2 in
(2.4), that with probability 1 — O(r?) and 1 — O(r?), respectively, the poste-
rior distribution of T is N,(rQ,;,J) with error O(r?) and N,(r@Q,,, J +
r32Q,, ; — Q2;@5,)) with error O(r?), where N,(u, %) is the p variate normal
distribution with mean u and dispersion matrix 3 and J is the p X p identity
matrix. These are the multivariate Bayesian analogues of Efron’s (1985)
result. :

NotE 4. The relation (2.4) for m = 3 implies as above that
E|P32r2 - Q3ij5ijr2| =0(r?)
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and hence that 73 may be written as
rQs it + r?Qy, i (#t — 8Y) + r®Qg, , t' 'tk + O(r?),
which has the structure of g(¢) of Lemma A2 up to O(r*). This fact will be

used in the proof of Theorem 2.
Let c,(+) denote the x? density,

D’ = (T9)* =2n(1(6;_,) - 1(6)))
the deviance and
DI = Dj/(l + 2r2Q2jj)

the standardized (Bartlett corrected) deviance. If 7, and = are the corre-
sponding posterior densities of these vectors D = (DY,...,DP) and D =
(D%, ..., DP), then one has the following result.

THEOREM 2. Under By,

(2.5) Ep{f mp(ulX) — ﬁcl(uj) dtl(X e S)} =0(n™Y),
j=1

while under B,

(2.6) EP{/ mp(ulX) — Ip_[cl(uj) dul(X e S)} =0(n"?).
j=1

In fact (vide Note 1), with probability 1 — O(n~!) and error O(n~!) the
posterior distribution of D is that of p independent 2, while for D the same
claim holds with probability 1 — O(n ~2) and error O(n~2).

From this we deduce:

CoroLLARY 1. (a) Under By, if m, is the posterior distribution of A given by
(1.4),

(2.7) EP{/IWA(LHX) — p(u)|du 1(X€S)} —0(nY).
(b) Let A = A/(1 + 2r2k~'L*_| Q,;,). Then, under B,
(2.8) EP{/Iw;\(u|X) — ¢(u)|du 1(XeS)} —0(n"?).

So (2.7) says that the posterior distribution of A is y? with error O(n~1)
while (2.8) is the Bayesian analogue of the Bartlett phenomenon. The posterior
distribution of the Bartlett standardized statistic A is y2 with error O(n~2).

These results can in principle be used to set Bayesian posterior confidence
regions for @ to order n~',n"2 in a variety of Ways For instance, {0
A < x,(1 — a)} where yx, is the 1 — « percentile of X and A = 2(1(§) — 1(8))

has posterior probability 1 — a with error O(n™1), whlle {6: A < Xp(1 — )}
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has posterior probability 1 — « with error O(n~?2). Of course regions could be
based on other functions of D; and D for instance, on max; D; or max; DJ
They could also be used in 1nvest1gat1ng the old question of what choices of
model and prior lead to posterior probability regions which are also frequentist
regions with error O(n~2); see, for example, Stein (1985) and Welch and Peers
(1963). However, more detailed computation of the @; than we provide seems
necessary for this endeavor.

We use these results only in establishing the corresponding result in the

frequentist case.

THEOREM 3. Suppose that F,, holds and the density of T, p(t|6), admits
an Edgeworth expansion such that if i* = —1,

fe wt’[pT(tw) -a0f1+ ¥ R, o)}}

uniformly in compact sets of 6 and v, where the R,(-,0) are continuous in 0
and polynomials in t, independent of r. Then, the R, are of at most degree k
int.

(2.9) =0o(r™*h)

As in Notes 2 and 3, it is clear that (2.9) implies, on taking » =0,
that R,(¢,0) = Ry;t/ and R,(¢,6) = R, ;(¢' 't/ — 8Y) + R,,t', where 6 is the
Kronecker delta. In the following we shall need a condition analogous to (2.9),
namely,

(2.9)

feiw<~>2[pT(t|o) -o({1+ % rkRk(t,e)}]dt - o(rm*)
-1

uniformly in compact sets of 6 and all ». We deduce our generalization of
Efron’s result.

COROLLARY 2. If m = 1, the characteristic function of py differs from that
of N(rR,;,J) by O(r?) and zfm =2, from N(rR,;,J + r®2R,; — Ry;R,))) by
o(r3).

