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MARGINALIZATION AND COLLAPSIBILITY IN GRAPHICAL
INTERACTION MODELS

BY MORTEN FRYDENBERG
University of Aarhus

The behaviour of a graphical interaction model under marginalization
is discussed. A graphical interaction model is called collapsible onto a set of
variables if the class of marginal distributions is the same as that implied
by the related subgraph. The necessary and sufficient condition for collapsi-
bility is found and it is shown that collapsibility is equivalent to a range of
other important statistical properties of the model.

0. Introduction. Recent years have seen an increase in the use of graphs
in fields such as expert systems, decision analysis and statistics [see, e.g.,
Lauritzen and Spiegelhalter (1988), Pearl (1988), and Shachter (1986)]. One of
the general features of these applications of graphs is that the graphs, which
can be both directed and undirected, are used to represent knowledge or
hypotheses concerning the association between different variables /decisions.
In statistics one of the most recent developments in this direction is the
introduction of the graphical association models by Lauritzen and Wermuth
(1984, 1989).

The class of graphical association models is a class of models for association
between variables that can be of discrete as well as of continuous type. Each
model is specified by a graph where each variable is represented by a vertex,
and two vertices are connected if there is a direct association between the
corresponding variables, or, in other words, two variables are not connected if
they are conditionally independent given some other variables. In general the
graph contains both undirected edges, indicating a symmetric association, and
directed edges, indicating an influence-response association. A review of the
ideas behind and use of these models is given in Wermuth and Lauritzen
(1990). Because the building blocks in these general models (the graphical
chain models) are the symmetric models, where the graph is undirected, a
deeper understanding of this latter class, termed interaction models, is impor-
tant.

The graphical interaction model is a generalization to the mixed case of the
graphical models for contingency tables [Darroch, Lauritzen and Speed (1980)]
for purely discrete data and the covariance selection models [Dempster (1972)]
for purely continuous data. In Frydenberg and Lauritzen (1989), the central
concept of decomposition of a graphical interaction model was considered. In
the present work we will look at another important concept: collapsibility. As
in Asmussen and Edwards (1983), considering log-linear models for contin-
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COLLAPSIBILITY IN GRAPHICAL MODELS 791

gency tables, we will say that a given graphical interaction model is collapsible
onto a set of variables if the implied model for the marginal distributions for
these variables is equal to the graphical interaction model given by the induced
subgraph. The results shown in this paper cover the results found in the above
paper for graphical models for contingency tables and the results shown in
Porteous (1985) in the case of covariance selection models. As in the case of
contingency tables, the graphical interaction models can be seen as a subclass
of a larger class of symmetric interaction models, called the hierarchical
interaction models [see Edwards (1990)], which also give an extension of some
of the results presented here to this larger class.

Here we will only indicate a few of the many implications of collapsibility for
inference, understanding and interpretation of both the symmetric interaction
models and the more general graphical chain models; a more detailed discus-
sion can be found in Asmussen and Edwards (1983). If a graphical interaction
model is collapsible onto a set A of variables, then:

1. The maximum likelihood estimate in the full model of the marginal distri-
bution of the variables in A is equivalent to the maximum likelihood
estimate in the graphical interaction models only containing the variables
in A.

2. Inference concerning removal of some edges can be performed in smaller
graphical interaction models.

3. The model is equivalent to a graphical chain model with the variables in A
as explanatory variables to the rest of the variables.

The structure of the paper is as follows. In Section 1, after having intro-
duced the class of CG-distributions formally and recollected the concept of
Markov properties given by an undirected graph, we define the graphical
interaction models. The following section contains a proof of the fact that a
graphical interaction model given by a graph G is Markov perfect, by which we
mean that the model does not prescribe any other conditional independencies
between sets of variables than those which can be read from the graph.
Sections 3 and 4 are concerned with what happens under marginalization.
First, assuming that & is a Markov perfect class of G-Markovian measures,
we give a necessary and sufficient condition for all of the marginal distribu-
tions for a subset A of variables to be Markovian w.r.t. the subgraph G, given
by A. A special case in which this condition is satisfied is when the marginal
distributions under the graphical interaction model fulfill the Markov proper-
ties w.r.t. the related subgraph.

Next, in Section 4, the question of when the marginal distribution of a
CG-distribution is again a CG-distribution is discussed, and a necessary and
sufficient condition for the marginal distributions for a graphical interaction
model to be CG-distributions is given. In the last section we collect the results
found in the first sections and establish in the main theorem the equivalence
of collapsibility to five other properties of the model. Especially we show that a
graphical interaction model is collapsible onto a set of variables if and only if it
is equivalent to a graphical chain model with the specific set of variables as
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explanatory to the rest. Using this we can quite easily prove the general result
concerning equivalence of graphical interaction models and graphical chain
models. Finally, we show some implications of the main theorem followed by a
brief discussion of the consequences of collapsibility for estimation problems in
graphical association models.

