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WEAKLY ADAPTIVE ESTIMATORS IN EXPLOSIVE
AUTOREGRESSION

By Hira L. Kour! anp Geor CH. PFLUG?

Michigan State University and Justus-Liebig University

Consider the model X; = pX;_; +¢;, |p| > 1, where X,,&,,¢,,... are
independent random variables with &y, 5,... having common density ¢.
This paper gives sufficient conditions under which the sequence of experi-
ments induced by {X,, X;,..., X,} has a weak limit in the sense of
Le Cam. In general, the limiting experiment is translation invariant and
neither LAN nor LAMN. The paper further shows that the sequence of
Pitman-type estimators of p at a given ¢ converges weakly to T, where T
is minimax for the limiting experiment under a weighted squared error loss
function. Finally, for an unknown ¢, a sequence of Pitman-type estimators
that converges weakly to T is constructed. These estimators are called
weakly adaptive. The class of error densities for which these results hold
include some that may not have finite Fisher information.

1. Introduction and summary. The construction of estimators that are
asymptotically efficient over a range of nuisance parameters, otherwise known
as adaptive, has been the focus of many researchers. See, e.g., Stein (1956),
Levit (1975), Koshevnik and Levit (1976), Beran (1976, 1978), Bickel (1982),
Fabian and Hannan (1982), Schick (1986) and Kreiss (1987), among others. In
all of these and related papers the observations are either independent or
stationary and, more importantly, the underlying experiments are locally
asymptotically normal (LAN) in the sense of Le Cam (1960, 1986). Relatively
little is known about the construction of adaptive estimators in experiments
that may be neither LAN nor locally asymptotically mixed normal (LAMN).

This paper considers the problem of efficient estimation for an explosive
autoregression model. To describe this model in its simplest form, let ¥ be a
density with support on the entire real line R and &, €5, ... be independent
and identically distributed (i.i.d.) ¢ random variables (r.v.’s). Let X, be an
observable r.v. independent of ¢, i > 1. The observable process {X,} is such
that for a |p| > 1,

(1.1) X, =pX, ,+e, ix>1l.
The parameter of interest is p and the nuisance parameter is .

The process {X,} is nonstationary. If E log*|e,| < «, then |X;| —» » a.s. as
i — , thereby rendering { X} explosive. Even when ¢ is a normal density, the
sequence of experiments induced by {X,, X;,..., X,;} is not LAN as noted in
Basawa and Koul (1979). See also Lemma 2.3 below for the nature of the
experiment in this case.
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For a general ¢, Theorem 2.1 gives a set of sufficient conditions on ¢ under
which the sequence of these experiments has a weak limit in the sense of
Le Cam. As noted in Section 2, the limiting experiment is translation invariant
and neither LAN nor LAMN in general. The class of densities for which
Theorem 2.1 holds includes some that may have neither finite first moment
nor finite Fisher information.

Under some additional moment conditions, Lemma 2.2 shows that a se-
quence of Pitman-type estimators at a given error density ¢, has weak limit
T. Using Strasser (1985, Lemma 39.28), T' is shown to be minimax for an
appropriately normalized squared error loss function in Theorem 2.2. In the
process of the proof of Lemma 2.2, we essentially show that the sequence of
experiments induced by X,, X;,..., X,, is 1 times Lebesgue uniformly inte-
grable. The structure of the limiting experiment is also discussed in Section 2.

Finally, in Section 3, a sequence of Pitman-type estimators corresponding to
kernel-type density estimators is constructed and shown to converge weakly to
T for a large class of error densities. This property of a given sequence of
estimators is termed weak adaptivity. The class of densities for which we have
a weakly adaptive sequence of estimators included some that may have infinite
Fisher information.

In the sequel, ¢ will stand for a r.v. having the same distribution as ;. The
symbol = denotes the weak convergence, —;; denotes the weak conver-
gence of the finite dimensional distributions and =, denotes the equivalence
in distribution.

2. Sufficient conditions and limiting experiment. Let P, be the
distribution of (X, X3, ..., X,) given by (1.1) when ¢ is the density of ¢ and
p is the true parameter. In order to find the corresponding asymptotic experi-
ment in the sense of Le Cam we first study the limit of the log-likelihood
process

(2.1) A, (tly) = log(dP}., , ,/dP",),

where the shrinking factor §, must be chosen in such a way that the process
A ,(¢|¥) has a nondegenerate limit.

The following assumption is used in determining the magnitude of §, and
the limit of A,(:|¢) under P, where ¢, is a density on R. In the sequel, P,
denotes the probability measure of ¢ under .

AssumpTiON A. () For any r > 1, ;. Py(le| > r) < .

(ii) log # is locally Lipschitz in the following sense: There are a nonnegative
measurable function ~ and positive constants «, # such that

[log ¥r(y) —log ()| < h(x)ly —x|* for|x —y| <
with
(2.2) Y, Py(h(e) >r/) <o, foranyr> 1.
i=1

Assumption A(i) is equivalent to E log*|e| < .
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To determine the magnitude of §, in the present case it is helpful to
understand the behavior of {X,}. From (1.1) we readily have that

(2.3) p X, =X+ Y ple;, ix1.
j=1

This motivates the following somewhat general lemma which will be used
repeatedly in the proof of Theorem 2.1 with different 7’s.