THEOREM 4. If the assumptions of Theorem 3 and (2.9') hold for m =1,
then, uniformly in v,

(2.10) /ei”“[pD(u|0) - _]:[lcl(uj)]du =0(n™Y),

i.e., the approximation T17_, c(u’) is good to order n™'.

Further, let
D/ =D7/(1 + 2r°Ry;).
If (2.9), (2.9)) and F,, hold for m = 3, then uniformly in v,
p

(2.11) fe “’[pu(uw) Hcl(uf)]du=0(n-2).

Jj=1
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CoroLLARY 3. Under the conditions of Theorem 4, uniformly in v,

(2.12) Je [pa(ulf) = cx(w)] du = O(n7Y),
(2.13) Je [ pa(u1) — cy(w)] du = O(n7?).

It turns out that T%=r"Y#*—n’) + O(r) [see (3.6) and (3.19)] and
r~X#%* —m") is up to O(r) a linear function of the first derivatives of the log
likelihood- evaluated at 0. In fact it is possible to stochastically expand T in
terms of the derivatives of the log likelihood evaluated at 6, with a leading
linear term. In the i.i.d. case if enough moments are finite, we can talk of a
formal Edgeworth expansion for the density or distribution function of T and
under the same assumptions the rigorous expansion of the characteristic
function of T' that we require is valid; vide the introduction in Bhattacharya
and Ghosh (1978). This is all that one needs to justify the Bartlett correction
and the related results as given in Theorem 4. If one wants these results to be
valid for the distribution function in the sense of Bickel (1974), it is enough to
assume that the Edgeworth expansion for the density of T is valid in the L,
sense. This assumption may be verified via Theorem 2(a) of Bhattacharya and
Ghosh (1978) if the derivatives of the log likelihood appearing in the stochastic
expansion for T up to 0,(n~3/?) have an absolutely continuous joint distribu-
tion. Actually, instead of absolute continuity, it is enough to assume Cramer’s
condition [vide condition C of Bhattacharya and Ghosh (1978)] and apply their
Theorem 2(b) instead of Theorem 2(a).

We note again that a form of Theorem 4 appeared in Barndorff-Nielsen
(1986) [with error O(n~3/2)]. Barndorff-Nielsen’s results focus on conditional
inference given asymptotic ancillary statistics. His work implicitly requires
conditions for the validity of saddlepoint expansions for the conditional den-
sity. These in turn imply but are not necessary for the validity of Edgeworth
expansions for the conditional density. The Edgeworth expansions may be
used in conjunction with our ‘“Bayesian’ result to derive the appropriate
analogues of Theorem 4. We believe our Bayesian route makes matters easier
and more transparent. The assumptions below may appear rather strong but,
as indicated in the remarks, they hold quite generally. Moreover, they are
quite natural if one is to develop a rigorous, rather than a formal, argument.

Suppose we estimate the correction factor and adjust the likelihood ratio
statistic in (1.6). If in Corollary 3 we replace A by kA/(k + b/n) then the
conclusion of Corollary 3 holds under suitable regularity conditions. This fact
was first noted by Barndorff-Nielsen and Hall (1988). The most brutal condi-
tion is to suppose that

(2.14) b =b(6) + re;tt + A(6),
where
E,|A(0)| = O(r?).
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Of course (2.14) is motivated by a stochastic expansion such as
(2.15) b=b(6) =b(6) +d;,(6 —06') + 0,(r?)
and the expansion
6' — o' = rD;;T* + 0,(r?)

for a suitable f) ; see Lemma 2. To show that (2.14) and the assumptions of
Corollary 3 are enough for this result we need only note that the difference
between the Fourier transforms of A and kA/(k + b/n) at v can be written
[with an appropriate constant M(8)] as

p
M(O)fexp[( -1 [ti]z) + in[ti]Q][Z[ti]z(citi)]r3dt +0(r)
i=1

uniformly on compact » subsets. The integral vanishes by symmetry.

Condition (2.14) is too brutal but can readily be replaced by the possibility of
further expansion of (2.15) and large deviation estimates for 6 — 6. Alterna-
tively, we can simply suppose that the Edgeworth expansion of kA(k + br2)~1
agrees with that of A(1 — (k + b(8)r?)~'r2¢,T?) with error of order rZ2. This
kind of replacement can be proved in a standard fashion under the usual
protocols for asymptotic expansions of maximum likelihood estimates; see
Pfanzagl (1974), for example.

