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VOLUMES OF TUBULAR NEIGHBORHOODS OF SPHERICAL
POLYHEDRA AND STATISTICAL INFERENCE!

By DANIEL Q. NAIMAN

The Johns Hopkins University

For statistical procedures including Scheffé-type simultaneous confi-
dence bounds for response surfaces and likelihood ratio tests for an addi-
tional regressor with unspecified parameters in a regression model, the
confidence level or size can be expressed in terms of probabilities of the
form P[U € D(T,0)], where I' is a subset of S™ (the unit sphere in
R™*1), U is uniformly distributed in S™ and D(T, 6) denotes the tubular
neighborhood of T of angular radius 6, the set of points in S™ whose
angular distance from I' is at most 6. Consequently, determining critical
points involves the calculation of the volumes of tubes. For the case when T
is the diffeomorphic image of an r-dimensional convex polytope, an upper
bound is given for the volume of its tubular neighborhood when the tube
radius is sufficiently small, and which is exact in some special cases. Even if
the tubular radius is moderate in size, the expression can be used to
approximate the volume. The volume expression is a sum of r-fold inte-
grals, one corresponding to each face of the polytope, and is derived using a
result of Weyl (1939), which gives the volume of a tubular neighborhood of
a k-dimensional submanifold of the unit sphere. Use of the expression
leads to conservative statistical procedures when the desired error probabil-
ity is sufficiently small and to asymptotically valid procedures as the error
probability goes to zero.

1. Introduction. For certain statistical procedures that arise in the mul-
tiple regression setting, critical probabilities can be expressed in terms of
probabilities of the form P[U € D(T, 6)], where T is a given subset of S™ (the
unit sphere in R™*1!), U is uniformly distributed in S™ and D(T, ) is the
so-called tubular neighborhood of T' of angular radius 6, that is,

D(T,0) = {u esS™: ;gfll cos Hy'u) < 0},

the set of points in S™ whose angular distance from I is at most 6. Finding
critical probabilities reduces to the volume of tubes problem for T, that of
determining the m-dimensional volume of the tubular neighborhoods of T for
varying tube radii.

There has been a considerable amount of interest in the volume of tubes
problem going back to Steiner (1840) and Bertrand and Diguet (1848), who
obtained partial results for the case when I' is a curve. Hotelling (1939),
motivated by statistical applications, proved that the volume of the tubular
neighborhood of a closed curve in S™ or R™ is the product of the length of the
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curve and its cross-sectional (m — 1)-dimensional volume, provided the curve
does not overlap itself and the tube radius is sufficiently small. Weyl (1939)
generalized the Hotelling result by giving an analogous formula for the volume
of the tubular neighborhood of a submanifold of arbitrary dimension in S™ or
R™. His formula is an r-fold integral, where r is the dimension of the
embedded submanifold, which is somewhat surprising since one would naively
expect the volume to be an m-fold integral. This reduction in the computa-
tional complexity of the problem can be an important consideration for the
statistical applications described below where m, the dimension of the ambient
space, grows with the number of observations.

The statistical procedures described in Section 2 have type I error probabili-
ties which can be evaluated once the volume of tubes problem is solved for a
corresponding set I'. In Section 2.1, T" represents the set of potential settings
of the predictor variables in a regression model and the problem is to construct
simultaneous confidence intervals for the regression function evaluated at
each point in I'. For the problem described in Section 2.2, one wishes to test
whether an additional term that depends on some unknown vector-valued
parameter ought to appear in a regression model, and I' represents the set of
possible values for the portion of the expected response vector corresponding
to the hypothesized term, for a given design. In either case, the formulas of
Hotelling (1939) and Weyl (1939) may not be immediately applicable because
additional constraints on T give it a boundary and it is no longer a submani-
fold. One may choose to ignore this constraint information, but incorporating
it can lead to smaller volumes, hence to narrower confidence intervals or more
powerful tests.

A solution to the volume of tubes problem for more complicated sets I' is
given in Section 3, where convex geometry and differential geometry are used
to give a volume formula analogous to the one in Weyl (1939). The sets I" dealt
with here are those which can be represented as the image of an r-dimensional
polytope @ € R” under an infinitely differentiable transformation ®, where ®
extends to an open set U containing I' and has nonvanishing Jacobian. The
formula, like Weyl’s turns out to depend on the embedding ®, only via the
induced Riemannian metric on U, that is, on the positive definite matrix
(0P /du;,d®/du ;) defined at each point in U. The formula is guaranteed to
give an upper bound for the volume when the tube radius is sufficiently small.
In many situations the formula is exact although general conditions guaran-
teeing this are difficult to give. In any case, for the applications below upper
bounds for the volume lead to upper bounds for type I error probabilities and
hence to conservative procedures. These bounds are iterated integrals over
simplices of smooth functions whose Monte Carlo evaluation should lead to
better coverage probability estimates than those based on the naive Monte
Carlo hit-or-miss method, for small tube radii. This is because in the hit-or-miss
approach the function being integrated is the indicator function of a small
subset of Euclidean space, which gives the estimate a high degree of variabil-
ity. Methods for estimating the critical tube radius when the formula breaks
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down are discussed in Section 4. A fairly easy to calculate upper bound for this
critical radius is given.

Formula (3.8) combined with Theorem 3.3 of Section 3 generalizes a
weakened form of the inequality in Naiman (1986), whose proof has been
simplified by Johnstone and Siegmund (1989). There I' is the image under a
piecewise differentiable map of an interval, and the tubular neighborhood
contains two additional caps at the endpoints of the curve. The inequality
states that when the Hotelling formula is modified by adding the additional
cap volume, the resulting formula gives an upper bound for all tube radii. The
complete generalization of the result in Naiman (1986) to higher-dimensional
sets I, that is, the problem of finding a formula which yields an upper bound
for the volume for all tube radii, remains open.

For additional statistical applications of the volume of tubes problem be-
sides the ones mentioned in Section 2, the reader is referred to the work of
Johansen and Johnstone (1990), Knowles (1987) and Knowles and Siegmund
(1990). The Weyl (1939) formula has also been used to give probabilistic
analyses of certain numerical analysis problems by Demmel (1988).

2. Applications to statistical inference.

2.1. Simultaneous confidence bounds for regression functions. The use of
predictor variable constraints for obtaining improved Scheffé-type simultane-
ous confidence bounds for a response surface, under the usual multiple
regression model assumptions, has been of interest for some time, since the
Working and Hotelling (1929) and Scheffé (1953, 1959) procedures have been
recognized as overly conservative. Indeed, progressively more and more com-
plex types of predictor variable constraint sets have been found to lead to
Scheffé-type bounds with tractable coverage probabilities since Scheffé intro-
duced his method, which is appropriate when the predictor variables are
constrained to lie in a linear subspace.

Consider the typical multiple regression model where one observes

(2.1) Y=AB8+e,

where B is £ X 1 and unknown, A is a known full-rank n X k& matrix, v =
n—k>0and e~ Ny(0,0?l,), with o unknown. The results described below
have obvious analogues under the weaker assumption that € has a spherically
symmetric distribution. Suppose oneis interested in investigating the behavior
of the regression function E(y) = x‘8 for various settings of the predictor
variables, that is, for x ranging throughout a given constraint set X c R*.
One may construct confidence intervals for x’8 of the form

(22) J,= [x‘ﬁ - c&\/x‘(A‘A)_lx , B + c&\/x‘(A‘A)_lx],' VxeX,

where B denotes the least squares estimator of B, 6 denotes the usual root
mean squared error estimator of ¢ and c is a positive constant. Since one can,
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if necessary, replace A by AP~!, 8 by PB and X by (P?)"'X, where P is a
k X k matrix with P(A'A)~'P* = I,, it will be assumed without loss of gener-
ality that the design is orthogonal, ie., AA = I,.

Collections of confidence intervals of the form (2.2) are referred to as
Scheffé (1953, 1959)-type simultaneous confidence intervals (SCI’s) over X.
One-sided confidence intervals, obtained by setting the left (right) endpoint of
the intervals J, to — (+) may also be considered, and the results of this
paper apply to that situation as well. One important measure of overall
performance for such a collection is their simultaneous coverage probability,
namely,

(2.3) p(X,c) =P[x'Bed, VxeX].