LEmMA 2.1.  Let n,7my,m9,..., bei.i.d. rv.’s and m, be a r.v. independent
of M,Mq, Mg, ... . Assume that for any r > 1,
(2.4) L P(n| >r?) <o
i=1

Let |y| > 1 and define
(2.5) V,=Xvy'n, Y=YXyin

i=0 i=0
Then
(2.6) Yisa.s. finite.
Moreover, as m — o,
(2.7 |s™(Y,, —Y)| =0, as., foralll<|s| <|y|
and
(2.8) ly™ (Y, — Y)| = 0,(1).

Proor. Fix an s with 1 < |s| < |y|. Choose an r > 1 such that |s|r < |y|,
r < |y|. Let

A;={ml=<r}, i=1, B,=NA,

By (2.4) and the Borel-Cantelli lemma, P(U, B,) = 1. But on B,, for m > n,

sr|™

Y

o ) r
X vm

i=m+1
This implies (2.7). Choose s = 1 in (2.9) to conclude (2.6). To prove (2.8), note
that

(2.9) [s™(Y,, —Y)|=]|s™] <

-0, asm —> o,

lyl —r

Y'Y, —Y)== X ¥ = - Xy Mpsi=,— Ly m,= Y.
i=1

i=m+1 i=1

This completes the proof of the lemma. O
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CoroLLARY 2.1. Let (1.1) hold for a |p| > 1. Assume that the error r.v.’s
{¢,} satisfy AQG). Then, as m — o,

(2.10) |s™(p™"X,, —Z)| >0, a.s., foreveryl < |s| < |p|,
(2.11) p™(p "X, —2) =, Z,
where
(2.12) Z=Xy+ Y. p ' isa.s. finite.
i=1

Proor. Follows from (2.3) and Lemma 2.1 upon taking n; = ¢;, n, = X,
and y = p in there. O

COROLLARY 2.2. Let (1.1) hold. Assume that the error r.v.’s satisfy AQ).
Let |u,| be a bounded sequence and

. i . .
X .= (p+u,p ™) X,+ Y (p+ u,p")" Jej.
j=1
Then, as n — o,

|sI* sup |p7(X;,—X,)| >0, as., forl<|s|<|pl
l<i<n

and hence
|S|i|p_iXi,n - Z| -0, a.s.asn—>x,i >0, forl<]|s| <]|p|.
Proor. Since (1 + a/m)™ — 1| < 2|a| for all |a|] < 1 and for all m > 1, it
readily follows that for n sufficiently large such that [nu,p "7} < 1,

max |3|n|P_i(Xi,n - X;)|
l<i<n
i -
< |s|" max (Z ol le;l[(1 +p7" " 1u,)" ™ — 1
l<i<n j=1
+ X |(1+p ) - 1|)

<2|—

2

lo| ~lg;] +|X0|) — 0, a.s,asn >
Jj

s n
p nlu,l

1

because by Lemma 2.1 applied to n = |¢], ¥ = |p|, the r.v. £%_,|p| 7]g;| <=
a.s. The last assertion of the corollary follows from this, the triangle inequality
and (2.10). O
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Now, (2.10) suggests that 6, in (2.1) should be of the order p ~". Thus our
standardized likelihood process for the model (1.1) is

(2.13) A (ty) = Z:log{lp(si —p "tX;_1) /¥ (&)}

Theorem 2.1 below gives the weak limit of A,(#|¢#) when the underlying error
density in (1.1) is ¢, ¥, # . Since the distribution of X, does not appear in
A, from now on we shall take X, = 0 without loss of generality.

THEOREM 2.1. Let (1.1) hold. Let s, be the density of ¢;,i > 1, and  be
another density on R. Assume that AG) and A(ii) hold. Then, under P,

A (1) —ea AC1Y),

where

(2.14) A(tly) = ¥ log{v(et — tp™'Z) /u(e})},
i=1

with {e!} i.i.d. §, r.v.’s, independent of Z.

Proor. We first show that the process (2.14) is well defined. Let 6 be as in
A(ii). There is an N such that |t - p~NZ| < 6, on the set {|{Z| < K}. Therefore,
by A(ii),

©

)»

i=N

log <lz|" z: h(eDlpl ™ on {Z] < K}.