We postulate nonrandom arrays A; etc. and write,

ir lj’
L (0) = A, .. (0) + 4 ..;(0).
Here are our conditions. Let |- | denote the I, norm on R?. For all
0<M<ooandsome0<6<1 €, 0.
m @ P[|0 - 0] >Mrt?] = O(r'”“)
" (i) Pl|6 — 6] < Mr™*2] = O(r™*"),
Let

A= {x: for all j, {6: 16(x) — 6] < M,r'~%} c {6: |éj(x,g) —b(x)| < M2r1‘5}},

For all 0 < M, < =, there exists 0 < M, < « such that:
(i) P[X & A]=0(r™*"h.
(iv) Plsup{|A,, . (0 +r): v <Mrl=®} > ¢, ]=0(r™*), 1<k <m+ 3.
(v) The maps 0 4 A;. ...;(6) are continuous, 1 <k<m.
(vi) The matrix || — A; J(oﬁn is positive definite for all 6.
(vii) (a) m vanishes off a compact K c 0. (b) P[sup{|7r
v] < Mr~% > r=%] = O(r™*).
F,.: Uniformly on compacts in 6:
@) P0[|0 — 6| = Mrt=%]1=0(rm*?),
(i) P16 — 6] < Mr™*2] = O(r™*Y),
(iii) PJX & A] = O(r™*1) for A defined in B,,.
(v) Pjlsup{|A, ... (0 + rv)|: |v| < Mri=%y > ¢, 1=0(r™*Y), for 1<k <
m + 3.
(v) Condition (v) of B,,.
(vi) Condition (vi) of B,,.

6 + rv)|/7r(é):

“lma2
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RemaRrks. (a) We give a qualitative discussion of the ‘‘Bayesian’ condi-
tions B,,. The frequentist conditions F, can be viewed in an analogous
fashion.

(i) Variations of the mle 6 from 6 of order n~/21-® occur with very
small probability. Thus we can safely think about Taylor expanding /() and
l(0 (9)) around 6.

(ii) This condition says that r~ (6 — 6) has approximately a bounded
density near 0. It is needed to ensure that the map 6 — 6 — T(6,x) is 1-1 and
otherwise well behaved with high probability.

(iii) This condition assumes that both 6 and 5j are close to 6 and each
other
simultaneously. It is needed for expansions of l(éj(())).

(iv) The coefficients of the Taylor expansion differ little from constants, or
more specifically, /(#) and its derivatives behave like averages of i.i.d. variables.

(v) Smoothness conditions needed to permit replacement of quantities
such as A; .. ik(éj(O)) appearing as approximations to coefficients in the Taylor
expan-
sion of 1(8,(8)) by A, ..., (8).

(vi) Nonsingularity of the information matrix is necessary even for the
statement of the Bernstein—von Mises theorem,

(vii) We need to expand log m(6) around 6. Condition (a) is useful for
technical reasons, while (b) is needed to control log = and its derivatives near
the boundary of K where log m > —.

(b) The validity of F,, and B,, other than (ii) and (iii) has been checked for
independent nonidentically distributed and Markov dependent observations in
Bickel, Gotze and van Zwet (1985). In particular these conditions hold for
exponential families in the i.i.d. case. They also hold in many examples for
such families in the independent nonidentically distributed case, e.g., in regres-
sion and GLIM models. Another example is the class of aperiodic irreducible
finite state Markov chains with stationary completely unknown transition
matrix.

(c) Condition B,,(ii) in fact follows from the other B,, conditions since they
guarantee an Edgeworth expansion for m(h|X). An Edgeworth expansion
uniform on @ compacts for the distribution of »~(§ — 6) implies F, (i) and (ii).
Condition F,, or B,(iii) holds if the log likelihood is convex.

(d) The condltlons on existence of the estimate 0 can be replaced by
requiring the existence of a preliminary, estimate ] w1th appropriate moderate
deviation properties and then redefining the 01 as the result of m + 1 itera-
tions of the Newton-Raphson method applied to the appropriate likelihood
equations. See Theorem 4 of Bickel, G6tze and van Zwet (1985).

(e) In the situation of (d), suppose that F, (iv)-(vi) hold and that, umformly
on 6 compacts, for all 0 < M < o,

P,[16 — 6] = Mr'=?] = O(r™*1),

(2.16) )
P,[16 — 6] < Mr™+2] = O(rm*Y).
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Let

A* = {x: for all j,{0:10 — 6] < M,r'=%} c {0: 9. — 6| < M2r1_5>}.