The family (2.2) is said to achieve a simultaneous confidence level of 1 — a if
p(X,¢) = 1 — a. This paper gives a lower bound for the simultaneous coverage
probability of Scheffé-type SCI’s which is appropriate for a large class of
constraint sets. This bound allows for the construction of narrower Scheffé-type
SCTI’s over given X with at least some prescribed confidence level.

The Scheffé (1953, 1959) method for constructing simultaneous confidence
intervals over given X with prescribed confidence level 1 — « is based on the
following observation. When X is a linear subspace of dimension g in R*, the
coverage probability (2.3) is given by F, , ,(c?/q), so that one may use
c= ‘/ qF, (1 —a) to obtain a family of SCI’s over X with coverage
probability exactly 1 — a. (This result is a simple consequence of Lemma 2.1.)
Even if X is not a linear subspace, one may replace X by its linear span and
use Scheffé’s method. In many applications, when X is replaced by its linear
span the resulting coverage probability calculation is simplified, but one pays a
price, since the larger constraint set leads to wider confidence intervals. A
great deal of research effort has been directed toward finding other constraint
regions for which p(X, ¢) remains tractable. See Halperin and Gurian (1968),
Bohrer (1967), Bohrer and Francis (1972), Wynn and Bloomfield (1971),
Cassella and Strawderman (1980), Uusipaikka (1984), Wynn (1975), Naiman
(1986, 1987) and Knafl, Sacks and Ylvisaker (1985), for example.

Constraint sets for predictor variables arise naturally in experimental work.
For example, it is often the case that the experimenter can specify the practical
range of values for each predictor variable by g1v1ng a lower and upper bound
for each, so that the resulting constraint set is a rectangular region. Some-
times the predictor variables are fractions of components in a mixture and the
constraint set is simplex [see Cornell (1981)]. A large class of constraint sets,
which can be handled using the method described in this paper, arises in the

following manner. Suppose there are several predictor variables x,, ..., x, and
the regression function is a linear combination of known functions
fd0sy,. .., x,.),..., ..., x,). For example, these might be polynomials or

trlgonometrlc functlons If each predictor x; is constrained to lie in an interval
, then the constraint set for bounding the regression function is the de-
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formed hyperrectangle

{(fl(xl)”',xr)"'-’ fk(xly'-'yxr)):ijIj)j= 1,...,7‘}.

Much more complicated constraint sets might be envisioned for a complex
experiment, but even most of the simplest examples thus far have been
considered unwieldy.

The connection between the simultaneous inference problem and the vol-
ume of tubes is made in the following lemma. A proof may be found in Naiman
(1986).

LemMma 2.1 [Uusipaikka (1984)]. For the model (2.1), define T = {||x|x:

x € X} cS8* ! and let —T denote {—y: y € I'}. Then for the family (2.2) of
confidence intervals, the coverage probability is given by

(2.4) p(X,¢)=1- f”/:P[U eD(T U - T,0)]g(6) de,
9=

where U has a uniform distribution in S*~! and

k cos? 0 ) 2k cos 0 sin 60
c

14 ( 0) =f, v,k ( 2 2 ’
c
where f, , denotes the density function of the F, , distribution.

The Scheffé (1953, 1959) method for bounding all linear combinations of
the parameters corresponds to the case when I' = S#~! so that the exact
coverage probability is obtained by replacing P[U € D(T' U —T,6)] in the
integrand in (2.4) by 1. For smaller constraint sets I', following Naiman (1986),
a lower bound for p(X,c) is obtained by ignoring the intersection of the
antipodal sets D(T',0) and D(-T, 8) and replacing the term P[U € D(I' U —
T, 6)] in the integrand in (2.4) by 2P[U € D(T, 9)]. Then

p(X,c) =1~ f{*OZP[U e D(T, 8)]g(6) do
9=

(2.5)

—["?P[UeD(I' U - T,6)]g(6) do
o=C*

for any {* € [0, 7/2]. If T is regular in the sense described in Section 3.1 and
if {* denotes the critical radius in Section 4, then the first integrand can be
replaced using (3.8) and the volume formula of Theorem 3.3 and the second
can be replaced by a crude upper bound to yield a lower bound for p(X, c).
Even if the upper bound of 1 is used for the probability in the second integral
the resulting procedure is guaranteed to improve on Scheffé’s. Asymptotically,
as the desired coverage probability converges to 1 the weight function g is
concentrated more in the range [0, {*], so the improvement becomes more
pronounced.
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2.2. Testing for additional structure in a regression model. The connec-
tion described in this section between the problem of testing for additional
terms in a regression model and the volume tubes was pointed out by
Hotelling (1939). For recent related work see Knowles and Siegmund (1990).
Consider the regression model

(2.6) Y, =x!B + cf(x;,0) + e, i=1,...,n,

where B € R*, ¢ € R, § € ® C R” are unknown parameters, the design points
x; are assumed to be known and lie in a set X c R*, f is a known function
defined in X X © and the e, are iid N(0, 0?) with ¢ unknown.

The problem is to find critical points for the likelihood ratio test of H: ¢ = 0
vs. A: ¢ # 0. For example, Hotelling (1939) considered testing whether there is
a sinusoidal component of unknown amplitude, phase and frequency, in time
series data, assuming a model of the form Y; = B, + ¢ sin(wt; + y) + ;. Here
6 = (w, y) is an unknown point in R?2.

Define column n-vectors X; =[x;;,...,x,,[, for j=1,...,k T,=
[f(xp,0),..., f(x,,), Y=[Y,...,Y, T and let V denote the subspace of R"
spanned by the X;. Geometrically, the null hypothesis states that the expecta-
tion of Y lies in V, while under the alternative hypothesis, we modify this
expectation by adding a vector of the form c¢T,. In order to make the parame-
ters identifiable, it is assumed that T, € V for all § € ® and that the vectors
T, and T, are not positive multiples of one another for 6 # 6. The problem
can be put into a canonical form by subtracting from each T, its projection
onto V, and it will be assumed without loss of generality that T, € V * for all
0 € O, where V* denotes the orthogonal complement of V.

The likelihood ratio test rejects H when the ratio of error sums of squares

infB,c,OllY - z:j«?=1Bij - cT0||2

(2.7 ~
||Y - Zf=1Bij||2

is sufficiently small, where 8 denotes the maximum likelihood estimator of 8
under the null hypothesis. Using the assumptions above the test statistic (2.7)
becomes

inf {
B,c,0

2

k
Y- ) BiX;| — (Y, cTy) + [Tyl /1181
j=1

k 2 '
inf{ Y- Y BX;| —2(Y,cT,) + ||CTe||2}/||é||2
j= .

c,6

k 2 k
inf{ Y- ) BiX;|| -2 <Y— Y B;X;,cT, >+ ||CT0||2}/||6||2
: =

c, 6 j=1

infllé — cT,|2/lle)? = 1 — sup(v'U)’,
c,0 yel
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where é denotes the residual vector é =Y — Zf=1[§ij, U=é/||é||and T =
{T,/|IT,l: 6 € ® < S™~ L. Thus, the test rejects H when U € D(T, 6) for some
6> 0.

To determine critical points for the test, one must be able to evaluate the
volume of D(T’, 9) for given 6. If T is regular as in Definition 3.1, then Section
3 gives a method for bounding this volume for all sufficiently small 6 and this
allows for the possibility of constructing a conservative test. The condition that
6 be sufficiently small corresponds to the requirement that the type I error be
sufficiently small.

3. Volume of tubular neighborhoods. Many terms from convex geom-
etry including convex hull, conical hull, convex polyhedron, convex cone, polar
cone and cone of feasible directions are used below. Although the definitions
are fairly standard, they and some basic results are reviewed in Appendix A for
the reader who is unfamiliar with them. Stoer and Witzgall (1970) give a
thorough treatment of the subject matter that appears in this appendix. It is
assumed that the reader is familiar with basic concepts in differential geome-
try, for which the author found Hicks (1971), Boothby (1986) and Spivak
(1979) to be particularly helpful.

3.1. A class of constraint sets. A class of constraints sets is defined now.
To fix some terminology, for a manifold M and any point x € M, the tangent
space of M at x will be denoted by M. If f: M — N is a C* mapping between
manifolds and x € M, the differential of f, which is the linear mapping f
induces from M, to Ng,,, will be denoted by f, . The reader who is unfamiliar
with differential geometry is warned that while this mapping and others (e.g.,
vector fields) implicitly depend on a ‘‘base point,” typically this is not indicated
so as to simplify the notation.