1. Preliminaries and notation. As in Lauritzen and Wermuth (1989),
we let V be an index set partitioned into A (the discrete indices) and I" (the
continuous indices), and suppose that to each a € V there is associated a set
Z, in such a way that 2, = 7, a finite set if e € A and 2, =R if a € T".
We shall consider the product space 2= X, _, %, = #X %, where /=
Xse s and 2= R'. A point in 2" will be denoted by x = (i, y), where i € .#
and y € Z. For AcV we will let 2, = X ,Z,, Z = Xscana? and
%, = RT'"4 and the projection of x onto 2, will be denoted by x,, i.e., if
x = {x,; @ € V}, then x, = {x_; a € A}. All densities will be with respect to the
natural measure, i.e., the product measure of the counting measure on .# and
the Lebesgue measure on R'. A probability distribution P is a CG-distribution
if it has a density p of the form

p(x) =p(i,y) = exp{g(i) + h(i)'y — 3y'K(i)y}, =x€Z,

where for each i € .7, g(i) € R, h(i) € R" and K(i) is a symmetric positive
definite I' X I' matrix, or equivalently that P has a positive density and the
conditional distribution of Y given I =i is Gaussian. A CG-distribution is
called homogeneous if K(i) or, equivalently, the conditional variance of Y
given I = i, does not depend on i.

The special CG-distribution which specifies complete independence of
all the coordinates, constant density on .# and for each y € I' a standardized
Gaussian distribution for X, is denoted by P°, ie., p%x)=p°G,y) =
constexp{— ;¥ . y2}. For A C V and arbitrary distribution P on 2" we will
denote the marginal distribution on 2, by P,. If P has positive density we
will denote the marginal density on £, by p, and the conditional density on
Z given Z, by p4, ie., pA(xy . alxy) = plxy)/ps(x,), and if Z is a class of
such distributions we put &, = {p,(-); P € #] and #4 = {pA(-| - ); P € ).
As in Barndorff-Nielsen (1978) X, (or A) is called a cut in & if the mapping
P—> P, x P4 sending p to (p,, p4) is onto P, X P4, ie., if for each pair
(P, p™) in P, X P4 the product py(x,) - pAxy . 4lx,) is a density of some
measure in Z.

Now, let Ef = {(a, B)la € V, B € V, a # B} be the set of all ordered pairs of
distinct elements of V. Then a pair G = (V, E), where E C E}f is called a
graph with vertices V and edges E. In this paper all graphs will be undirected,
i.e., (a, B) € E implies (B, @) € E. For a graph G = (V, E) and a subset A of
V, we will denote the induced subgraph on A by G,, ie, G, =(A,EN
(A X A)), the boundary of A by bd(A) ={B € VN A3 a €A such that
(B, @) € E} and the closure of A by cl(A), i.e., cl(A) = A U bd(A). A graph
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G = (V, E) is said to be complete if E = E¥ and a subset A c V is called
complete in G if G, is complete. A n-tuple of n different vertices (ay,...,a,)
is called a path of length (n — 1) from a; to @, if(e;,a;,,) €E forl <i <n.
A subset A of V is a connected component in G if every pair of vertices in A
is connected by a path and none of the vertices outside A is connected to A. B’
is called a connected component in B c V if it is a connected component in the
subgraph Gj. Finally C C V is said to separate two subsets A and B of V if
every path from a € A to B € B contains at least one element from C.

The graphs we shall be considering are graphs with vertices of two types,
V= A UT, and when we draw a graph we will indicate the type of vertex by
drawing the vertices in A (the discrete vertices) as dots and the vertices in I’
(the continuous vertices) as circles.

In the graphical models the graphs are used to specify the conditional
independencies in the model. The concept of conditional independence is
discussed in Dawid (1979, 1980), and following those papers we will here use
the notation X, 1 Xy|X. [P], or in short A L B|C [P], if X, and X are
conditionally independent given X, under P.

A distribution P is said to be G-Markovian if A L B|C whenever C
separates A and B in G. As proved by Pearl and Paz [see Pearl (1988)] this
global Markov property is equivalent to the pairwise Markov property: “a L
BV \ {a, B} for all nonadjacent vertices a and B’ if P has a positive density.

Now having introduced the CG-distributions and the Markov properties
given by a graph, we define the graphical interaction model .#(QG) specified by
G as the class of all G-Markovian CG-distributions on £

Some equivalent definitions of .#(G), such as a special factorization of the
densities, can be found in Lauritzen and Wermuth (1989). For A c V, .#(G,)
will denote the graphical interaction model on &7, specified by G4. The main
point of this paper is to find the necessary and sufficient condition for .#(G),
to be equal to .#(G,), i.e., for the class of marginal distributions of .#(G) on a
subset of variables to be equal to the graphical interaction model specified by
the induced subgraph. As a start, we will here give the easy argument for the
1nclus1on #(G,) € #(G),. Suppose P, €.#(G,). Then p(x)=p4(x,) -
Py alxy . 4) will be a density for a P € .#(G) and by definition P, = P( Ay

For (x®,...,2x™) e 2™ and AcCV, we let P (a; denote the maximum
likelihood estlmate in .#(G,) Gf it exists) based on (x,..., x{) assuming
x{ are iid. observations from some measures in #(G,). We will write P
for P

Fmally let us notice that the graphlcal interaction models contain both the
graphical models for contingency tables (I' = &) and the covariance selection
models (A = &) as special cases.