Then uniformly on 6 compacts,
P[X € A*] = O(r™*1).
If we redefine the set B of Section 3 so that B(ii) is replaced by
Iéb_0b|>M*rm+2’ |é’b_0b|<r1—3,
then the proof of Theorems 4 and 5 goes through.

3. Proofs. We need to analyze 7;(¢|X) where we assume that X belongs
to
a set S on which the map h — T(0 + rh, X) RIS Mr~2, is invertible with
nonvanishing Jacobian and the matrix || — (0)|| = C is positive definite. We
explain the transformation in more detail and give S below. Let D be the
unique lower triangular matrix with positive diagonal such that

(3.1) DDT = ¢

and

(3.2) L(n) = l(D"'n).

If |7, j(§)|| is the Hessian of [ at 6 and % = D, then in the usual notation,
(3.3) _Lij(ﬁ) =dJ

the p X p identity. This in the Bayesian domain corresponds to standardizing
the Fisher information at 6 to be J as is done in the corresponding frequentist
calculations. Further define 1, by

(3.4) L(4;) = max{L(y):y' =n',...,y/ = v}

and

(3.5) Ti(n) = r(2(L(#;_y) — L(4,)))"* sen(fi_, — 7).
It is easy to verify that

(3.6) T(8 + rh) = T(# + rDh).

Now Dr~%6 — ) has posterior density

(3.7) w(D~h/X)|det( D)| "

and hence

p
(3.8) mp(tX) = exp(—é z (ti)z)w(ﬁ-l(ﬁ + rh(2)))det || Ri(2) | /M (X),
i=1

where h(t) is defined by
(3.9) T(H +rh(t)) =t
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and

hi(t) o
J ot

p
M(X) =/ (—% ; )w(D‘l(ﬁ + rh(t)))det| 25 (2)].

For fixed X, let Ry be the image of {h: |h| < Mr~°} under the map h — T +
rh,X). From (3.8) it is clear that our task in proving Theorem 1 is to exhibit
the set S such that, for ¢ € Ry, h is uniquely defined by (3.9) and such that

(3.10) R(t) =t + rP(t,X) + O(r™*?),
(3.11) Ri(t) =8, + rP,(t,X) + O(r™*Y),

where P and P,; are polynomials in ¢, and to identify the order of the

polynomials. Here O(r™*!) means that the remainder is bounded on S by
Mrm™*! for a generic constant M independent of n.
We define B as the set where

(i) sup{|11-i1 imz(é +rv)|/m(0): |v| < Mr‘a} <r°.
(i) M*rm+2 < |6 —-60% <r'=®, 1<b<p.
(iii) sup{|A,~1 ik(é +rv)|: v < Mr_‘s} <eg,.
Note that, by B,,,

(@) Pl(r~%6 — 6),X) € Bl = O(r™*1).

(b) The x sections of B intersect each quadrant in an open convex set since
| - | is the /; norm.

(c) There exists a generic constant C > 0 such that on B,

(0+rh)| |h| < Mr~ }sC.

sup{

(d C7' <A < < C where A, A are the minimal and maximal eigenvalues
of || —I;;(9)|.
(e 16; — 8,_;| <Myr'=>,16; — 6] < M;r'=>.

We let S be the image of B under the map (&, x) - (T(8(x) + rh, x), x)
and S be just the projection of S on the X axis, i.e., the set of all x satisfying
(i) and (iii) above.

CoNVENTION. Expressions such as #,(n) are calculated at n = 9 + rh.

LEmma 1. On B, forj=1i+1,

m+1
(3.12) A7 =47+ L N, rkhb - h% 4+ O(rm+Y),
k=2

where N; ..., are polynomials in the derivatives L, ...; of L (evaluated at 1)
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with t <k and h = r~Ym — #) with no constant term. Let d = H!_; — n".
Then

+

m+1
3.13 ﬁ-’_ — 'ﬁf = Mijdk + 0 dm+2 ,
i—1 13 k
k=1

where M}/ are polynomials in L, ...; and rh which vanish at h = 0.

