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EDGEWORTH SERIES FOR LATTICE DISTRIBUTIONS!

By JouN E. KoLaAssa AND PETER McCULLAGH
The University of Chicago

This paper investigates the use of Edgeworth expansions for approxi-
mating the distribution function of the normalized sum of n independent
and identically distributed lattice-valued random variables. We prove that
the continuity-corrected Edgeworth series, using Sheppard-adjusted cumu-
lants, is accurate to the same order in n as the usual Edgeworth
approximationfor continuous random variables. Finally, as a partial justifi-
cation of the Sheppard adjustments, it is shown that if a continuous
random variable Y is rounded into a discrete part D and a truncation error
U, such that Y =D + U, then under suitable limiting conditions the
truncation error is approximately uniformly distributed and independent of
Y, but not independent of D.

1. Introduction. Suppose that X,,..., X, are independent and identi-
cally distributed random variables having finite cumulants «;,...,«, up to
order r > 2. Define the standardized sum

X, + - +X, —nk,
n = ‘/’7 )
so that S, has mean zero, variance k, and higher-order cumulants «? =
k,/n"/2"1 for 2 < v < r.Let k" = (0,«3,..., k") represent these cumulants of

S,,. We aim in this paper to produce a simple approximation to the cumulative
distribution function

S

F.(t) = pr(S, <t)
in the case where the components X; are discrete random variables taking
values on a lattice with span d. The approximation is required to have
properties similar to those of the usual Edgeworth series, namely that, for
large n, the error should be of order o(n!~"/2) uniformly in ¢.

Evidently F,(t) is discontinuous with jumps of order O(rn~'/2) at the
support points of S,. Consequently, we should not expect any continuous
function to approximate F,(¢) with uniform accuracy in any nontrivial interval
of t-values. Esseen’s (1945) approximation is the sum of a continuous part,
which is an ordinary (continuous) Edgeworth series, and a discontinuous part
that is periodic with period equal to d/vVn . To be specific, Esseen has shown
that, for large n, '

- Fit) = E, () + D, ,(t55) +o(n' /%)
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uniformly in ¢. In Esseen’s approximation En ,(t k) is the usual integrated
Edgeworth series with cumulants «,, k5/n 12 .., k,/n"/2~1. The discontinu-
ous part D, ,(¢; k), which is periodic, is given 1n Sectlon 2.

The purpose of the present paper is to show that the discontinuous part in
Esseen’s approximation can be incorporated into the continuous part by means
of a suitable adjustment of the cumulants. To be precise, we show that if ¢ is a
lattice point for S,, then

) E, (t*:7) = E, (t";x) + D, (t";x) + o(n1~"72),
where t*=t + d/2Vn is the continuity-corrected point and
K for s > 1 and odd,
Ys T {Ks —¢,d°/n for s even,

are the Sheppard-corrected cumulants. The adjustment ¢, is the sth cumulant
of a uniform random variable U on [— %,1]. In particular, &, = 5 and
£, = — 155- The continuity correction is in fact the Sheppard correction of
order 1.

It is most important to emphasize at the outset that the adjusted cumulants
are not simply related to the cumulants of the sum S, + dU/Vn if S, and U
are regarded as independent. This sum has an absolutely continuous distribu-
tion, but, because of the discontinuities in the density, it cannot be approxi-
mated with the required asymptotic accuracy by means of a continuous
Edgeworth series. It may at first seem rather counter-intuitive, but in fact the
Sheppard-adjusted cumulants

n _ ’)/S _ KS Esds
Ys = ne/2-1 " ps/z-1 - /2

are the cumulants of S, minus the cumulants of dU/vVn . Let y" represent
the collection of these cumulants. Thus, the naive adjustments, apart from the
continuity correction, are of the right magnitude, but in precisely the wrong
direction. The correct adjustment, at least to order O(n 1), would be obtained
if we were to take cov(S,, U) = —var(U)d/n'/?, but the justification for this
assumption is not immediately apparent. An argument is presented in Section
3, justifying this choice.

2. Edgeworth series. Let the random variables X; and S, be defined as
in Section 1. We begin by formally defining the Edgeworth series to an
arbitrary order. Let P[z] be the set of formal power series L% Too ;27 , in which
the coefficients a; are polynomials in 1 /Vn . Consider this to be the set of

J

conceivable moment generating functions, convergent or not; the «; are the
possible cumulants. Let ¢, ,: P[z] » R be the function that maps Li o 27

to the series
ag®(t, ky) — d(t,Kk5) X a;h;_(t,k5),
j=1

evaluated at ¢ and discarding all terms of order o(n!~"/2). Here ®(t;«,) and
¢(t; k,) are the normal integral and density respectively, both using mean zero
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and variance k,. The Hermite polynomials & ,(¢; k,) are given by
h,(t;k5) = k37/?h,(t/ky/%; 1),

where h,(¢;1) is the standard Hermite polynominal (—1)"¢"(¢;1)/é(2;1).
Differentiation is with respect to ¢. Effectively, we apply the Fourier inversion
operation termwise, and discard terms that are small enough. This function
represents evaluation of the Edgeworth series:

‘ v
v=3":

r 1
El,r(t7kn) = En,r(t’K) = ll;r,t(exp[z _anv])'

Bhattacharya and Rao [(1976), page 215] show that under Cramér’s condition,
(3) F(t) =E, (t;k) +o(n'"7/?),

uniformly in ¢. Unfortunately, Cramér’s condition does not apply in the
present case, since the random variables considered here are confined to a
lattice.