DerFINITION 3.1. T'c S™ is called regular if for some r there exists a
bounded r-dimensional polyhedron @ c R", an open set U2 Q and a C*
mapping ©: U —» S™ such that ®,: U, > Sg,, is one-to-one for every x € U
(so that ® is locally one-to-one) and (@) =T.

It is necessary to introduce more terminology. The natural identification of
the tangent space U, with R” and the corresponding identification of (S™),
with a subspace of R™*! will be used repeatedly. This allows one to view
®,: U, - (S™)g(,, as a mapping from R” into R™*'. The Riemannian metric
on S™ is taken to be the one it inherits as a submanifold of R™*! with its
usual metric, so the inner product between vectors in (S™)4,, is the usual
inner product between vectors in R™*!. &, defines a vector space isornor-
phism between U, and its image for each x € U. The reader may find explicit
use of the usual coordinate systems in R” and R™*! illuminating, and their
use will be important in actual calculations. The coordinate mappings in R”
will be denoted by x,,...,x,, so that the associated tangent vectors d/dx;,
i=1,...,r, form a basis of U,.
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3.2. A decomposition for tubular neighborhoods. Fix a regular set ' ¢ S™
for the remainder of Section 3 and fix @, U and ® as in Definition 3.1. Since U
can be taken to be contractible and this property will be needed in Section 3.5,
it will be assumed that this is indeed the case. Assume

Q={xeR"(v(i),x) <c;,,i=1,...,q9},

where v(1),..., v(g) ER" and ¢y,...,c, €R and ( , ) denotes the usual
inner product in R”. Each x € @ lies in an open face of @, that is, a set of the
form

Fi={xeR"(v(i),x)=c;,Vieland (v(i),x) <c;,Viel},

for some I c{l,...,q)} [see Appendix A (A.3)]. Two subsets of indices may
define the same face. Let .# denote the set of nonempty faces F;. If x € F},
then by Proposition A.3(a) (Appendix A), the cone of feasible directions at x
relative to @, that is, the set of vectors that point into @ from x, is the
polyhedral cone

Cr.={ueR"(u(i),uy <0,Viel}.

Identical cones are obtained as x varies throughout Fj, so at times there
should be no confusion if they are denoted by C,.

DerFINITION 3.2. A point u = ®(x), for x € F}, is said to be a projection of
v € S™ onto I associated with the face F; if u minimizes the angular distance
p(u,v) = cos™N(u'v) among all points in ®(Q N B(x,¢)), for some & > 0,
where B(x, ¢) denotes the open ball centered at x with radius &. The set of
projections of v onto I' associated with F; is denoted by mp(v).

RemARK 3.1. Every point v € S™ has a projection associated with some
face. To see this, let u be any closest point in T to v. By (A.8), u € ®(F}), for
some I c{1,...,q}, and it follows that u € (V). Furthermore, v may pos-
sess multiple projections which may be associated with either the same face or
with different faces.

The tubular neighborhood D(T,8) decomposes into a union of *facial
neighborhoods.” To be precise, define

D*(F,,0) = {v e D(T,0): inf p(u,v) < o}
. u€wpv)

for I c(1,...,q}. Then

(3.1) D(T,0) = |J D*(F,,90),
Fes

by Remark 3.1. The sets making up this union need not be disjoint. As a
consequence of (3.1), the m-dimensional volume of D(T’, #) satisfies

(3.2) Vol(D(T,6)) < ¥ Vol(D*(F,,0)).
Fe &
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The uniform probability measure of a given subset of S™ is obtained by
dividing its volume by Vol(S™). As a matter of fact, Vol(S°) = 2, Vol(S?) = 27
and the recursion formula Vol(S™*2) = (27 /(m + 1))Vol(S™) is satisfied for
m > 2.

The reader may find (3.2) more illuminating by examining Figure 1, which
illustrates the tubular neighborhood decomposition for the cases when T is a
spherical arc [the case considered in Naiman (1986)] and when T is a spherical
triangle. There is not much intuition lost if these sets are viewed as subsets of
Euclidean space.

3.3. Covering of facial neighborhoods. The main result of this section is
Theorem 3.1, which gives a set D**(Fj, 6) that contains and approximates
D*(Fy,0) and has a convenient coordinatization. The facial neighborhoods of
the previous section have been defined by minimization of distance. There is
another process by which one may describe points in these sets and which is
used to construct the sets D**(Fy, 8). For a fixed face F; and a point x € Fy, a
point in D*(Fy, 0) closest to ®(x) is obtained by moving along a geodesic
whose initial point is ®(x) and whose tangent at ®(x) lies in a certain
polyhedral cone. Much of the work leading up to Lemma 3.2 involves finding a
useful description for this cone.

For this section fix I c{1,...,q} for which the corresponding face Fj is
nonempty.

F1G. 1. The tubular neighborhood decomposition for a spherical arc and a spherical triangle.
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DEFINITION 3.3. w: [0,1] = 8™ is referred to as a great circular arc
connecting u to v if there exists an orthogonal transformation T on R™*!
such that T'(u) = (1,0,...,0), T(v) = (cos(¢), sin(), 0, ...,0) for some §
[0,27] and T'(w(2)) = (cos(¢y), sin(¢), 0, ..., 0) for all ¢ € [0, 1].

The following facts are easy to verify. For any pair of points « and v in S™
with p(u, v) € (0, 7), there are exactly two great circular arcs connecting u to
v, one whose length is p(u,v), which is the smallest length of any arc
connecting u and v, and one whose length is 27 — p(u, v). If p(u,v) = , then
there are infinitely many great circular arcs connecting u to v, all of which
have the same length. For any u € S™ and 6 € (0, 27) and for any nonzero
tangent vector Y € (S™),, there exists a unique great circular arc w: [0,1] —
8™, which fits Y, that is, (0) =  and »'(0) is a positive multiple of Y and
this arc has length 6.

LemMMA 3.1. Let v € S™ and suppose u = ®(x) mr V), where x € F;.
Then ®,(C; ) is a polyhedral cone in (8™)4,, and if o is a great circular
arc connecting u to v, then w'(0) € ®,(C;,)?, where ®,(C; ,)” denotes the
polar cone to ®,(C, ,), that is,

<I>*(C,,x)p ={We (8™ ewx:(Z,W)<0, forallZ ®,(C; L)}

Proor. The first claim follows immediately from the fact that ®, is a
linear transformation and C; , is a polyhedral cone. Let W C; . so that n(¢)
defined by x + tW is in @ for all ¢ €[0,5] for some & > 0. Then ®on:
[0,8] — T is an arc with ® < 7(0) = u. Since u € m(v), there exists 7 € (0, §)
such that p(® - n(¢),v) = p(u,v) for all ¢ < [0, Tﬁ. It follows easily that
p(® o n(2), w(s)) = p(u, w(s)) for all ¢ €[0,7] and s € [0, 1]. Using Taylor ex-
pansions about ¢ =0 and s = 0, it follows that ((® < 7)(0), ' (0)) < 0. The
result then follows since (® - )(0) = ®,(5'(0)) = ®,(W). O

The following notation will be used below. Any z € S™ and any tangent
vector Y € (8™), may be viewed as elements of R™*!, whose sum u + Y
(which, when normalized by dividing by its Euclidean length, defines an
element of S™) will be denoted by [« + Y1 Thus, [u + Y] is obtained by
moving in 8™ the angular distance tan"!(||Y|)) from z along the great circular
arc obtained by projecting the ray {u + ¢Y: + > 0} in R™"! onto the unit
sphere.

THEOREM 3.1 (Facial neighborhood covering theorem). Define
D**(Fp,0) = {[®(x) + Y]:x € F;,Y € ®,(C, )" and |Y|| < tan(6)}

for 0 < 0 < /2. Then D*(F,,8) C D**(F,, 9).
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Proor. If v € D*(Fy,0), fix u = ®(x) € mp(v), where x € F, such that
p(u,v) < 0.If p(u,v) = 0, then the result is immediate, so assume p(u, v) > 0.
Let o be the great circular arc which connects v to v and define Y =
(tan(p(u, v))/||0'(0)|Pw’(0). Clearly, v = [®(x) + Y] and ||Y|| = tan(p(u, v)) <
tan(6). It follows from Lemma 3.1 that «»'(0) € ®,(C; ,)? and hence Y €
®,(C; )P O

3.4. Decomposition of the covering sets. In this section, the cones
®,(C; )P appearing in the definition of D**(F},0) are described in more
detail. Each ®,(C; ,)? can be expressed as a sum of a cone contained in the
tangent space ®(U ), and a cone consisting of vectors normal to this tangent
space. In fact, a stronger statement is true: There are smooth vector fields
defined along F; that span these two cones. Such vector fields are crucial for
coordinatizing the sets D**(Fy, 0).