2. The Markov properties of .#(G). It follows from the definition of
#(G) that if C separates A and B in G and P € .#(G), then A 1 B|C under
P. The purpose of this section is to show that the opposite is also true in the
sense that if A L B|C under every P in .#(G), then C must separate A and B
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in G; in other words, that the model .#(G) does not satisfy any conditional
independencies other than those given by G.

DerFINITION 2.1. A class & of distributions on 2 is said to be Markov
perfect wr.t. G if A L B|C under every P in & implies that C separates A
and B in G.

(We will say a G-Markovian class is Markov perfect if it is Markov perfect
wrt. G)

Before we start proving that .#(G) is Markov perfect, we may note that if &
is Markov perfect w.r.t. G and A is a subset of V, then &, is Markov perfect
w.rt. G4. In fact, suppose that C, A; and A, are subsets of A and that
A, 1 A,|C under every P, € &, or equivalently under every P € &Z. If & is
Markov perfect w.r.t. G, then C must separate A; and A, in G, which implies
that C separates A, and A, in G,.

In the following lemma, for every discrete vertex §, we let .#; be divided in
two nonempty sets A; and B;, A; N B, = &, and we define the functions A
and w; by setting h;(x,) equal to —1if x; € A; and equal to 1 if x, € B;, and
ws(xs) = |As| " if x5 € A; and wy(x;) = |B,| ™! if x5 € B,. That is, the possi-
ble values of X, are partitioned into two groups which are assigned the
interaction parameters —1 and 1 and the weights 1 divided by the number of
values in each group. For a continuous vertex y we let A (x,) =x, and
w(x,) =1

Lemma 2.2. Let G = (V,E) where V = {a)}}., and E = {(a,, a,,);
|k — m| = 1}. Then the distribution with the density

p(x) = const X i]lwl(xz)exl){‘%[hl(xl)z - hz(xz)hl+1(xz+1)]}

[setting h, ,(x, ) = 0] is @ G-Markovian homogeneous CG-distribution with
the property that h,(X,) and h ,(X,,) are not marginally independent for any
pair (k, m) (and therefore X, and X,, are not independent either).

ProoF. First we observe that p(x) = exp{g(i) + h(i)y — 1y'Ky} for suit-
able choice of g and &, and with K being the positive definite symmetric
matrix with diagonal elements 1 and off-diagonal elements — % if the corre-
sponding continuous variables are adjacent and otherwise 0. From this we can
see that p has a finite integral and that it is a homogeneous CG-density. That
P also is G-Markovian follows from the factorization of the density.

For simplicity we will here only show that 4,(X,) and k,(X,,) are depen-
dent in the case where I; = {—1,1}, A; = {—1} and B, = {1} for every 6 € A.
The proof in the general case then follows, working with the transformed
variables (h,(x;)). Now, if I; = {—1,1}, then A ,(x,) = x, and w,(x;) = 1 for all
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l, implying that p(x) is of the form
n
p(x) = const X [Jexp(—3{x? —x,%,.,)), x€2
=1

(xn+1 = 0)
Next, we will show that:

® p(x;) = p(—=x;,) > 0.
(i) p(x,,x,) =p(=x,, —x,)>0,1<k<m<n,x, €2}, x, €L,
(i) p(x,, x,,) > p(xy,, —x,), 1<k <m<n, x, €2, x, €Z,,
x,x,, > 0.

This implies that x, and x,, are dependent.
(i) and (ii) follow easily from the symmetry of the density.
An induction argument now gives, by repeated integration, that for £ < m,

m-—1

p(xk""’xm) = ‘41(xk) lI——!e exp(_%{xl2 _xlxl+1}) /mn(xm),

where A Mx,) = A —x,) and A~ (x,,) = #"(—x,,). Especially we have that
pCay, %) = A7 Jexp(— %{xlz = x%,. DA (%, ), yielding plx;, %) =
e**i+1p(x,;, — x,,,) and thus (iii) for m = & + 1. The proof of (iii) in general is
carried out by induction in m — k. Suppose (iii) holds for any pair k, m such
that 0 <m —k <r<n.Nowlet m =k + r and put = m — 1. The Markov
property implies that X, 1 X,,|X; and, by induction, (iii) holds for p(x,, x,;)
and p(x,;,x,,). Let x, € £, and x,, € Z,, both be positive. Then using the
conditional independence, we have

p(xk’xm) - p(xk, — xm)
- fjwp(xk’xl)p(xl’xm)/l)(xl)/.t(dxl)

[ P )P (21, — 2,) /P () u(dx)