Assume for the sake of algebraic simplification that X, are integer-valued
with lattice span d = 1 and that «, = 0. It follows then that S, is supported
on the points 0, +n~'/2, +2n~1/2, ... . Esseen’s series for D, ,(t; k) may then
be written in the form

r—2
(4) Dn,r(t;K) = Z gun_y/2Qu(n1/2t)Er(zu,)r(t;K),
v=1

where E{)(t; k) is the vth derivative of the Edgeworth series, and
g={+1 ifv=4k+10r4k+2,
v —1 ifv=4k — 1or4k,
*  cos(2mjx)
2o ()

*  sin(2mjx)

Q2u (x) = Z 27 2041 °
BN =TI CN
Evidently, @,,(x) is symmetric about x = %, whereas Q,, , ,(x) is antisymmet-
ric and Q,,, ((3) = 0. Also, g,, = (—1)"*1. At continuity-corrected points only
the even-numbered terms contribute, giving
[r/2-1]
(5) D, (t') = L (=1)""'n7"Qy(3)EZN(t*5x).
v=1 .

Qs (x) =

Note that this series decreases in whole powers of n. Bhattacharya and Rao
[(1976), page 238] give a proof of Esseen’s result that if X is confined to the
lattice with unit spacing almost surely, then

(6) F(t) =E, ,(t;«) + D, .(t;x) + o(n'~7/%)
uniformly for ¢ € R, where D, , is defined in (4).
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We now prove the claim made in (2) for general r. That is, we define the
Edgeworth series using Sheppard-corrected cumulants:

r 1
El,r(t7 ,yn) = (l/r,t(exp[ Z _'Y:zv])a

v=3

the Edgeworth series with the «7,...,«} replaced by vy7,...,7”, and the
resulting terms of order o(n!~"/2) deleted. We claim that, when evaluated at
continuity-corrected points, expression (6) differs from E, (x;y") by an
amount no larger than o(n!~7/2).

TaeoreM. E, (t%,y") = E, (t*;«™) + D, ,(t*;«) + o(n'~"/?) uniformly
over continuity-corrected lattice points t™.

Proor. Note that ¢, , has the following linearity property: y, (ap(z) +
Bq(2) = ay, (p(2)) + Bt/f, Lq(2)). Also, ¢, (2°p(2)) = (- 1)°D*y ¥, (p(2).
Then,

El,r(t+; Kn) + Dn,r(t+; K)

Y g.n*2Q(t*)(—1)’DE, ,_(t*;«k")
=0

It

00 r 1
> gsn-sﬂQsm(—1>SDS¢,_s,t+(exp[ ¥ ])

s=0 v=3
Now, if ¢* is a continuity-corrected point, Q,(t*) = g,B,(3)/s!, and hence

r 1
P —,Kfz"]
—, v!

v=3

By (5% 4 D, (t556) = & 0 2B, ( exp[

s=0

t(f n—s/z_B( )zs exp[zr Vl nzu]

3

e

v

wrt+(eXP[E T ’]exp[

=2
since

1 ®» —B
Z n‘s/z—B( )z° = exp Ln-tr251],
s=0 =2 I

Here B, and B/ (x) are Bernoulli numbers and polynomials, respectively.
Sheppard’s correction for the cumulant of order I is —B,/(In’). Let y" be the
cumulants « adjusted by Sheppard’s correction. Hence,

r ]_ :
E, (t55x) + D, (%K) = w(xp[ Y S D ~E, (£ 9",
v= 3

This completes the proof. O
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3. On the effect of rounding. Let Y be a continuous random variable
with density function f(y) on the real line. Suppose that D = e(Y/e) is Y
rounded to the nearest integer multiple of ¢. Here (y) denotes the integer
nearest to y. The standardized difference or standardized rounding error
U = (Y — D) /¢ is a random variable on the interval (— 3, 3]. Evidently, U is a
deterministic function of Y but not of D. Despite this deterministic relation-
ship, we show here that under certain conditions on the derivatives of f(-),
Y and U are statistically independent to a high order of approximation for
small . By contrast, D and U are not independent beyond a crude first order
approximation.

LEMMA. Suppose that the first 2v derivatives of f(y) are integrable over
(=, ), Then the joint characteristic function y(a, B) of (Y,U) satisfies

(7) ¥(a,B) = 6(a)p(B) + O(e*)
for small &. Moreover, the characteristic function ¢(B) of U satisfies
sinh(%ipB
- ) oy
2P

showing that Y and U are asymptotically independent and U is uniformly
distributed to the order indicated.

As a corollary, cov(U, D) = —¢/12 + O(¢?).

The Edgeworth series satisfies the conditions of the lemma for all » with
¢ = d/Vn . Consequently, the error in (7) is smaller than any power of n, and
may be called exponentially small.

Proor. Expression (7), apart from the order of the error, has been derived
by Wold (1934). The magnitude of the error can be determined using the
method of Cramér [(1945), page 360]. O
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