The reader may find it helpful to examine Figure 2 which shows D**(Fy, 6)
for one of the edges of a spherical triangle. Note that the set is spanned by two
vector fields along the edge of the triangle, where one of the vector fields ¥ is
actually tangent to the surface defined by the triangle and the other N is
normal to the surface. An arbitrary point in D**(F}, 6) can be represented as
the sum of a point x in the edge, a positive multiple of ¥ and a multiple of N.
Fix I c({1,...,q} corresponding to a nonempty face F; for the remainder of
this section.

Define &, = ¢,(3/dx,) for a = 1,...,r and x € U. Using the identification
of (8™) g, With a subspace of R™*!, ®, is the (m + 1) vector 4®/dx,. The
vectors ®, span the tangent space ®(U)4,,, of the submanifold &(U) at ®(x)
and they are linearly independent since @, is one-to-one.

Define the coefficients of the induced Riemannian metric in terms of the
above coordinate vectors g,; = (®,, ®5), for x € U. The bar over the g (and
over any expression defined in terms of g) is used to distinguish this expres-
sion for the metric from the expression for the induced metric in a submani-
fold and in different coordinates used in Section 3.5. Note that (g,,) is a
positive definite matrix for each x € U. Let the components of the inverse of

Fig. 2. The set D**(Fy;,0) when F; is the edge of a spherical triangle, and the vector fields N
and V.
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this matrix be denoted by g**. Define a mapping ¥: U, —» ®,(U,), for each
x €U by
r
(3.3) (W)= Y ZPWed,.
a,B=1

It is easy to verify that ¥ is the adjoint of ®, ~!, the (nonsingular) linear
transformation with the property

<W’Z>=<\P(W)’(D*(Z)>’ VW,ZGUx
It follows easily from (3.3) that

(U(W),¥(2)y = ¥ gPwWezP
a,B=1

forall W,Z € U,.

REMARK 3.2. The projection of a given Y € (R™*1),,, onto the tangent
space ®(U)g,, is given by the formula

r

L 2%, 1)e,.

This fact, which is not difficult to verify, will be used repeatedly in Section 3.5.

Lemma 3.2.  Ifx € Fy, then ®,(C; )P admits the direct sum decomposition
®,(Cy.)" = ¥(CF,) © B, (U)*,
where ®,(U,)* denotes the orthogonal complement of the linear subspace
©.,.(U,) in (8™)gy)
Proor. First note that
®,(Cr,) ={2,(Y):Ye U, and (v(i),Y) <0,V i eI}
={We o, (U): (v(i),®, Y(W))<0,Viel)
={We d,(U,): (¥(v(i)),W)<0,Viel}.

By Lemma A.Ill(a), the polar cone of ®,(C; ,), as a subspace of ®,(U,), is
given by

(3.4) con{¥(v(i)):i € I} =¥(con{v(i):i € I}),

where con(K) denotes the conical hull of K (see Appendix A). Since Lemma
A.III(a) combined with the definition of C; , gives

con{v(i):i € I} = CF,,
the set in (3.4) is ¥(CF,). Since ®,(C; ,) € ®,(U,), the result follows. O

The first term in the decomposition of Lemma 3.2 involves a linear mapping
of the same cone since the cones Cf, are identified in a natural way. However,



VOLUMES OF TUBES 697

the linear map ¥ varies as x varies along F;. Any fixed vector in the cone C}
maps in this manner to a vector field defined along F,, and spanning vector
fields of this form are used below to coordinatize the sets D**(Fy, 9).

Every point in D**(Fy, 0) can be expressed as a “sum” of a point x € F,
and a vector in the cone ®,(C; ). To coordinatize D**(FI, 0) it suffices to
coordinatize F; and ®,(C; ,)? separately. This process is carried out by the
somewhat technical operation of decomposing F; and ® «(C; )P into simpli-
cial pieces. The comments leading up to Theorem 3.2 show essentlally that it
suffices to consider the case when F; is a simplex and Cf is a simplicial cone,
the sum of whose dimensions is r.

To decompose ®,(C; ,)?, first partition C{ into simplicial cones and map
this via ¥ to define a similar partition of ¥(Cf). Then apply Lemma 3.2. To
be more precise, note that by Proposition A.3(e) and (f) (Appendix A) CP =
con{v(i): i € I} is a pointed cone whose dimension is r — dim(F}). Let .¥; be
a collection of subsets of Cf with each subset consisting of exactly r — dim(F;)
elements, such that:

P1. dim(con(K)) = r — dim(F,) for each K € .%;.
P2. dim(con(K) N con(K") < r — dim(F;) for all distinct K, K’ € %;.
P3. Cf = U ke, con(K).

The existence of such a collection is guaranteed by Proposition A.2. In fact, .%;
can be constructed from {v(i), i € I} by standard algorithms. Since ¥ is linear,
con(¥(K)) = ¥(con(K)) for each K € %;. Since ¥ is nonsingular, ¥(K)
consists of exactly » — dim(F;) elements for each K € .#;. Furthermore:

PY1'. dim(con(¥(K))) = r — dim(F;) for each K € .%;.
P2". dim(con(¥(K)) N con(¥(K"))) < r — dim(F,) for all distinct K, K' € %;.
P3. W(CP,) = Ukey, con(W(K)).

It will be necessary to make use of a partition of Fj, the closure of F, into
simplicial polytopes, which is guaranteed by Proposition A.1. Let &, be a
finite collection of subsets of Fj, each consisting of dim(F,) + 1 elements, with
the property that:

P1". dim(conv(P)) = dim(F;), for each P € &,.
P2". dim(conv(P) N conv(P’)) < dim(F}) for all distinct P, P' € &,.

P3". F; = Upcy, conv(P).
conv(P) denotes the convex hull of P (see Appendix A).

THEOREM 3.2 (Covering set decomposition. Let %; and &, be as given
above. Define D**(P, K, 0) to be the set

(35) {[®(x) + Y]: x € conv(P), Y  con(¥(K)) ® ®,(R")*

and |Y]| < tan(B)}
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forall 0 <0 <w/2 and (P, K) € #; X %7. Then
(3.6) D**(F;,0) c U D**(P,K,¥9).

(P,K)e P x*7

Furthermore, the two sets in (3.6) differ by a set having zero volume and the
terms in the union in (3.6) intersect in sets having zero volume.

Proor. See Appendix B. O

As a consequence of Theorem 3.2,

(3.7) Vol(D**(Fy, 9)) = Y Vol( D**(P, K, 9)).

(P, K)e Py x.x;
Combining this with (3.2) and Theorem 3.1,

(3.8) Vol(D(T,0)) < ¥ )y Vol( D**(P, K, 9)).
Fe ¥ (P,K)e P X%,

Section 3.5 gives a method for bounding each of the terms in (3.8) provided 6
is sufficiently small.

3.5. Volume bounds. For this section fix I c {1, ..., g} defining a nonempty
face Fj, and fix &}, %; and (P, K) € &, X %; as in Section 3.4. An upper
bound is developed below for the volume of D**(P, K, #) for sufficiently small
0 €[0,7/2], where D**(P, K, ) is defined in (3.5). The restriction on 0 is
analogous to the restriction appearing in Weyl (1939). For the case when F; is
the interior of @, so that “locally”’ ®(F,) is a submanifold, the bound is the
same as the volume expression in Weyl. The terms corresponding to the other
(lower dimensional) faces are dealt with below by using a lemma due to Weyl
and a determinantal identity.