- f:p(xk,xz)[p(xl,xm) - p(x, — x,)]/p(x,)u(dx,),

where [*_ u(dx,) is either the Lebesgue integral over the whole line or the
sum X, __; ;. With this in mind and using (ii) on p(x,, x,,) and (i) on p(x)),
we get

J* P =) [p(x1, %) = P31, = 2] /P () ()

- [ (x4, — ) [ p(=x1,2,,) — p(=x1, = %,)] /p(—2,) ()

Il

[ (x4 — ) [ P21, = 2) = (1> 2]/ (2,) (dcy)

Il

—/pr(xk, ~x)[p(x1, %) = P(x;, = 2,,)] /P(x) (dix,),
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implying
p(xk:xm) _p(xk’ - xm)

= [ 1p(xex1) = P = )] [P (21, 20) = P(21, = 20)] /P () ().

Finally, we use the induction hypothesis on p(x,, x;,) and p(x,, x,,) to conclude
that the two terms in square brackets are positive, yielding a strictly positive
integral, and (iii) is shown for x, > 0 and x,, > 0. The result for x, < 0 and
x,, < 0 follows from (ii). O

We are now ready to prove the main result of this section.

THEOREM 2.3. .#(QG), the class of G-Markovian CG-distributions, is Markov
perfect.

Proor. We have to prove that if A L B|C under every P in .#(G), then C
separates A and B in G, or equivalently that if C does not separate A and B
in G, then there exists a P in .#(G) such that A and B are not conditionally
independent given C.

So suppose C does not separate A and B in G. Then there exists a path,
say (ay,...,a,), from A to B not intersecting C. Setting V = {a,}}_, and P
equal to the distribution in .#(G) with density

p(x) =py(ay) P (2pp),

where py(xy) is the density given in Lemma 2.2, we see that the marginal
distribution on Z% is of the form in Lemma 2.2, which implies that «; and «,
are not marginally independent. This together with the fact that V L C under
P gives that «; and «, are not conditionally independent given C. Thus A and
B are not conditionally independent given C under P. O

Another way of formulating Theorem 2.3 is that
C separates A and B in G
if and only if
A 1 B|C under every P in .#(G).

It should be noted that the p constructed in the above proof is a homoge-
neous CG-distribution, so we have also proved that the class of G-Markovian
homogeneous CG-distributions is Markov perfect.

3. The Markov properties under marginalization. In this section we
will establish the necessary and sufficient condition for a Markov perfect
G-Markovian class of distributions to have marginal distributions on %,
which are G4-Markovian.
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DEerINITION 3.1. Let G = (V, E) be an undirected graph. A subset B C V is
called simplicial in G if bd(B) is complete and a simplicial collection in G if
every connected component in B is simplicial in G.

In the proof of Corollary 2.5 in Asmussen and Edwards (1983) it is shown
that V \ A is a simplicial collection in G if and only if the following is true: If
C separates A, and A, in Gy, then C separates A; and A, in G, too. Using
this and the definition of the Markov property, we get the result:

ProposITION 3.2. Let P be any G-Markovian probability distribution on Z
and let AC V. If V\ Ais a simplicial collection, then P, is G4-Markovian.

On the other hand, suppose we have a G-Markovian class & of distribu-
tions on & and suppose that &, is G4-Markovian, too. Furthermore, let C,
A, and A, be any three subsets of A such that C separates A; and A, in G4.
It follows that A; L A,|C under any P, in &, or equivalently under any P in
Z. Now, if & is Markov perfect, then C must separate A; and A, in G, and
as a consequence V \ A must be a simplicial collection in G.

THEOREM 3.3. Let & be a Markov perfect G-Markovian class of distribu-
tions on 2" and let A C V. Then the following are equivalent:

(i) V \ A is a simplicial collection in G.
(i) &, is a G4-Markovian class.

In the previous section we showed that .#Z(G) is Markov perfect, so for the
graphical interaction models we have:

CoroLLARY 3.4. Let A cV. Then #(G), is a G, Markovian class if and
only if V \ A is a simplicial collection in G.

Noting that if V\ A is a simplicial collection in G, then B\ A is a
simplicial collection in Gy, we obtain the following result concerning graphical
association models specified by subgraphs.

CoROLLARY 3.5. Let A and B be subsets of V. If .#(G), is G4-Markovian,
then #(Gglynp is G4, g-Markovian.

We have now clarified the behaviour of the Markov properties under
marginalization, and in the following section we will investigate the similar
behaviour of the distributional assumptions. But before we start on this, some
remarks about the two pure cases, i.e., ' = & and A = . In both cases, i.e.,
the contingency tables and the covariance selection models, the distributional
assumptions are always preserved under marginalization, so we have the
following result.
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CoROLLARY 8.6. If A= or T =, then #(G), =.#(G,) if and only if
V \ A is a simplicial collection in G.

This result was first proved in Asmussen and Edwards (1983) for the purely
discrete case and in Porteous (1985) for the purely continuous case.