¥(e; —tp™Z)
¥(e})
This bound together with Lemma 2.1 applied to n; = h(g}), 7, =0, v = |p|*

and the arbitrariness of K ensure that A(-|¢) < », as. To prove the main
assertion, let m < n and rewrite ~

n !/l(Si _ tpi—2n+m-—1Xn_m)
A (tY) = 1
n( |l//) i=n¥m+1 og (/,(ei)
(215) et e K g Ui —tp"X; )
+ Y1 N o
lgl 8 (p(si) i=n¥m+1 g(//(e t i—2n+m-— IX )

= Unm + anl + an2 (SaY)i

Thus it suffices to prove the following three statements:

m el —tp 'Z
(2.16) Ui =14, 2 log(p(l—f)—)— as n — «, for all m,
i=1 ¥(ef) .
(2‘17) |an1|=op(1)$ asn—>xm-—ox,

(2.18) |R,,s|=0,(1), asn — o, forall m.
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To prove (2.16), note that
(8n—j+1 - tpm_n_an—m) (8} - tpm_n_an—m)
¥(en_ji1) ¥(e)) ’

where the r.v.’s {¢!} are independent of the r.v.’s {¢,} and have the same
distribution as that of {¢,}. It follows from the continuity of ¢ and (2.10) that
as n — o,

m m (p
Um= 2 logw =, ) log
j=1 j=1

(e = to" " X)W~ t07Z)
¥(ej) ¥(5)

-0,

a.s.,as n — o, for each m.

To prove (2.17), let Y, = p~‘X,, i > 1. An application of Lemma 2.1 with
Mo =0,y = |p|, 7 = |¢| and A() readily yields that

13

© p
VP = max|Y,|” < [Z |p|j|8j|] <, a.s.,forany p > 0.
>1 ;
= j=1
Also |tp™"X,_,| < |tp "**"1V, i = 1. Therefore, there is an n, sufficiently
large, such that |tp™"X, ;| <0 for all 1 <i <n —m, on the set [V < K],
K > 0. Hence, by A(i),

n—m
'an1| S|t|a Z |P|_a(n7i+1)h(5i)|Yi—1 |a

i=1
(2.19) I
<[]’V L |p| """ Dh(e;) = 0,(1) on[V < K]
i=1
because

Yo lpl T DR(e,) =, Y. |p| *h(e!)) > 0, as.,asn > o, m >
i=1 i=m+1
by Lemma 2.1 applied to y = |p|%, 7 = h(e!), n, = 0. Because K is arbitrary,
this completes the proof of (2.17).

To prove (2.18), rewrite

an2 = Z lOg{¢(8n—j+1 - tp-an—j)/(p(gn—j+1 - tp_an—m)]'
Jj=1

By (2.10), for every j and each m, |tp_j(Yn_j -Y,_,) =0, as., as n > o,
This together with the continuity of log ¢ and the fact ¢,,_; ., — ¢p™Y,_,, and
€,_;+1 — tp’Y,_; are bounded in probability for each j and m yield (2.18),
thereby completing the proof of the theorem. O

ReMARK 2.1. By standard embedding technique, we may find a version of
the process from the LHS (2.16) which converges a.s. to a version of the limit
process, uniformly for ¢’s lying in a bounded set. From (2.19) and the proof of
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(2.18), it readily follows then that the convergence of the finite-dimensional
distributions of A,(|) is uniform for these ¢’s.

REMARK 2 2. In order to conclude that the sequence of experiments &, =
R,, B,,{P}, - 4,)) has a weak limit in the sense of Le Cam, we need to prove
that under pr

p+p "u, o

(2.20) dP} - o /AP} -y 4o 1.4 €XD(A(2 — ulghy)) forevery u,t inR.
But, under P

ptp

X n=(p+p_nu)Xi—1,n+£i’ Xi,n= Z (p+p_nu)l_J8ja 1> 1.

-y, the model (1.1) is equivalent to

Moreover, for every u and ¢ in R, under B, ,-», ,,

dPl -n; 4, _ ﬁ bo(X; , — (p +p ") X, 1 ,)
den+p—"u,ll/0 i=1 lpO(Xi,n - (p + p_nu)Xi—l,n)
= ﬁ { Yo(e; —p~"(t —u) ‘Xi—1,n)}
i=1 Pole;) ’
Now mimic the proof of Theorem 2.1 after replacing X; by X, ,, ¢ by t —u

and ¢ by ¢, in there to conclude (2.20). Use Corollary 2.2 in place of Corollary
2.1 whenever needed.

We now turn to an efficient estimation of p at a given ¢,. For this we need
the following additional assumption.

AssumprioN B. (i) The density ¢, satisfies A(ii) with ~ symmetric, A(x)
nondecreasing in |x|.

(i) Elog™ h(le| + K) < oo, for all 0 < K < .

(iii) With b(y) == sup,, ., ¥o(x), [5yb(y) dy < .

Let %, be a sequence of integers, 1 <k, <n — 2, k, - ®as n - «, Define

(2.21) 4, = [u [ ol X —uX, 1)alu/[ 1‘[ Vo X; = uX;_y) du,

n

(2.22) T, _fu [ dole; —up X, l)du/f 1‘[ ole: —up "X, ) du.