The first step is to develop a coordinatization of D**(P, K,#). This is the
analogue of the description in Figure 2; the result is given in Lemma 3.3. By
assumption P = {p(j), j=0,...,d} for distinct p(j) = (p(j),,..., p(j)")
and conv(P) is a d-dimensional simplex whose relative interior will be denoted
by P. Also

K = {x(i) = (x(i)%,...,x(i)"),i=1,...,r - d)
and con(K) is (r — d) dimensional. Since K c C? it follows easily that p(j) —

p) L k(@) for j=1,...,d and i =1,...,r — d. Define the standard open
d-simplex

d
S = {A =(A,...,A%) eR% Y M<1l,and NV > 0, for j = 1,...,d}
j=1
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and let ©: ./, > P, be the bijection defined by
d
®(2) =p(0) + X M(p(Jj) - p(0)).
Jj=1

The usual tangent vectors associated with the coordinate mappings A, ..., A,
in R? will be denoted by a/or;, j=1,...,d.

The set ®(P) is (locally) a d-dlmensmnal ‘submanifold of ®(U) whose
tangent space (CD(P))Q,(@( Ay corresponding to the base point ®(@(A)) is spanned
by the tangent vectors defined by

a ad
(39) Aa=(®°®)*(m) a

)= I (p(@)’ =p(©))e,

fora=1,...,d.

It will prove convenient to introduce the coefficients of the Riemannian metric
induced on this submanifold in terms of these coordinates by defining

8up = (Moy Apg) = Zrl (p(a)" = p(0)")(p(B)" —p(0)")z,,

m,y=1
fora,p=1,...,d.

For each x € U, the vectors ®, € (8™)g,, for a =1,...,r, which are
viewed below as column m + 1 vectors, are linearly independent and the
(m + 1) X r matrix-valued mapping x — (®,,...,®,) is C*. Since U is con-
tractible, there exist orthonormal vectors N(a) € (R”‘“)q,(x) for a =0,...,
m — r and x € U, such that the following properties hold.

(N1) N(0) is identified with ®(x) € S™.
(N2) N(a) L @5 forall a=0,...,m —rand B=1,...,r
(N3) N(a)is C~ function of the base point x for « = 0,...,m — r.

For a proof see Atiyah (1967), Lemma 1.4.4(2) and the discussion in Steenrod
(1951), Section 6.7. The N(a) are introduced in order to give a convenient
description of D**(P, K, 0). As in Weyl (1939), the volume turns out not to
depend on these vector fields. Note that N(a), a =1,...,m — r, span the
orthogonal complement of ®(U)g,; relative to (S™)g,,, while the N(a),
a= 01 ..,m —r, span the orthogonal complement of ®(U)y,, relative to
(R™ )q) .
Deﬁne( \Zector fields along ®(P):

V(k(i)) = 2 z g°P(i)*®g, i=1,...,r—d.

Since the (i) are normal to the tangent space of P, it follows from the adjoint
property of ¥ that each W(k(i)) is normal to the tangent space of ®(P).



700 D. Q. NAIMAN

Define the matrix of inner products 3 = (0;;) by letting

r

0 = (¥(k(0),¥(x(j)) = ¥ «(i)°x(j)’g**, i,j=1,...,r—d.

a,B=1

This matrix is a positive definite matrix since g*# is positive definite and the
k(i) are linearly independent. Define the associated quadratic norm

r—d 172
(3.10) £(t) = { Yy o-ijtitj} ,
i j=1
for t =(¢t%,...,t""%) € R"~¢ which is the length of the linear combination

YI2¢t'W(k(i)). The form ¢ can be used to define the ball of radius a > 0 in
the positive orthant

E(a) = {t e [0, +o)""?: £(¢) < a).
Note the dependence of ¥(«(i)), o;;, £ and E(a) on the base point A € P.

LEMMA 3.3. Define
E(6) = {(A,t,u) € A4 x E(tan(0)) X R™": ||u||? < tan?(9) — £2(¢)}
and Q: E() > R™*! by
r—d m-r
QA t,u) = 2(0(1)) + X £¥(x(i)) + ¥ u'N(i),
i=1 i=1

where ¥(x(i)) and N(i) have ®(®(1)) as base point. Then
D**(P,K,0) = {[Q(A,t,u)]: (A, t,u) € E(9)).

ProoF.
con(¥(K)) ® ®,(R")" = {ridti\lf(x(i)) + EruiN(i): t'>0,u' e R},
i=1 i=1

so the result follows from (8.5) and the fact that
2

= £2(t) + |lul® O

m-—r

k(1)) + X u'N(i)

i=1

The ¥(«(i)) define linearly 1ndependent vector fields along ®(P), tangent to
®(U) and normal to &( P), while the N(i) are orthonormal vector fields along
®(P) and normal to ®(U). Each point in D**(P, K, 0) is thus represented in
Lemma 3.3 as a sum of a point in ®(P) and a vector normal to ®(P), while the
normal vector itself decomposes as a sum of a vector tangent to ®(U) and a
vector normal to ®(U).

The first step in finding the volume of D**(P, K, ) is to proceed as in Weyl
(1939) and express the volume as an integral whose integrand is the determi-
nant of a matrix of partial derivatives. Then express this determinant in terms
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of the second fundamental form for the submanifold ®(P). This leads to the
expression in Theorem 3.3. Define the coefficients of the second fundamental
form (with raised index):

N CR YL
(3.11) GE(Q) = ngg ? <Aa’ axv o | J§1g ’ <6/\J ’ >

for o,p=1,...,d and i = 0,...,m — r. A key property of these coefficients
used by Weyl (1939) to simplify the determinant in the integrand, and which
will be utilized in a similar manner below, is the fact that

d
(3.12) II(aA ) = 221ci§(i)Aﬁ,

where II(v) denotes the orthogonal projection of the tangent vector v onto
span{Ag, B = 1,..., d}, the tangent space of ®(P).
The following similar observation will be used.

LEMMA 3.4. Let HE(i) be the coefficients with the property that

] d
1'[( K(i)))—_- EHf(i)AB, a=1,...,d,i=1,...,r—d.
N, il
Then
d
CHOEE WO Z: 2 < % o >Z g™ (p(n)" = p(0)").

n=
Proor. See Appendix C. O

Let H(i) [resp. G(i)] denote the d X d matrix whose a, 8 entry is HE(i)
[resp. GB(i)] for i=1,...,r—d (resp. i =0,...,m — r). Note the depen-
dence of these matrices on A. The proof of Theorem 3.3 is rather long and is
given in Appendix C.

THEOREM 3.3. The expression

f;\e/V fEE(tan(O)) det ‘fijh()H t, ytan?(0) — £2(2) )dtdal,

where

det A(A,¢t,u)

(m+1)/2

h(at,8)=[
weR™ " ul<A {1 + £2(¢) + |ul/?}
and where

At u) =T+ ¥ 6HGE) + 5 wiG)

i=1 i=1
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is an upper bound for the m-dimensional volume of D**(P, K, 0), provided the
matrix A(A, ¢, u) is nonsingular for (A, ¢, u) € E(0), and gives the exact volume
if the mapping (A, t,u) — [Q(A, t, u)] is one-to-one.

In Section 4 it is shown that A(A, ¢, u) is nonsingular for all (A, ¢, u) € E(6),
if 6 is sufficiently small. The remainder of this section focusses on evaluation
of h(A,t,A) for given A € #, t € [0, +»)""¢ and A > 0. At first glance, this
calculation seems to be a cumbersome chore. However, this calculation simpli-
fies quite nicely because h(A,?, A) can be expressed, using a determinantal
identity and a bit of calculus, as a sum of spherical integrals which are related
by a formula in Weyl (1939) to the coefficients of the metric Zap-

In order to describe the identity for the determinant of a sum of matrices
used below, it is necessary to introduce more notation. The set of permutations
of a given set X will be denoted by Sy and the sign of 7 € Sy will be denoted
by sgn(7). Let I(d, s) denote the collection of subsets of {1, ..., d} consisting of
exactly s elements. For a given d X d matrix B, the following notation is used
for its square submatrices. Let B i) denote the s X s submatrix of B

obtained by using as row indices the elements of J and as column indices the
elements of L for J, L € I(d, s). If the ordered elements of J are j,, ..., j,,
let j,,q,...,Jg denote the ordered elements of J¢ ={1,...,d} — J and define
Ts€8,...,ay BY i =J,, for i =1,...,d. Similarly, denote the ordered ele-
ments of L by /y,...,l; and those of L° by I,,,,...,1,. Also, define ; €
Sq,...qgbyi=1 , fori=1,...,d.