Proor. Write L, etc., for derivatives of L evaluated at %. For j > + 1,

0=0L.(7 L.(#A) =L,(7° -4 1 L
= j(”li)_ j(TI)— jb(m—n)+ +m Jiby o bt

(3.14)

m-+1
x [T (a2 = 4%) + O(rm*).

k=1
To see this, note first that #, = D, and hence, in view of (e), |f; — 7| <
M,r'~?. Therefore, applying (c) and (d), again the relevant derivatives of order
up to m + 2 of L at 7 are bounded and (3.14) follows. Note that by (3.3),
L,, = —8,, and that

72 — 9% = —rh® for b <i.
So we can rewrite (3.14) in the form

(3.15) 8u® = Pi(u,rh) + O(r™*"), j=i+1,

where u® = #?_, — A% and P; is a polynomial of degree (m + 1) in u and rh

with no term of combined degree less than 2 and bounded coefficients which
are polynomials in the L; .., .

Claim (3.12) follows from a standard Lagrange inversion argument. For
(8.13) write, for j > 1 + 1,

(3.16) 0= Lj(’ﬁi) - Lj(ﬁi—l) = _ij(ﬁ*)eb,
where #* is an intermediate value and e® = 4°_; — H?.

Note that
(3.17) eb=0, b<i-1, e'=d
and

Ly(*) = =8, + O(r),

so that (3.16) yields, for j > i + 1,
(3.18) |[B{_y = 47| = O(r)Id].

Expand further to get

1
A b - LY by ...
L(H;_1)e’ + + (m + 1)!ij1~~b (f;-1)e™ e

m+1

(3.19)
+0(ld|™*?) = 0.
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Rewrite (3.19) in the form
Ajbe + Ay bleb2 +Aj b,

= ald 4 e +am+1d’"+1 4 0(dm+1),

where the indices b, b,,...,b

eb1 ... gbmar

range from i + 1 to p,

m

L.
b1 by
Ajbl...bk= ];' k(ni—l)

and the a; are polynomials in the L, .., (#;_,) and the e®. Expand A}, ..,
around % to m + 1 — k terms and use (3.12) to conclude that with remainder
O(r™+1),-all the Aj, ..p, are polynomials in L, .., and rh. Finally note
that, for b > i + 1,
b= ﬁzb—l - ﬁzb = (ﬁzb—l - ﬁb) - (ﬁf’ - ﬁb)

can by (3.12) itself be written as a polynomial of rh and L, .., so that the a;
are also, up to order m + 1, polynomials in rh and L, ..,, for t <m + 1.
The lemma follows. O

LEmma 2. On B
Ti(H +rh) = h' +r7'Q(rh) + O(r™*?),
where @ is a polynomial of degree m + 1 in rh with no constant or linear term
and coefficients which are polynomials in L, .., , k <m + 2.

Proor. By definition
o m+2 2
Tl(ﬁ+rh) =r—1[_ Z k' bk("h 1)1—[(771 1 ﬁ?t)
k=1
(3.20) 12
+0(!"A7i—1 - ﬁi‘m+3)} Sgn(ﬁf—l - 77i)~
Note that L,(f,_,) =0, b > i, and #°_, = 4%, b <i — 1, so that the first term

in the sum vanishes. Expand the coefficients around #% and use (3.18) and
(3.13) to get

m+2
(3.21) T!(# +rh) = r_l(d + ¥ cd* + o(r-1|d|'"+2)),
k=2
where the ¢, are polynomials in ri&. Now substitute for d from (3.12),
m+1
(322) d= rhi + Z l 1 l khbl e hbk 4+ O(rm+1)’
k=2

and the lemma follows. O

LemMa 3. () IfO,,i = , 2P, are the quadrants of R?, then T(# + rh)
maps O, N B, into O; for all i
(i) T is contznuously differentiable on O, N B, for 1 <k < 2P, Let

l T
J'_ahj'
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Then Tf is lower triangular and
(3.23) T/ =1+ Pi(rh) + O(r™*"),

where P is a polynomial of degree m + 1 with no constant term and coeffi-
czentsanb bp R <m + 2
Gii) T is 1-1.

Proor. (i) We need to show that on B,
(3.24) sgn(fi_, —n')=sgnh, i=1,...,p.
By (3.12) on B,
fii_1 — n' = rh* (1 + rMy(h)) + r™*2My(h),

where M, is a polynomial in A with bounded coefficients and |[My(h)| is
bounded by M, for all (x, 2) € B.But(x,h) € B = aM*r™*! < |h¥| <a~'r~?,
where a is positive constant depending only on the constant C of (d).