By a change of variable,

(2.23) p"(pp—p) =T,

With Y, = p~'X,, define

Tn':=fu I1 ([10(8 —up "tiT 1Y du/f l_[ «/fo g —up "TiTly, )d .

i=k,+1 i=

n
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Direct calculations show that

(2.24)
pe p _ B
T, = Yn - Y—E(sn|skn+1 —p thatle e, 1— P lsn) a.s.
k'l k'l
£1p p PR
— 2 = B (etfe = o7k 8 = p el ehy, — TRV
kn kn
=S,, say.

Note that under B(ii) all of the above entities are well defined. Moreover,
because ¢ is a continuous r.v., P(Y, = 0) = 0. Now, by (2.10) and the martin-
gale convergence theorem, as long as n — &, — o,

(2.25) S,—»T as,

where

(2.26) T =¢\pZ~ ' — pZ 'E(elley — p lei 65 — p %f,...).
Thus under B(ii), from (2.24) and (2.25),

(2.27) T! = T.

Next we have,

LEMMA 2.2. Assume (1.1) holds with the error density i, satisfying the
Assumption B. Then

(2.28) p"(pp—p)=T.
ProoF. Because of (2.23) and (2.27), it suffices to show that
(2.29) T, = T/ =0,(1)  (By,)-
For a ¢ > 0, define the event
(2.30)

A, = (clp_lYn_1 | - 1) A (clp_lYknl - 1) > e, |,

Y, |<ec,

i
Y p7

J=k,+1

max |P|k"+1
k,<i<n

<c,o(e,) > c‘l}.

Because of Corollary 2.1, V7 > 0,3 N, and 0 < ¢ < » such that
(2.31) P(A,.)>=1-n foralln>N,.

Next, to simplify notation, define, for u € R, i > 1,
Tai(w) = Yo, — tp "X, _1) /¥o(e:)s

2.32 ,
( : Thi(u) = ¢0(8i - uP—nH_lYkn)/l//o(ei)-
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Also let
ln = l_.[ Tnis Tnj = [ujln(u)du’ j=0’1'
=k, +1
Lo= T1 me Tip= [uili(w)du, =01
=k,+1
Note that
T, = fuln(u) du/fln(u) du =T, /T,
and

T = [uz;(u) du/[z;,(u) du =T/, /T/,.
Thus, to prove (2.29), it suffices to show that
(2.33)

nj

=0,(1), Jj=0,1.

Now write, for a 0 < d < o,

Ty = [, plwydut [ wil,(u)du.

’

With a similar decomposition for T, ;, one readily has

= dj‘/lulsdil"(u) - l;(u)|du i /|u|>d|u|j[ln(u) i l;l(u)] .

j=0,1.

Hence, in view of (2.31), to prove (2.33), it suffices to prove the following two
results:
For every 0 < d < o,

(2.34) I(An’c)f |.(w) = ly(u)|du = 0,(1), asn— .
|lu|<d
For a sufficiently large 0 < d < o,
(2.35) EI(A,.) [ |ul[l(u) + ()] du
|u|>d

can be made sufficiently small, for all n > N, .
Buton 4, ,

le, —up™ "X, 1| =|lullp™"X,_1| — |z,

2 [ul|lp™ Y,y | = leal 2 lul/e,  Yulzec.
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Therefore, if d > ¢, then
I(A, ) I(lul > d)po(e, —up™"X, 1) /¥o(e,)
< I(A, ) I(ul > d)eb(lul /c).
With %, denoting the o-algebra generated by ¢4, ..., ¢;, note that
(2.36)  E[vo(e; —up™"X,_ 1) /¥o(e:)|Fiq| =1 foralli> 1.

Hence

EI(A,.) f|u.>d'“'l"(”) du

n—1
= EI(An c)/ |u|7nn(u) l_.[ Tni(u) du
T lu>d i=k,+1

n—-1

Sc'/|u|>d‘u|b(|u|/c)E{ [T wo(e; —up™X; 1) /¥o(s;) | du

i=k,+1
=c[  |ulb(jul/c) du,
|lu|>d

which can be made arbitrarily small for d arbitrarily large by B(ii). This
proves (2.35) for the first term in there. The proof for the second term of (2.35)
is exactly similar.

Next, we turn to the proof of (2.34). Note that the LHS of (2.34) is bounded
above by

I(A,,0) sup |[L(u)/Ly(w) = 1|[  Uy(u)du.
lu|<d lul<d

Moreover, (2.36) implies that [, 4, (v)du = 0,(1) for every 0 <d <.
Thus to prove (2.34), it suffices to show that on A

n,c’

n
(2.37) sup| [T wo(e;i—up™ i—l)/ O(Ei - up_nﬂ_lYkn) - 1| =0,(1).
lul<d |i=k,+1
Buton A, , for k, <i <n,
. . i_l . .
(p_nXi—l _p—n+l—1Ykn — |p|—n+z—1 Z p—Jsj < Clpl—n—k"-ﬂ_l.
"=k, +1

Therefore, on A, ., by B(i), the

i=k,+1|ul<d

n
LHS (2.37) < {exp{ Y. suph(e; - up_”+i_1Ykn)(dc)a|p|_"‘(”+k"_i+1)] - 1}

n—k,
< {exp Y ke, +dc)|p|‘“’|p|‘“’*n(dc)“] —1} =0,(1)
i=1
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because, by Lemma 2.1 applied to 1, =0, n = h(le| + dc), v = |p| ™% the
infinite series ©%_,h(le;| + dc)p| " < » a.s., because k,|p| **» — 0 and be-
cause {¢,_;,1, i = 1} =, {¢;, i > 1}. Note that we need B(ii) for this argument.
This completes the proof of (2.34) and hence that of the lemma. O

The structure of the limiting experiment. Since this limiting experiment
appears here to the best of our knowledge for the first time in the literature,
we describe it in more detail.