The following result is well known and is used implicitly in Weyl (1939) for
the case when B is the identity matrix. The proof involves a fairly elementary
argument and will be omitted.

Lemma 3.5. If B and C are d X d matrices, then

det(B +C) = séo J’Lg(d’s) Sgn(TJ)Sgn(TL)det(B(i))det(c(i:)),

where the determinant of a 0 X 0 matrix is defined to be 1.

Applying Lemma 3.5 to the matrix A(A, ¢, u) yields

d m—r ¢
det A(A,t,u) =Y X ¢(J,L)det( D uiG(i)(ic)),

s=0dJ,Lel(d,s) i=1

where

¢(J,L) = sgn(TJ)Sgn(TL)det(I(i) + :gjtiH(i)(i)).
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Since the coefficients ¢(J, L) do not depend on the variables «, it follows that
h(A,t,A)

det(Z g';;’uiG(i)(iZ))

2}(m+1)/2 u.

> ¢(J,L) [

s=0J,Leld,s) weR™ " |lu<A) {1 + £2(2) + |ul|

The integrals in this last expression are evaluated in the following lemma.
The proof involves changing to spherical coordinates and using elementary
calculus. Fix 0 < s < d and J, L € I(d, s). Let u denote the uniform measure
on the unit sphere and let V, denote the volume of the %2-dimensional unit ball
so that V, =1, V, =2 and the V, satisfy the recursion formula V, , =
@m/(k +2)V,.Let q=d —s +m —r — 1 and let & denote the incomplete
beta function with parameters (m — q)/2 and (¢ + 1)/2, i.e,,

@(y) _ fy Ox(m_q)/z——l(l _ x)(q+1)/2—1 dx.

-
LeEMMA 3.6.

det(Zi';‘{u"G(i)(‘I];))
/{ueam—r: <A} {1 + £2(2) + flu)?} "

L -m)/2 1 2
= E(m -r)V,_ {1+ gz(t)}(q % [,@(1) - .@(I_Jr_;%)(??”
ESUEPPIN L
x (uERm_r:|IuI|=ndet( P G(z)(Lc) w(du).

Proor. See Appendix C. O

As the final step in the derivation of a tractable expression for h(A,#, A)
note that Weyl (1939) gives a formula for each of the spherical averages in
Lemma 3.6 in terms of the metric defined by the embedding (the g,’s).

4. Critical radii for tubular neighborhoods. In this section, condi-
tions are given which guarantee that the matrix A(A,¢, ) in Theorem 3.3 is
nonsingular for (A, ¢, u) € E(6), so that to use Hotelling’s (1939) terminology,
“local self-overlapping” of the tubular neighborhood of angular radius 6 fails
to occur and the volume formula of Section 3.5 is an upper bound. The much
more difficult problem of giving conditions guaranteeing that ‘‘global self-over-
lapping” of the tubular neighborhoods fails to occur (so that the volume
formula is exact) is not addressed here. In the one-dimensional case, when
®(P) is a curve, Hotelling (1939) gives a critical radius based on the minimum
radius of curvature over all points of the curve. The situation for higher-
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dimensional sets I' is considerably more complicated because a different radius
of curvature is defined in each direction in the embedded manifold.

In the following discussion P and K are fixed as in Section 3.5 and the
matrices A(A, ¢, u), H(i) and G(i) are as defined there. Recall that G(i), H(;)
and o;; depend on A. Let % = (o0;;). For an arbitrary d X d matrix M, let
eig(M ) denote the set of (possibly complex) eigenvalues of M. Let p(M) denote
the spectral radius of M, that is, p(M) = max{|A|: A an eigenvalue of M}. The
I, norm of M is defined by |M| = {/£¢,_,M?

Since I + M is singular if and only if —1 € eig(M), it follows easily that the
matrix A(A,t, u) is nonsingular for (A, ¢, u) € E(8) for § < { and is singular
for some (A, ¢, u) € E(0) for 6 > {, where

r—d m—r
(41) ({=inf{>0:-1€ U eig| Y t'H(i) + Y, uJG(J))}
(A, t,u)eE@®) i=1 j=1
where the infimum is defined to be + if the set is empty.

It follows from Theorem 4.1 that { > 0. While ¢ gives the sharpest informa-
tion one would want in order to determine when the volume expression may be
suspect, it is quite difficult to calculate in general. Indeed, to find the matrices
G(i) is a straightforward but computationally intensive problem which re-
quires determination of the N(i). The size of this problem grows with m, the
number of dimensions of the ambient space (hence with the number of
observations in the statistical model). To complicate matters further, calcula-
tion of { requires determlmng for a given 6 whether —1 is an eigenvalue of
one of the matrices £ [_{#'H(i) + £ ™7 u’/G(j) for some (A,t,u) € E(6).

On the other hand, for practical purposes there is reason to suspect that in
a sense { is too conservative because the volume formula ought to give
reasonable approximations even when —1 is an eigenvalue for the matrix in a
small set of points. It is an open problem to find a more appropriate measure
of when the formula gives a good approximation or to find an estimate of the
error for the volume formula when 6 > ¢ fails.

Theorem 4.1 gives a conservative and easy to calculate bound for ¢. The
following notation will prove useful. The unique (r — d) X (r — d) symmetric
square root of 3 will be denoted by T = (v;;) so that ||'T¢|| = £(¢) for t € R™~¢,
Define d X d matrices

r—d
H(i) = Y v“H(j) fori=1,...,r—d,

j=1
where v'/ denotes the i, j element of T-1.

THEOREM 4.1. The inequalities { > {* > 0 hold where {* is defined by
r—d '
(%) = 1/ sup max| T AP, T “IGe).
i=1

ProoF. See Appendix D. O
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A simple computational formula for ¥ 7" ||G(3)||? is given in the following.
Thus, the dependence of {* on the second fundamental form does not hinder
one from calculating it. Denote the second derivative vectors of the embedding
map -0 by

32

a
®o®=_-—A4 fore,p=1,...,d.

4.2 Agg =
(4.2) BN, 00, A

a

These of course depend on the choice of base point A € /.

LEmMA 4.1. The identity

2

.

r d
£ (L e o
u,w=

d
> &P,
= n=1

n=1

m-r d
e - £ |

a,B=1

holds.

ProoOF. See Appendix D. O
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APPENDIX A

Some convex geometry. The following are standard definitions in con-
vex geometry which are used throughout Section 3.1. Fix V, a finite-dimen-
sional vector space over R endowed with a real-valued inner product denoted

by ¢, ).
For F c V the affine hull of F is the affine subspace given by

q q
aff(F)= {E)&ivi:AiER,viGF,i=1,...,qand ZAL=1}'

i=1 i=1

The dimension of F is defined to be the dimension of aff( F). The convex hull
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of F is the convex set

q q
conv(F) = {Z AviiA;20,v,€F,i=1,...,qand )} A, = 1}.
i=1 i=1

The conical hull of F is the set
q
con(F) = {Z AU A; =2 0,v, € F,fori = 1,...,q}.
i=1

A convex polyhedron or polyhedron inV is a set of the form
(A1) Q={ueV:(y,u)y<c,i=1,...,q},

where v, € V- {0} and ¢, €R for i = 1,...,q9. A point u € @ is said to be
inner if (v;,u) < c, whenever the hyperplane {(v;,u) = c,} does not contain
Q; otherwise the point is referred to as a boundary point. A convex polyhedron
is said to be pointed if it contains no affine subspaces of V. A bounded convex
polyhedron is referred to as a polytope.

If @ is a convex polyhedron given by (A.1), then a face of @ is a set of the
form

G ={ueV:(y,uy=c;,Vieland (v, u) <c;,,Viel)

for some (possibly empty) set of indices I c (1,..., q}. The face is proper if it
is not @ itself. A facet of a polyhedron @ is a proper face G of @ which is
maximal, i.e., contained in no other proper face of Q. An open face of @ is a
set of the form

(A.2) FI= {u GV: (Ui,u> =Ci,ViEIand<vi,u> <Cl,Vl$I},

for some (possibly empty) set of indices I c {1,..., g}.