Choose M* so that

(3.25) aM* > M,.
The relation (3.24) follows from
(8.26) fi_y(h +aM*rm*2) —ni > (aM* — My)r™*2 + O(r™*3) > 0
and
d .
T {R(1 +rM(h))} =1+ 0(r).
(i) It is easy to see that T'(} + rh) is continuously differentiable on B with
derivatives

-i "l' - nl 1 A aﬁlk
Tj =|T i ( k(m 1) —Lk(m)m .

Note that,
INi_1 0, a,b>i,
afr’ - 5ab, a < 1 — 1,
and Ly(f;,_,) =0,k 2i.S0i<j= T/ =0 while
(3.27) TP = —r 4T Ly(4).
Now write
Li(ﬁi) = ib(ﬁi 1)( 77— ﬁ?—1)
mAL Ly on(ict) oo
+ X ——k”T—— [Il(n{ —A7_1)
(3.28) e
+0(hi_, — Hm*2)
m+1
= Y P(rh)d* + O(d™*?)
k=1

by (3.13), where d =#{_, — n' and P, are polynomials in rh such that
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P,(0) = 1. Now apply (3.21) and (3.28) to (3.27) and then substitute (3.22) for
d and (ii) follows.
(iii) Follows from Lemma A1 of the Appendix. O

ProOF OF THEOREM 1. By Lemma 3 formula (3.8) is valid for (x,¢) € S.
Moreover, from Lemma 2,

(3.29) Ri(t) = ¢ + roPi(rt) + O(r™+Y),

where P’ is a polynomial of degree m + 1 in r¢ with no constant or linear
term and coefficients which are polynomials in L, ..,, k <m + 2. From
(3.23) and (3.29)

p

Ri(e) | = det | Ti (4 + rh(e)) | = [T +rh(e) ™

det |

(3.30) - li(l + Pi(rh(t))) " + O(rm+1)

=1+ V(rt) + O(rm*1),

where V is a polynomial of degree m + 1 in r¢t with no constant term and
coeflicients which are polynomials in L, ..,, k <m + 2.
Moreover, from (3.29) and B,,(i),

7(6 + rD~h(t)) = w(8)|1 + Zb((;)) Ub(rt) + -+
(3.31) + T, ~(~0),,,+2 (B)Ubl( rt) -+ Ubmer(rt)

+O0(rm*1z(9)),

where the U® are polynomials of degree < m + 1 with no constant term.
Substituting back (3.30) and (3.31) in (3.8) provides an approximation to the
numerator in (3.8) and integrating this we get an approximation to the
denominator in (3.8). Together these approximations ensure that

Ep[|mr(4X) = 6()(1 + Q(rt, 2, m)1[(1,X) € §]|dt = O(r™*)

for a suitable @}. We get @,, by dropping all terms of degree m + 1 in Q-
The coefficients are evidently polynomials in Lb (1) and m, . b /77(0)
1 <k <m + 1. But the former are polynomials in the elements of D~ which
are rational functions of L, (0) Now,

(3.32) EPfqb(t)[Qm(rt,x,w) - Qx(rt,x,m)]1[(¢,X) € §] dt

— O ( r m+ 1)
since for x € S all coefficients in both functions are bounded. Further

(3.33) EpfwT(t|X)1((t,X) ¢ 8)dt =P[(T,X) € §] = 0(r™*)
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by B,,. Finally,
EP[¢>(t)Qm(rt, x,T)I(X €S, |t <M*r™*Lor|t = r ) dt = O(rm*?)
and the theorem follows. O

ProoOF OF THEOREM 2 AND COROLLARY 1. Evidently since D and D are
simple transforms of T, we need merely check that the approximation to the
density of D (D, respectively) obtained by applying the usual transformation
formula to (-, X) agrees with [17_, c¢,(u*) with error O(r™*!) for m = 1,3,
respectively. This follows readily from Lemmas A2 and A3 in the Appendix if
we identify m,, with g(¢) for m = 2,3 and note that R;; = O(n~"). Relation
(2.6) follows from Lemmas A2 and A3. Corollary 1(a) follows immediately from
(2.5), while 1(b) follows from (2.6) and Lemma A4. O