Let Q=@ —{0) X RN and let u =y X g X mg X o X - be an infi-
nite product of measures on %,,, the product o-algebra, where u, has Lebesgue
density ¢, and &, is the distribution of

Y p~%,, with g, i.i.d. according to u,.
i=1
Since ¢ has density, Z has no mass at 0. Denote a typical point of by
w = (z,e,, e,,...) and consider, for each ¢ € R, the map R,: O — Q given by
R(w) = (z,e, +tp 'z,e5 +tp~22,...).

It is easily seen that R_,, = R, R,, hence ¢t = R, is a group homomorphism.
Define a family of probability measures {P,} on %, by

P,(A) = N(Rt_l(A)) = N(R—t(A))’ Ae Hy.
The probabilities {P,} are mutually absolutely continuous with
log(dP,/dP,)(w) = X log{wo(e; — tp~'z) /to(e; — sp~'2)}.
i=1
Since
#(dP,/dP,|P,} = #{(dP,/dP,)° R |P,} = Z{dP,_,/dP|P},

the experiment &= (Q, %,,{P,}, t € R) is translation invariant. By Remark
2.2 it follows that & is indeed the weak limit of the sequence of experiments
&, =R", B" (P, -}, t €R).

We now discuss the efficient estimation for the limiting experiment. Let

U(t) = ertvo = [I1 Wolel — tp~'Z) /ho(&}).

We know from Theorem 2.1 that U(¢) converges a.e. By conditioning first on Z
we see that E(U(¢)|P,) = 1. By Remark 2.1 the convergence in Theorem 2.1 is
uniform for bounded #’s and therefore there is a version of the process U(¢)
which has continuous paths. Moreover, [(1 + [¢)U(¢) dt < = a.e. which follows
from an argument identical to that used in (2.35) and (2.36). Hence it makes
sense to speak of the posterior density process

V(t) = U(t)/jU(s)ds.
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The shape of the trajectories of the process V() depends heavily on the density
¥o- An explicit expression for V(¢) is only known for normal densities.

LEmmA 2.3, If ¢o(x) = @mo?) V2 exp(—x2/202), then
A(tlo) = (¢/0*)WZ — (£2/20%(p* - 1)) 22

and

_ 1 z2 w 2
V(t) =@ma®) V2| Z)(p? — 1) e"p{_Eoz(Tn[‘ A 1)] } ’

where W= Y7_,p~'¢/. W and Z are independent N(0,0%(p? — 1)~1) r.u.’s.
Consequently, the sequence of experiments {Pr,»,n=>1|p|>1,teR,is

locally asymptotically mixed normal (LAMN).
Proor. Follows by direct calculations from Theorem 2.1. O

From the above representation we see that for the normal error density ¢,,
all posterior densities V(¢) are normal with mean (W/Z)p? — 1) and variance
o%(p? — 1)/Z2. This implies that the Pitman estimator for quasiconvex loss
function coincides with the maximum likelihood (ML) estimate. We simulated
the process V(¢) for p = %. Five trajectories are shown in Fig. 1.

If the density ¢, is not normal, then the situation is completely different.
We simulated the process V() also for ¢(¢) = const. exp(—x%) and p = % (see
Fig. 2). Here, the trajectories do not have a center of symmetry, but they are
skewed. Consequently, in contrast to the mixed-normal case with symmetric
trajectories, we cannot expect that the Pitman estimates for different quasi-
convex loss functions coincide. Also in the ML-estimate, the mode of V(¢) is

1.0

L LN B LA e e e |

F16. 1. The posterior density process for normal ¥o.
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1.0 -

LI L O B

LI O

-3 -2 -1 0 1 2 3

F16. 2. The posterior density process for i, = const. exp(—x*).

different from all Pitman estimates. By simulating 5000 trajectories of this
process, we found that the Pitman estimate for the square loss has variance
0.95, whereas the variance of the ML-estimate did not converge and there is
some evidence that it is infinity.

The question of efficient estimation of ¢ in the limiting experiment & is
answered by Theorem 2.2.