ExampLE 3.7.

Using Corollary 3.4 we see that .#(G),, 4 is a G, z-Markovian class and that
#(G),,,, is not a G, ,,-Markovian class.

4. The marginal distributions. As shown in Lauritzen and Wermuth
(1989), the class of CG-distributions is closed under conditioning but in
general not under marginalization. In the following we will give the necessary
and sufficient condition for the marginal distribution of a CG-distribution to
be a CG-distribution.

LEMMA 4.1. Let AcV, B=V\ A and suppose that X = (I, 15,Y,,Yy)
has a CG-distribution. Then X, = (I,,Y,) has a CG-distribution if and only if
Y, L I,

Proor. The if part follows from Propositions 2.1 and 2.2 in Lauritzen and
Wermuth (1989), but the short proof will be repeated here.

First, we observe that the marginal density for X, is always positive
because X has a positive density. So X, has a CG-distribution if and only if
the conditional distribution of Y, given I, = i, alone is Gaussian. By assump-
tion, the conditional distribution of Y, given (I, Ip) = (i,,ip) is Gaussian
with mean and variance depending on (i, iz). Now, if Y, is conditionally
independent of I given I,, then the distribution of Y, given I, = i, is equal
to that of Y, given (I4, Iz) = (i4, ip) for any value of iy, i.e., it is Gaussian.
On the other hand, suppose Y, is not conditionally independent of I given
I1,, i.e., there exists an i, € I, such that the conditional mean or variance of
Y, given (I, Iz) = (i4,ip) does depend on iz. Then the conditional distribu-
tion of Y, given I, = i, is a discrete mixture of Gaussian distributions which
do not have common means and variances, and consequently this cannot be
Gaussian [see, e.g., Yakowitz and Spragins (1968)]. O

The condition Y, L Ip|I, could also be written (I' \ B) L (B N A)|A \ B.
Turning to .#(G) we want to translate this statement into some properties of
B in G.
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DEFINITION 4.2. A subset B of V is called strong in G if BcT or
bd(B) c A, and a strong collection in G if every connected component in B is
strong in G.

Suppose § € ANB, yeT'\ B and y and 8 are connected with a path
which must contain at least one vertex in bd(B,), where B, is the connected
component in B containing §. Now if B is a strong collection, then bd(B,) c
A \ B, so the path between y and 6§ must contain a vertex in A \ B, and
hence this set separates I' \ B and B N A. On the other hand, if ' \ B and
B N A are separated by A \ B and B, N A # &, then bd(B,) cannot contain
any continuous vertices, because if it did we would have a path running in
B, U T connecting a continuous vertex outside B with a discrete vertex in B.
We can therefore conclude that B is a strong collection if and only if A \ B
separates I' \ B and B N A. The latter is then, again by Theorem 2.3,
equivalent to (I' \ B) L (B N A)|A \ B[P] for every P in .#Z(G). Finally,
using Lemma 4.1, we have:

THEOREM 4.3. Let A C V. Then #(G), is a class of CG-distributions if
and only if V \ A is a strong collection in G.

CoroLLARY 4.4. Let G be an undirected graph and let A and B be two
subsets of V. If #(G), is a class of CG-distributions, then #(Gg)s~p is a
class of CG-distributions.

Proor. V \ A is a strong collection in G implies that B \ A is a strong
collection in Gz. O

ExampLE 4.5 (Example 3.7 continued). .#(G),, g is a class of CG-distribu-
tions and .#(G),, ,, is not a class of CG-distributions.

5. Collapsibility of .#(G). Let again A be a subset of vertices and
consider the marginal model .#(G),. In Section 3 we saw that the Markov
properties are preserved under marginalization onto A if and only if V \ A is
a simplicial collection in G, and from Section 4 we know that the assumption
about CG-distributions is preserved if and only if V \ A is a strong collection
in G. Combining this we see that .#(G), € .#(G,) if and only if VN A is a
strong and simplicial collection in G. As .#(G,) always is a subset of .Z(G),,
we see that .#(G), c .#(G,) is equivalent to .#(G), =.#(G,) and, as in
Asmussen and Edwards (1983), we will say that .#Z(G) is collapsible onto A if
this is true.

DerFINITION 5.1. . #(G) (or G) is said to be collapsible onto A CV if
H(G)y = A(Gy).

Before we turn to the main theorem concerning necessary and sufficient
conditions for collapsibility, we prove a lemma, which is the keystone in
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connecting the undirected models treated here and the more general graphical
chain models defined in Lauritzen and Wermuth (1984, 1989).