Note that there are faces corresponding to each of the 27 subsets of indices,
though some of these faces may be empty, and faces corresponding to different
pairs of sets may coincide. As an immediate consequence of the definitions we
can express any convex polyhedron as a disjoint union of its open faces of
various dimension. Thus,

(A.3) = U F,
Ic{1,..., q}
for @ given in (A.1) and F; defined in (A.2).
A convex cone in V is a subset of V which is closed under the formation of
nonnegative linear combinations. A convex cone is called polyhedral if it is

also a polyhedron. If C is convex cone in V, its polar (or dual) convex cone is
defined by

CP={ueV:(v,u)<0,YveC} _
If x € @, where a @ is a convex polyhedron, the cone of feasible directions at x
relative to @ is the polyhedral convex cone defined by

C.q={u€V:x+eu € Q, for all sufficiently small ¢ > 0}.

x
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Loosely speaking, C, o is the set of vectors which “point into” the polyhedron
from x. In fact, the representation (A.1) leads to a simple description of C, o
given in Proposition A.3(c).

The following basic results, whose proofs appear in Stoer and Witzgall
(S-W) (1970), will be used below.

Al (S-W Lemma 2.3.10). Every nonempty polyhedron in V has inner
points.

A.Il (S-W Theorem 2.4.7; see also 2.4.4). If G is a face of a polyhedron
Q cV, then afG) N Q = G.

AIII (S-W Section 2.8). If C is a polyhedral convex cone in V, then:

(a) There exists a finite set S cV such that C={ueV: (v,u) <0,
V v € S}, in which case C? = con(S).

(b) There exists a finite set S’ such that C = con(S’), in which case

CP={ueV:(v,u)<0,VveSi.
(c) CPP = C.

A.IV (S-W Theorem 2.14.3). If G is a facet of a polyhedron @ < V, then
dim(G) = dim(@) — 1.

AV (S-W Theorem 2.12.2). Every convex polytope in V is the convex hull
of a finite set.

ProrosITION A.l. Let @ CV be a d-dimensional convex polytope. Then
there exists T, a collection of subsets of @ with each subset containing exactly d
points, such that for any inner point x € Q:

(a) conv(S U {x}) is d dimensional, for every S € T.

(b) dim(conv(S U {x}) N conv(S’' U {x})) <d — 1, for all distinct
S,S'eT.

(© Ugepconv(S U {x}) = Q@

Proor. The proof is by induction on d. For d = 1 the result is obvious.
Now assume the result holds for the (d — 1)-dimensional case and let @ be a
d-dimensional convex polytope. Let G,,...,G,, be the (d — 1)-dimensional
faces of @ and fix x; an inner point of G,, for i = 1,..., m, whose existence is
guaranteed by A.I. By the {nductive hypothesis, there exist T; c G, for i =
1,..., m such that (a'), (b") and (¢’) hold, where (a’), (b’) and (¢') are obtained by
replacing d by d — 1, Q by G;, x by x, and T by T, in (a), (b) and (c).

Let T={S U {x;}: SeT, for some i =1,...,m}. Since x & aff(S U {x,})
forall SeT,and i =1,...,r, (a) follows from (a’). Note that (b) is immediate
from (b') if S and S’ are in the same T,. If S € T; and S’ € T for some i # j,
then since S U {x;} c G, and S U {x;} c G;, it suffices to show
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dim(G; N G;) <d - 2. But if dim(G, N G) = d - 1=dim(G) = dim(G)),
thenaﬁ(G n G)) = aff(G,) = af{(G)), sobyAII G;NG; =G, =G; Whlchlsa
contradiction. Flna.lly, to prove (c), clearly Uger conv(S U {x}) cQ.Ifueq,
there exists a boundary point v of @ with u =nx + (1 — n)v, for some
n € [0, 1]. It follows that v lies in a proper face of @, which in turn must be
contained in some facet (maximal proper face) G. By A.IV, G = G, for some

=1,...,m and by (¢), v € conv(S U {x;}) for some S € T.. It then follows
that u € conv(S U {x;, x}) and the proof is complete. O

PrROPOSITION A.2. Let C be a d-dimensional pointed polyhedral convex cone
in V. Then there exists T, a collection of subsets of C, with each subset
consisting of exactly d points, such that:

(a) con(S) is d-dimensional, forall S € T.
(b) dim(con(S) N con(8S") < d, for all distinct S,8' € T.
(© C=Ugecqcon(S).

Proor. Using AlIll(c) afRiC?)* = {0}, since C is pointed and afRCP)* c C.
Thus, dim(afflC?)) = dim(V') and C? has a nonempty interior. Fix v € (CP)®t.
Then clearly (v,u) < 0,forall u € C.If @ = {u € C: (v,u) = —1}, it follows
easily that C = {Au: u € @, A > 0}. By A.Ill(b), C is the conical hull of some
finite set {v;, j = 1,..., m}, where v; # 0, for j = 1,. m It follows that @
is the polytope glven by the convex hull of {— (v v; ) j=1,...,m},
con(®) = C and @ is (d — 1)-dimensional. If T is a collectlon of subsets of Q
given by Proposition A.1 and x is any inner point of @, it follows easily that
U serS U {«x} has the desired properties. O

ProposiTION A.3. Let @ CV be a convex polytope of the form (A.1). If
x € Fy, where F; is the open face given in (A.2) for some I C{1,...,q}, then:

(@ C,o={ueV:(v,uy<0,Viell.

® C, has the same dimension as Q.

(© C” = con{v;: i € I}.

@ IfW—{u €V:(v,u) =0,V i€}, then aff(F;) = x + W.
(e) dim(Fy) + dim(C? ) = dim(V).

) If dim(Q) = dlm(V) then C? 5 is pointed.

Proor. (a) follows immediately from the definitions. For (b) note that @ c
x + C, o, hence

dim(Q) < dim(x + C Q) = dim(C, Q)

On the other hand, @ is the convex hull of a finite set by A.V, so there exists
€ > 0 such that x + {u € C, o ||u|| < &} € Q. Thus

dim(Q) > dim(x + {u e C, o' llull < e})

= dim{u € C, o: |u|| < &} = dim(C, ),
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where the equality uses the fact C, , is a cone, and the proof is complete. (c)
follows immediately from AIII(a) To prove (d), it is easy to verify that
F,cx + W, which is an affine set, so affiF;) c x + W. Define ¢ =
min; ; {(c; — (v;, 2))/|lv|l} > 0, if I°#+ & and & = +o if [°= . Then if
B=Wn{ueV: |u|<e}, a simple application of the Cauchy-Schwarz in-
equality shows x + B C Fy, so aff(x + W) = afflx + B) c aff(F};) and the proof
is complete.
For (e), note that as an immediate consequence of (c),

aff(C? o) = aff(con{v;: i €1}),
which implies
dim(C? o) = dim(aff (con{v;: i € I})) = dim(V) — dim(aff (con{v;: i € I}) ™)
= dim(V) — dim(W),

where W is defined in (d) and the last equality uses (d). For (f), suppose C? o
contains some line, say {z + Av: A € R}, where u,v € V, with v # 0. Thus,
(u+Aav,w) <0forall A R and w € C, 5. It follows easily that (v, w) =0
for all w € C, g, so dim(C, ,) < dim(V) — 1, which contradicts (b). O

APPENDIX B

Proof of Theorem 3.2. Using Lemma 3.2 and (P3'),

D, (Cp )" = KUJ{ con(¥(K)) @ &, (R")"

and (3.6) follows from (P3") and the fact that F;, C F;.

The second and third claims are proved using dimensionality arguments.
Note that a subset of S™ has w-measure zero if it is contained in a submani-
fold of dimension less than m. For the second claim,

U D**(P,K,0) — D**(Fy,0)
(P,K)e P XX

is contained in

U {[®(x) + Y]: x € conv(P) - F,
(B.1) (P, K)e Py x %, ,

Y € con(¥(K)) ® d,(R")"}.
conv(P) — Fy is contained in the boundary of F, for every P € &,. Therefore
dim(conv( P) — F;) < dim( F}).