THEOREM 2.2. Assume that E(g?) < «. Let
(2.38) T(w)=¢e,pZ7 - pZ_lE(81|82 —ple, 65— p ey, .. )

Then T(w) is a minimax estimate in the following sense: For every other
estimate T',

sng(Zz(T'(w) - t)’|P) = SI:pE(Zz(T(w) ~1)* B,

= pZE[el - E(£1|82 —p e, e5—p %, .. )]2

Proor. Let S(w) =(z,0,e, —p~le;,e; — p~2ey,...). The transformation
S(w) is maximal invariant in the sense that S(w,) = S(w,) iff there is a ¢ with
R /(w,) = w,. Notice that ¢,p/Z is an equivariant estimate. Thus, by Strasser
(1985, Lemma 39.28), [pe,/Z] — [p/Z]E(&,|S) is a minimax estimate for the
quadratic loss, conditionally given Z. O
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REMARK 2.3. The representation of the Pitman estimate in a form similar
to (2.38) appears already in Girshick and Savage (1951).

3. Adaptive estimators. In this section we give a sequence of estimators
of p that converge to T in distribution for a large class of densities. This
sequence is obtained from g, of (2.21) by replacing ¢, in there by a density
estimator. Accordingly, let g be a symmetric density with the support on
[—1,1], Lipschitz of order 1 and with its almost everywhere derivative g’
satisfying [|g'(¢t)| dt < . Let

n n—1
Pn = Z X X 1 E th
i=2 i=1

and
(3.1) Ein=Xi—p X, 1=¢6—p"(p, —P)P "X, 4, 1> 1.

Define the kernel-type density estimators

A

N k, X — E;
(3.2) Jo(x) = (0,k,) 7" Zg(——a ) x €R,
i=1

n

where 0 <o, > 0 and &, is as in Lemma 2.2. An adaptive sequence of
estimators of p is defined to be

(33) poo=[u TI

i=k,+1

l/;n(Xi - uX;_ ) du/f I1 l/;n(Xi —uX;_;)du.
i=k,+1
Before proving the weak adaptivity of j,,, we state:

LEmMa 3.1. Let (1.1) hold with {¢;} i.i.d. ¢,. Assume that A() holds.
Then

(3.4) p"(pn —p) = (p* - )WZ™H,
where W is a r.v. independent of Z, W = , Z, Z as in (2.12).

Proor. The proof uses Corollary 2.1 and the Toeplitz lemma. Details are
left out for the sake of brevity. O

ReEMARK 3.1. Under the finite second moment condition the consequence
(3.4) is well known in the literature. The condition A(i) appears to be the
weakest possible for (3.4) to hold. The Cauchy distribution satisfies A(i).

We now state and prove the main result that validates the adaptive nature
of p,.
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THEOREM 3.1. Suppose that (1.1) holds with {¢;} i.i.d. ¥,. Assume that i,
satisfies B and
(a) for some 0 <& < %,

fowu[Fo(—u)]l/2du<oo, qu[l—FO(u)]1/2_3du<w.

(b) " h(u+y)b(ul) du <, forall y > 0.

About the sequences o, and k, assume that o, > 0, k, - », (n — k,) = =,
o, > 0 and

(c) (n—k) o Ul + 0, %2+ 2] >0 with a as in A(ii).
Then »
(3.5) p"(py—p) =T,
where T is as in (2.26) and p,, is as in (3.3).

Proor. By a change of variable, rewrite

o —p) = B o L onyetbales — up X, ) du
T T e e TR )

In view of (2.27) and (2.29), to prove (3.5), it suffices to show that
(36) |Tn - Tnl = Op(]-)’

where T, is as in (2.22). The proof of (3.6) involves several delicate calculations
and nonuniform bounds. To begin with, define

k, k,
F(x) =k,* L I(5,<x), F(x)=k;'Y I(s;<x), x€R
i=1 i=1
Then

bu(x) =0, [8((x — ) /0,) dB(3).

Let, for x € R,

V(%) =0 [e((x —y)/0,) dF,(¥),

b(%) = 0! [e((x = ¥)/0,) dFo(y),

where F, is the distribution function corresponding to ¢,. The idea is to
approximate ¢, by ¢, via ¢, and ¢,.
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From (3.1), Corollary 2.1 and Lemma 3.1,

max |§; , —¢] = O,(lp[*"™") asn — .
1<i<k,

From the well-known tightness results about the weighted empirical processes
[see, e.g., Csorgé and Revesz (1981)], for 0 < & < 3,

sup [min(Fo(x),1 - Fo(2))] " /**°|F,(x) = Fo(x)| = O,(k;1/2).
x
Now define, for a ¢ > 0, the event
B, .= { max |&; , — & <clp*"", c|pT"X,_1| = 1 2 |e,|, Yo(e,) >},
’ 1<i<k,

sup [min(Fy(x), 1 = Fo(x))] /**°| F,(x) - Fo(x)| < ck;l/Z} NA,.,

xR

From the above discussion, (2.31) and Corollary 2.1,V % > 0,30 < ¢ < » and
N, such that

(3.7 P(B, ) =1-n foralln>N,.

Further, choose n large such that

(3.8) cp'»""<8/2, o,<8/2.