Let 9 = (V,V,,...,Vy) be a dependence chain that is an ordered partition
of V into disjoint subsets and let W, = U, _, V, be the concurrent vertices at
time ¢. P is then said to be pairwise [G, Z]-Markovian if for every nonadjacent
pair a and B such that a« € V, and B € W, we have a L B|W, \ {a, B8}. The
graphical chain model .#(G, 9) specified by the undirected graph G and 9 is
then given as the class of distributions with the properties: P is [G, 9]-
Markovian, p(x) =TI, Pyw,. (xy|xw,_) and pyw (| -) is a CG-regression
for all ¢, that is, py,y,  isa conditional density derived from some CG-distri-
bution on W,. Notice that the definition may be phrased as: p €
//(G,(Vl, Vo,...,Vp)) if and only if py, € .#(Gy, ,(V},V,, ...,V ),
Py w,_, isa CG -regression, and a L B|V \ {a B} if a and B are nonadJacent
and at least one of them belongs to V.

As an example, let 2 = (A, B), where B = V \ A. In this case P € .#(G,Y)
if for all nonadjacent pairs (a, 8) we have

a L B|A \ {a, B} if both « and B belong to A
and

a 1 B|V \ {a, B} if at least one of the vertices belongs to B

and the distributional assumptions are that p, is a CG-density and there
exists a CG-density p on V such that pp s = ppja = 5/Pa-

LEmMA 5.2. Let AcVand B=V \ A. If B is a strong and simplicial
collection in G, then #(G) = .#(G, D) where 9 = (A, B).

Proor. c: If P € .#(G), then pp, is by definition a CG-regression.
Furthermore, if B is a strong collection, then by Theorem 4.3 p, is a
CG-density on A, so the distributional assumptions in .Z(G, 2) are satisfied.
Moreover the [G, 2 1-Markov properties hold because a L 8|V \ {a, 8} for all
nonadjacent « and B and P, is G,-Markovian, as B is a simplicial collection.

D : Suppose p =p,ppa € #(G,Z) and let pg, =p/ps, where p is a
CG-density on V. Since the second set of the condltlonal independence require-
ments above puts constraints on pp ,, we see that p is G-Markovian, where G
is obtained from G by connecting all vertices in A. Thus we get, as B also is a
strong collection in G, that p, is a CG-density and hence p = p 1D/Dy is a
CG-density because it is of the right form. To see that P also is G-Markovian,
it suffices to show that a L 8|V \ {a, B} for all nonadjacent pairs « and 8. We
consider three different cases. It is obviously true in the case where a or g
belongs to B. If « € A \ bd(B) and B & B, we first consider P. As bd(B)
separates B and A \ bd(B) in G, we have that A \ bd(B) L B|bd(B) under
P, but this conditional independency in fact only concerns p B|a» SO it must also
be true under P. If we combine this with a L B|A \ {a, B} we get the desired
conditional independence. The last case where both a and 8 belongs to bd(B)
is more tricky. We divide B into B, and B,, where B; is the union of all
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connected components B’ of B for which « € bd(B’) and B, = B \ B;. As B
is a simplicial collection in G we have that A \ {a, B} separates B, and B and
that B; U A \ {a, B} separates « and B, in G. This implies the two condi-
tional independencies a L B;|A \ {a, 8} and a L B,y|B; U A \ {a, B} are true
under P and hence also under P. Again we combine with « L B|A \ {a, B} and
get the factorization of the density:

P = PAN (o, yPie, BYAN (e, B}PB1APBy B, U A
= PaN{a,B1Pa|AN(a, BYPBIAN (@, BYP B AN(BYPBy B, U AN (0}
As no factor contains both a and B, we have that « L 8|V \ {a}. O

LeEMMA 5.3. Let {P"},_, be a sequence of CG-distributions on 2. If P"
converges weakly to P and P has positive density, then P is a CG-distribution
on Z. If furthermore P" is G-Markovian for each n, i.e., {P"}:_, c .2(Q),
then P is G-Markovian, i.e., P € #(QG).

Proor. P" —¥_ _ P implies that P'(i) —,_. Py(i) for each i €I and
that the conditional distribution of Y given I =i under P" converges weakly
to that under P, for each i such that P,(i) > 0. The latter again implies that
the conditional distribution of Y given I = i under P is Gaussian if P,(i) > 0.
Now, if P has positive density, then P,(i) > 0 for every i € I, and the
conditional distribution of Y given I = i must be regular Gaussian, i.e., P is a
CG-distribution. It can also be shown that for every A C V the density p,,
given by p(x,) = lim,, _,,, pZ(x,), is a density for P,. Soif A L B|C [P"], that
is

PiuBuc(%a, 25, %c) = PAuc(Xa, %) PEuc(%p, Xc) /PE(%c),
then

Pavsuc(Xa, X, %c) = Pauc(Xa, Xc)Ppuc(xp, x¢) /Be(xc),

or equivalently A L B|C [P]. Thus the last statement in the lemma is shown.
O

Now we can formulate the main theorem, recollecting that P[ ) denotes the
maximum likelihood estimate in .Z(G,).

THEOREM 5.4. Let G = (V, E) be an undirected graph and let A C V. Then
the following are equivalent: ‘

(i) G is collapsible onto A, i.e., #(G), = #(G,).

(ii) V \ A is a strong and simplicial collection in G.