Proor oF THEOREM 3. Evidently F,, = B, for = satisfying (vii). It is
shown in Ghosh, Sinha and Joshi (1982) and Bickel, G6tze and van Zwet
(1985) that the set of all such 7 is dense in the set of all priors under weak
convergence. Now (2.9) implies that for any 7 concentrating on a compact, the
characteristic function of T satisfies the approximation

fei"J“pT(t) dt = ffei"J”pT(tW)w(()) do dt

k=1

(3.34)
~exp| =1 5 (') [1+ £ fRiG0)m(0) a0
j=1 k=1

+ O(rm*1),

where exp{— 3L 2_,(v/)?}P,(v,6) is the Fourier transform of ¢(t)R,(t,6), so
that the P,’s are also polynomials in ». On the other hand, Theorem 1 yields

p
/ exp{ ) (w)z}pm) dt

Jj=1

-E,
(3.35)

+0(rm+h)

fexp{ i (Vj)z}'n'm(t,)l()l(x e S)dt
j=1

P 2
~em| -1 ¥ ()

X 1 + Z rktbl tee tb‘Emelbk(x,’lT)l(XE S)) + O(rm+1).

k=1
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Therefore, multiplying by exp{3L ?_,(v/)?} we get

1+ f rkak(V,())ﬂ'(B) de
(3.36) ot

m
=1+ Z rkcb1~~'bk(7T)Vb1 ka + O(rm+1)’
k=1

where O is now uniform for |v| < M by the hypothesis of Theorem 3.
Define, as usual,

Dy p, F(E1, . 8P) = (A5 -+ A%) (... ,tP),
where the b, =0,...,p, L?_, b, = and
A f=7F(t .t Ltk g tB T tP) — f(t,. .., tP)

and A} represents an operator product. Apply A b5, tO both sides of (3.36)
considered as functions of v. If I > m we obtain

(3.37) v rje‘lfAbl 5P (e, 0)m(6) do = O(rm+1e7!).
j=1
Let & | 0 more slowly than r!/!. Then (3.37) yields
p
&
fablul o (v,0)7(6)d6 =0 forall v, forall k <m.

But by assumption the integrand is continuous in 6. Since 7 ranges over a
dense set we conclude that the integrand vanishes identically in 6. So P, is a
polynomial of degree less than or equal to £ and hence so is R,. O

Theorem 4 and Corollary 3 follow from Theorem 3 in the same fashion as
Theorem 2 and Corollary 1 follow from Theorem 1.

Acknowledgments. We thank Ole Barndorff-Nielsen, Ib Skovgaard and
Peter McCullagh for some crucial references.

APPENDIX

LemMA Al. Suppose f: C° — R” where C° is an open convex set in RP.
Suppose f is differentiable with Hessian f and
(A1) If—J] <1,
where J is the identity and |M| is the operator norm on matrices. Then f is

nonsingular and fis 1-1.

ProoF. By (Al), f is nonsingular:
fr=d=(f=d)+(f=d) .



UNDERSTANDING THE BARTLETT CORRECTION 1089
If f(a) = f(b), then
0= folf(a +A(b—a))dA(b —a)
or
(b—a) = —f()l(f(a +A(b—a)) —J)dA(b —a).

Then, by (A1),

| b —a| < m).:ax|f(a+x\(b—a)) —-Jb—al <|b-a
unless b = a.

LEmMA A2. Let
g(t) = &(¢)(1 + Rt + R ;(¢'¢ — 8%) + R, t'tith)
be the density of a finite measure u on R? where 8% is Kronecker delta and let
2
go(t) = d()(1+ R;((¢)° - 1))
similarly correspond to w,. Let h(t) = (¢')%. Then

ph™t = poh”t.

Proor. The densities of uh~! and ”Oh—l at (!, .., [u?]) differ by the
term
2pE(Ri8i|ui‘ +R;’;£tej‘ui‘l/2|uj‘ + 8,6, uk‘u |1/2‘ i1/2iuki1/2) 0,

where R% = R, (1 — §;;) and ¢; are independent +1 with probability ;.0

LEMMA A3. Suppose L |R ;| = o(1). Then

il
Jeo(t) - j}f[l(1 +2R,) V26, (H(1 + 2R,;) %) di = (z R”),
where ¢, is the standard normal denslity.
Proor. Taylor expand. O
LEmMA A4. Suppose L%|c;; — 1| = o) and Z} =, Y? where Y;s are
i.i.d. N(,1). Let U= zkyz and V=(Z)1+ XZ(c; - 1)/k) - Then U

and V have the same charactertstzc function up to O(L (c - 1)%.

Proor. Compute the characteristic function of V, take logarithms and
expand. O
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