From now on, we shall be working with n satisfying (3.7) and (3.8). On B, .,
F(x —clp*»=") < F,(x) < F,(x + cjp/*>™"), VxeR.

Hence for each x € R,

|F(x) —Fo(x)| < sup  |F,(y) — Fo()|

ly —x|<clp|*»~"

< sup [F(y) - Fo(y)|+  sup  |Fo(y) — Fo(x)]
(3.9) ly—x|<8/2 ly—x|<clpf*»~"

< ck; Y} min(Fy(x + 8/2),1 — Fy(x — 8/2))}"/*°
+[Fo(x + clp|*»™") = Fy(x — clp/*»™")], on B, ,

Now apply this inequality with x replaced by x — 0,2, |z| < 1, to get, using
<4/2, thaton B, ,

an(x - anz) - FO(x - O'nZ)| =< c[k;l/zal(x) + |p|kn—na2(x)], x €R,
where
a,(x) = {min(Fy(x + 8),1 — Fo(x — §/2))} 1/2-8

b(lxl - 8), |x| = 87

ax(%) = {b(O), x| < 8.
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Consequently, on B, .,

|dra(2) — ()|

(3.10) < o7 | (% = 0,2) = Fo(x — 0,2) || &'(x) | dz

< ctoy Yk, V% (x) + Iplf""ay(x)}, c* = cf|g’|.

Next, use the absolute continuity of g to conclude that on B, .,

3 n
N n x— . . _— . _— .
16(2) — ()| < o7 0 ¥ g( % _ B 8’)—g(x )
(3.11) i-1 n In n
c n x_€i+s
sorth T (T a0

To simplify notation a little, define
Fa(u) = g,(e; —up "X;_1) /o(e), uwERi=1,

n—1
3, = 3
(3.12) T, S
n—1
7, = [l 7., where{r,;}areasin(2.32).
i=k,+1

Then
T, = [udn(e, = up™"X, 1) 3,(u) du//:&n(en —up "X, 1) (u) du
_ fui=11i[+1€'ni(u) du/fi=lli[+17‘-ni(u)du,
T, = fut(e, — o™X, 1)) s [o(en = up ™%, 1)) du

= Ju.

To prove (3.6), in view of (2.35) and (3.7), it suffices to prove the following two
results:
For every n > 0, there is 0 < d < » and N, such that

Tni(u)du/f ﬁ 7,:(w) du.
1 i=k,+1

+

(3.13) EI(B,,,C)[ i (e, —up™"X,_)*(u)du <n, foralln>N,.
|lu|>d
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For every 0 < d < »,

n n

,”(u)— IT »..(w) du=o0,(1), asn— .
—ko+1

i= n

(3.14) I(B,.)[

luj<d

Recall that an analogue of (3.13) for T, was proved in (2.35). Now, to prove
(3.13), observe that on B,

le, —up™"X,_1|= |ul/c for|u| > c.
Therefore, if d > ¢ and |u| > d, from (3.10), on B, .,
(i;n(en - u’p_an—l)

(3.15) < sup ¢ () + c*o, Hk, Y 2af (lule™t) + lol*»~"a¥ (lulc 1)},

[¢]=|ulc™?!

where

a¥(y) = supa,(y), Jj=1,2,y=>0.
[t=y

But, because o, < § [see (3.8)],
(3.16) sup ¢,(¢) < f sup Yo(t — 0,2)g(2) dz < b(jule™* - §).
[¢]=]ule™? [#=]ule™?

Note that |z| > d > ¢ and 0 < § < ; ensures |u| > ¢5.
Next, with 7, = o-field {¢,, ..., ¢;} let E, denote the conditional expectation,
given .7, i > 1. Then, with ¢, as in (3. 11) by Fubini’s theorem,

Ej—l[qn £ — uP_an—1)/4/fo(£j)]

(3.17) <o, %k, Ichlplk nflg x—up X ei+s)/an)|dxds

=17 —clp|*»
= za,:lclpl’“"‘"flg'l, k,<j<n-1u€eR.
Note that {¢;, i < k,} are . _,-measurable for all k, <j<n— 1. Now recall

that ¢, is 7, -measurable Thus once again, for k <j<n -1 and for all
u€R,

(3.18) Ej—l[l/jn(sj - uP_an—1)/¢o(£j)] = fl/’n(x - uP_ij—1) d-’f =1L

Now let
L,(x) = [¢,(x) + q,(x)], with g, asin (3.11).
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Then from (3.11), (3.17) and (3.18), and a repeated conditioning argument,

n—1
EI(Bn,c)%n(u) = EI(Bn,c) ‘=lk_1+ll/;n(ej - up—n j—l)/le(ej)

l:[ L(e; —up™X;_1)/¥o(e;)
(3.19) 1

n—2

I] {L (e; —up™X;_1)/Wo(e,)}(1 + 2¢*a; |p[*»~")

=k,

= (1 + 2c*o )" T = 0(1), VueR,

because (n — k,)a,; !|p|*»~" — 0 by assumption (c). Now use (3.15), (3.16) and
(3.19) to conclude that for d > c, and for all » sufficiently large, for all n > N,
of (3.7), the LHS of (3.13) is bounded above by

ul{b(jule™! - kY20 la*(ule!
(3.20) 0(1)/ Julfblule™ = 8) + k20, Yat (jule™)

+lpl* "0, Y% (jule ™)} du.
By definition, b is a decreasing function and hence
ai(ule™) =b(ulc™! —§) forall |u|>d.
Moreover B(iii) implies [b(u) du < ». Hence by B(iii),

f|u|b(|u|c‘1 —8)du = czf|u + dc|b(|u]) du < .