(iii) (@) If A; L A,|C [.#(G)] and A;, A, C A, then A, L A,|C N A [.#(G)]
and ) ANA LT NAANA[LZG). .

(iv) #(G) is equal to the chain model .#(G, D), where V, = A, V,=V\ A
and 9 = {V,,V,}.

) X, is a cutin #(G).

(vi) If P exists, then P, = P
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Proor. The theorem will be proved as follows (i) < (i) = (iv) = (v) = (@),
(ii) < (iii) and [(@) and (v)] = (vi) = @).

Using Corollary 3.4 and Theorem 4.3 we see that (i) < (ii). Lemma 5.2
yields (ii) = (iv) and by the recursive definition of the chain models we see that
(iv) implies (v). So now suppose X, is a cut in .#(G), ie., #(G) = #(G), X
A#(G)2. We know that P° € .#(G) and as a consequence P2, , € .#Z(G)".
This implies that P, € .Z(G), if and only if py(x,) - p%. 4(xy . 4) belongs to
#(G), which is easily seen to be true if and only if P, is a G4,-Markovian
CG-distribution. This proves (v) = (i). The equivalence of (ii) and (iii) is a
consequence of the equivalence of separation in G and conditional indepen-
dence under .#(G); the details are given in Sections 3 and 4. The only thing
left is to show [(i) and (v)] = (vi) = (i).

First assume that X, is a cut in .#(G) and that .#(G), = .#(G,). Then the
likelihood function factorizes as L(p) = L,(p,) - L*(p*), where L, is the
marginal likelihood function for .#(G,) and L# is a conditional likelihood
function. So if p maximizes L(-), then, due to the variation independence of
pa and p%, p, will maximize L,, ie., P, =P, and [() and ()] = (vi) is
shown.

Finally, assume (vi) is true and let P €.#(G). If we can show that P, €
#(G,), we are finished. Due to the fact that .#(G) is a regular exponentlal
family [see, e.g., Barndorff-Nielsen (1978)], there exists a sequence {x};_;
2> and an n, such that the maximum likelihood estimate P based on
{x®)r_, exists for n > n, and P™ converges weakly to P [see Andersen
(1969)]. As a consequence P{» = 15[( ] converges weakly to P,, which has a
positive density, and using Lemma 5.3 on {P[ 4} and P, we see that P, €
#(Gy). This concludes the proof. O

If C is a complete set, then the question whether G is collapsible onto C is
only the question whether .#(G), is a class of CG-distributions, because G,
does not prescribe any conditional independencies. So in the pure cases, i.e.,
I' = @ or A = &, where the distributional type is preserved under marginaliza-
tion, .#(@) is collapsible onto all the complete subsets. In the mixed case this
is not true in general. If for instance G is connected and C only contains
continuous vertices, then V \ C is not a strong and simplicial collection,
implying that .#(G). is not a class of CG-distributions on 2 (multivariate
Gaussian distributions).

COROLLARY 5.5. Let A and B be subse‘ts of V. If G is collapsible onto A, then
Gy is collapsible onto A N B.

Proor. It is easily checked that if VN A is a strong and simplicial
collection in G, then B \ A is a strong and simplicial collection in Gz. O

The equivalence of (ii) and (iv) in Theorem 5.4 shows that the sufficient
condition given in Lemma 5.2 for equivalence of an undirected model and a
chain model with two chain elements is also necessary. Using the recursive
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definition of the graphical chain model, an induction argument yields the
following general results, first proved in Lauritzen and Wermuth (1984).

PRrOPOSITION 5.6. Let 9 = (V)| be a dependence chain. Then #(G) =
(G, D) if and only if for every t, V, is a strong and simplicial collection
in Gy,

One of the many consequences of collapsibility is that it leads to a factoriza-
tion of the maximum likelihood estimate. This is due to a close connection
between the concept of strong decomposition of G and strong and simplicial
collections in G.

DEeFiNITION 5.7 [Leimer (1989)]. A triplet (A, B, C) of disjoint subsets of V
is called a decomposition of G if

@V=AUBUZC.
(ii) C separates A and B in G.
(iii) C is complete.

It is called a strong decomposition if BcT or C C A.
THEOREM 5.8 [Frydenberg and Lauritzen (1989)]. If (A, B,C) is a strong

decomposition of G, then P exists if and only if P[ auc) and P[ Buc; both exist,
and in that case

ﬁ[AuC](xAuc) : ﬁ[BuC](xBuc)
ﬁ[C](xc)

p(x) =

Now let A c V and let By,..., By be the connected components of V \ A.
We see that V \ A is a strong and simplicial collection in G if and only if
(V' \ cl(B,), B,,bd(B,)) is a strong decomposition for each 1 < ¢ < T.