Similarly, for u > 0,

af(u/c) = sup [min(F,(¢t+38),1— Fy(¢t— 6))]1/2_8

[t1>u/c
< max|[ Fy(—uc™t +8),1 — Fy(uc™t — 6)]1/2_3,
so that
f|u|a>1"(|u|c‘1) du < c2f|u|max[F0( —|u| +¢8),1 — Fo(ju| — ¢8)] 272 gy < o
because by assumption (a), for all & < «,
f:u max| Fy(—u + k),1 - Fy(u — k)]"*° du < =.

Consequently, from (3.20) and the above discussion there is a d large enough
such that (3.13) holds.

Now turn to the proof of (3.14). Since the range of integration is now a
bounded set, it is enough to get a uniform bound on the integrand that goes to
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zero in probability. To that effect, from (3.11) and the triangle inequality,
on B

Let D, .= {k}/?sup,|F,(x) — Fy(x)| < c}. Note that B, ,c D, , and D, , is
&, -measurable. Hence for all k, <i <n,all u €R,

E;_[I(B, Ol¥n(e; = up™"X;_1) — Wole; — up "X;_ )| /to(e;)]
< { [0 = o) dx + [16,2) = wo() di + 2¢%07 [ 1D, )

< {crn_llen(x — 0,2) — Fy(x — 0,2)||g'(2)| dz + 2¢*a] Y p[» "
(3.21)

+ [1dn() = do() | dx 1D, )
< 2¢*a; k72 +1pl* ") + [[d(x) = Yo(x)| dx

=4,, onD, ..

Next,
. ]-_I %nz(u) - ]._.[ Tni(u) I(Bn,c)
i=k,+1 i=k,+
< Z . ]._.[ %nj(u)l%nt(u) _?nz(u)ll_.[ 7'nj(u)I(Bn,c)
i=k,+1J=k,+1 Jj=i+1
n i-1
< X . [{‘f’n(b‘j - uP_an—l) + qn(sj - uP_an—l)}/ll’o(sj)]
i=k,+1J=k,+1

X'%nt(u) - Tni(u)' ‘f_IFITnj(u)I(Bn,c)'

Now take expectation in the above inequality, carry out a conditioning argu-
ment, use the fact that E;_;7, (u) = 1 for all j > 2 and for all u real, the fact
that D, . is &, -measurable and that B, . c D, . to get

(3.22)
E ]._[ %ni(u) - ]._.[ Tni(u) I(Bn,c)
i=k,+1 i=k,+1 ,
n i—1
< XY E I [{ll’n(sj ~up™"X;_,)
i=k,+1 J=k,+1

+qn(£j - up_an—l)}/ll’o(ﬁj)]I(Dn,c)an
< [1 + 2¢*o Yp"]" " (n — k)8, [from (3.17), (3.18)]
=0(1) - (n —k,)3,,
because (n — k,)o, !|p|*»~" — 0 by assumption (c).
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Next, for n large enough so that o, < 6,

J16.(x) = wo(2) |dx < [ [0z = 0,2) = wo(x)]g(2) dzdx

< o[ supyo(x — 0,2)h(x) dx [by A(ii)]

|z|<1
< 0 [ag(x)h(x) dx = O(a;?)
because @, < § and because assumption (b) implies that
Jas(x)h(x) dx = 2[*6(0)h(x) dx + 2 [ b(x)h(x + 8) dx < .
0 0

Hence,
(n —k,)8, = (n — k,)2c*, [k;*? + |p|*»~"] + (n = &,)O0(0) - 0
by assumption (c).

Therefore, the LHS of (3.22) goes to zero. Moreover, B, ,c D, ., P(D, ) >
1 —q for all n > N, by (3.7). This together with the above argument proves
(3.14). This also completes the proof of the theorem. O

REMARK 3.2. An example of sequences &, and o, fulfilling the assumption
(b) of Theorem 3.1 is
2/&0

k,=[n—-logn], o,=[logn] “*, wherea, <a.

An example of a density satisfying Assumption A with § = 1, « = § and h = 4,
and not having finite first moment and finite Fisher information is

(x) =c(1+e‘\/m)/(1 +x2), xeR.

An example of a family of densities satisfying all assumptions of Section 3
and not having finite Fisher information is

¥(x,B,y) =c(B,v)exp(—Blx|"), 0<y,<y<3 B>0,x<€R.
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