THEOREM 5.9. If G is collapsible onto A, then
P exists if and only if 15[ Ay and 15[01( Byp 1 <t < Texist

and in that case
T

l—[ [cl(B,)](xcl(B,))

p(x)=p alxa) =
LA4) t= p[bd(B,)](xbd(B,))

Proor. Setting Vo=V and V,=V,_{\ B, for 1 <t < T, it can be seen
that (V, \ bd(B,), B,,bd(B,)) is a strong decompos1t10n of Gy, . This implies
that

Py, exists if and only if Py, and Py p, exist

and that Py, = P, (Bras,/Pwacs,y- Using this recursively and, finally,
noting that V, = A, gives the wanted results. O
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ExampLE 5.10 (Example 3.7 continued). .#(G) is not collapsible onto {y, «)
or {8, v} but onto {«a, B}. Using Theorem 5.9 we have that p exists if and only if
Dty ap Pia, pp Pla,s) @0d Dig . €xist, and that

ﬁ[% a](y’)" ya)ﬁ[a,ﬁ](ya7 iB)ﬁ[a,&](ya7 ya)ﬁ[ﬁ,u](iﬁy ly)

ﬁ(iu’iﬁ’y:S’ya’y ) = X~ 2 A .

4 p[a](ya) p[B](lB)

One should note that the questions of existence and calculation of the maxi-
mum likelihood estimate is reduced to the simple question of maximum
likelihood estimation in four saturated models.

The result in Theorem 5.9 can be used to show that the likelihood ratio test
for removing some edges in G can sometimes be performed in marginal
models. A discussion of this in the discrete case is given in Asmussen and
Edwards (1983).

Finally, it should be noted that all the stated results hold, if we only
consider the homogeneous graphical models, i.e., the class of G-Markovian
homogeneous CG-distributions. This follows because we have proved that this
class is Markov perfect (see the remark after Theorem 2.3) and the fact that if
the marginal distribution of a homogeneous CG-distribution is a CG-distribu-
tion, then it is homogeneous too.

Acknowledgments. 1 would like to thank Professor Ole E. Barndorff-
Nielsen and Professor Steffen L. Lauritzen for their discussion of this paper,
which essentially is based upon material in Frydenberg (1986).

REFERENCES

ANDERSEN, A. H. (1969). Asymptotic results for exponential families. Bull. Inst. Internat. Statist.
43 241-242.

AsMUSSEN, S. and Epwarps, D. (1983). Collapsibility and response variables in contingency tables.
Biometrika 70 567-578.

BARNDORFF-NIELSEN, O. E. (1978). Information and Exponential Families in Statistical Theory.
Wiley, New York.

DarrocH, J. N., LAURITZEN, S. L. and SpeED, T. P. (1980). Markov-fields and log-linear models for
contingency tables. Ann. Statist. 8 522-539.

Dawp, A. P. (1979). Conditional independence in statistical theory. J. Roy. Statist. Soc. Ser. B
41 1-31.

Dawip, A. P. (1980). Conditional independence for statistical operations. Ann. Statist. 8 598-617.

DEMPSTER, A. P. (1972). Covariance selection. Biometrics 28 157-175.

Epwarps, D. (1990). Hierarchical interaction models. J. Roy. Statist. Soc. Ser. B. To appear.

FRYDENBERG, M. (1986). Blandede interaktionsmodeller, kausale modeller, kollapsibilitet og esti-
mation. Thesis, Statistiske Interna nr. 42, Aarhus Univ. (in Danish).

FRYDENBERG, M. and LAURITZEN, S. L. (1989). Decomposition of maximum likelihood in mixed
graphical interaction models. Biometrika 76 539-555.

LauriTzEN, S. L. and SPIEGELHALTER, D. J. (1988). Local computations with probabilities on
graphical structures and their application to expert systems. J. Roy. Statist. Soc. Ser.
B 50 157-224.

LAURITZEN, S. L. and WErRMUTH, N. (1984). Mixed interaction models. Report R 84-8, Inst. of Elec.
Syst., Univ. Aalborg.



COLLAPSIBILITY IN GRAPHICAL MODELS 805

LAURITZEN, S. L. and WERMUTH, N. (1989). Graphical models for associations between variables,
some of which are qualitative and some quantitative. Ann. Statist. 17 31-57.

LEIMER, H.-G. (1989). Triangulated graphs with marked vertices. Ann. Discrete Math. 41 311-324.

PEARL, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, Calif.

PortEOUS, B. T. (1985). Properties of log-linear and covariance selection models. Ph.D. thesis,
Cambridge Univ.

SHACHTER, R. D. (1986). Evaluating influence diagrams. Oper. Res. 34 871-882.

WERMUTH, N. and LAURITZEN, S. L. (1990). On the interpretation and analysis of data using
conditional independence graphs and graphical chain models. J. Roy. Statist. Soc. Ser.
B. To appear.

YAkOwITZ, S. J. and SPRAGINS, J. D. (1968). On the identifiability of finite mixtures. Ann. Math.
Statist. 39 209-214.

DEPARTMENT OF THEORETICAL STATISTICS
INSTITUTE OF MATHEMATICS

UNIVERSITY OF AARHUS

DK-8000 AarnHus C

DENMARK