It follows that each set in the union in the right side of (B.1) is contained in a
submanifold having dimension at most

dim(F;) -1+ (r—dim(F))+(m —-r) =m — 1.
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To prove the last claim, fix distinct pairs (P’, K'), (P,K) € &, X %;. If
P =+ P’, then
D**(P,K,0) n D**(P',K',9)
c {[®(x) + Y]: x € conv(P) N conv(P’),Y € ¥(CF) & o, (R")"}

and since (P2") gives dim(conv(P’) N conv(P)) < dim(F;), the dimension of
this set is less than

dim(F;) + (r — dim(Fy)) + (m —r) = m.
If P=P’, then K # K' and it follows that
D**(P, K,0) n D**(P', K', )
is a subset of
{[®(x) +Y]:x € P,Y € (con(¥(K)) N con(¥(K"))) & o, (R},

and since (P2') gives dim(con(¥(K)) N con(¥(K")) < r — dim(F,), this is a
submanifold whose dimension is less than

dim(P) + (r — dim(F))) + (m —r) = m. O
APPENDIX C

Proofs of results from Section 3.5.

Proor oF LEMMA 3.4. Using (3.3) and the linearity of II leads to

H[aia‘P(K(i))}=H[ai | = x(i)“g"“dz,}]

a ,v=1
" U 9 Suv
- uglK(l) vgln[a/\“ {g U}]
(C.1) . r o [agur oD
Lo Bl e et
r L r aguv r —uw a(bw
- uz=lK(l) ({vgl az‘a H[CDU]} " {w2=1g Hl:aA“ ]})

From the analogue of Remark 3.2 for the submanifold under consideration and
(3.9) one obtains

d d r . .
(®,) = Y gD, A A= Y g" <<I>w ¥ (p(n)’ - p(0)’) >A/s
(C.2) n,B=1 n,8=1 Jj=1

d . .
) %_ g™ L (p(n)’ = p(0)’)5,;A,.

-
Ul 1 Jj=1
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Differentiating both sides of the equation ©7,_,5*"g,, = 8% and leads to the
identity

aguv
aA

—vvagﬂ

(C.3)

a w,A=1
r

9o, 90,
- gz | (==, 0, )+ (&, — )|
o A, an,

Combining (C.2) and (C.3) and the identity £;_,8""g,; = 87 gives the follow-
ing expression for one of the terms in (C.1):

[
™
o
8
g
0y
3

£ 5 me)- £ £ peee( (s, ) < o 5t )
d
X g Z (p(n)’ - p(0)’ )
(C.4) me=l =t

z

B=

r P P
o 8 Y oA,

d

x X g"(p(n)" - p(0)")A,.
n,B=1

For the other term in (C.1), again using Remark 3.2 and (3.9):

r P, P,
Suw wil_ Suw nB
L H[a/\a] E=g E g <8A n>A,;

(c5) - L Y g

. Y
x ¥ (p(m)" = p(0)7) <51,®y >A,;.
y=1 a

Note that this is one of the terms appearing in (C.4). The proof is completed by
summing (C.4) and (C.5), cancelling terms and substituting into (C.1). O

Proor or THEOREM 3.3. Using Lemma 3.3 and expression (5) from Weyl
(1939), the expression

[ / |det M| /||Q|™* dudtda,
At e E(tan(8))”||u||? <tan(6) — £2(¢)

where
0 a0 a0 4Q N 40 EIORR

is an upper bound for the volume of D**(P, K, 9) if M is nonsingular in E(9)
and this expression gives the exact volume if the mapping from E(6) into
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D**(P, K, 9) taking (A, t, u) — [Q(A, ¢, u)] is one-to-one. When M is nonsingu-
lar for (A,¢,u) in E(6), the determinant does not change sign so the absolute
value can be moved outside the integral.

Clearly 00 /3t* = ¥(x(i)) and Q/du’ = N(i). Since these vectors appear as
columns in M, the determinant is unchanged if multiples of these vectors are
subtracted from the first column. Thus, the first column can be replaced by
®(O(A)) [which is identified with N(O) at the base point ®(®(A))] and

Y(k(1)),...,¥(x(r - d)),

det M = det(N(O) PITET Ad,

(C.6)
N(1),...,N(m—r)).

The vectors ¥(«k(i)), i=1,...,r —d, and N(), i = .,m —r, are lin-
early independent and lie in (®(P ))q,(@( ry the [(m + 1- d)- dlmens1onal]
orthogonal complement of the (d-dimensional) tangent space (<I>(P))q,(@( )
relative to the (m + 1)-dimensional tangent space (R §,,). It follows that the
vectors span the orthogonal complement of this space and det M is unchanged
if any of the columns Q) /dA* is replaced by I1(3Q2/dA%), its projection onto the
tangent space (®(P)),, O

Using the deﬁnltlon of Q, (3.12) and Lemma 3.4 leads to

H(@)_ ( r-d a«p(K( )) mer aN(i))
IA*

— tl
Z A, Elu oA
r— d ) d m-r d
=A,+ LY HEG)A+ X u Z GE(i)Ag
i=1 3—1 i=1  B=
d d -
- § o+ Semzo + T Gf(z)) - ¥ ata,,
B=1 i=1 B=1
where a? denotes the a, 8 entry of A(A,¢, u).
Substituting into (C.6) and permuting columns
d d
det M = (-1)" det(z afAg,..., X abAg, ¥(k(1)),...,
B=1 B=1

¥(k(r — d)), N(0), N(1),..., N(m — r))

=(-1)"det(A,,..., Ay, ¥(k(1)),...,
W(k(r —d)), N(0), N(1),..., N(m — r))
A(Atu) O)
0 I
= (-1)"det(A,..., Ay, ¥(k(1)),...,
V(k(r —d)), N(0), N(1),...,N(m —r))
X det A(A, ¢, u),

X det(
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where I denotes the (m + 1 — d) X (m + 1 — d) identity matrix. As in Weyl
(1939), the square of the first determinant in this expression is the determi-
nant of the matrix of inner products of its columns. Since the latter matrix is a
block diagonal matrix, where the blocks are (g;;), (0;;) and I, the result
follows. O

ProoF oF LEMMA 3.6. Note that multiplication of each u’ by a scale factor
p > 0 has the effect of multiplying each column of the (d —s) X (d — s)

matrix Z;’;‘l’uiG(i)(‘I’Jz) by p, so by changing to spherical coordinates the
integral becomes

d—s d

A P
—(Viu—rp™ ") dp
j;=0 {1 + 52(t) +p2}(m+1)/2 dp

x det( Y uiG(i)(Jz));.L(du),
weR™ :ul=1) | j=1 L
and the first integral is given by
A p?
dp.
-0 {1 + §2(t) + pz}(m+1)/2

(m - r)Vm—r'/;J

By making the substitution x = (1 + £2(#))/(1 + £%(¢) + p®) this becomes
H(m = 1)V, {1+ 4(0)

Xfl x((m—q)/2)—1(1 _ x)«qﬂ)/z)—ldx. o
x=(1+£X)/A+£48)+ 4%

APPENDIX D
Proofs of results from Section 4.

PrOOF OF THEOREM 4.1. The terms L7Z¢||H(i)|? and Z77" ||GG)|? are
both continuous functions in the bounded domain .#;, so the supremum in the
definition of ¢* is finite and (* is strictly positive. For the other inequality,
note that from the definition of ¢*,

r—d m-r
©.1) max{ Y IAG)E, T ||G(i)||2} < 1/tan’(£%)

i=1 i=1
for each A € .. Fix 6 < {* so that ¢(#)? + ||u|? < tan®(6) < tan®({*) when-
ever (A,t,u) in E(6). Since the [, norm is a matrix norm [see Horn and
Johnson (1985), page 297] it follows that p(M) < | M|| for any matrix M. In
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particular, for (A, ¢, u) € E(9),
2

p ridtiH(i) + EruiG(i)) < ' ‘H(i) + EruiG(i)
i=1 i=1 =1 i=1

2

u'G(i)
-1

r—d m-—r
<ITe? X IAGIP + lul® T 160017

= £()° Z IH I + [lull? Z IG(D)1I?

i=1
< (&(t)® + lull?) /tan?({*) < 1,

where the second inequality uses Cauchy-Schwarz inequality componentwise
and the third inequality uses (C.7). Since (A, ¢, ) is arbitrary,

r—d ) m-r
~1e¢ U eg| X HHG) + T uiGG)|,
0,A,u)EE@0) i=1 i=1

80 { > 6. Since 0 is arbitrary, the desired inequality follows. O

Proor oF LEMMA 4.1. Using the definitions and the fact that N(0) is
identified with ® - 0,

Z IG()I* = Z IG()I? — IG(0)|I?

i=0
d m-r d
= ¥ Y G- ¥ GO
a,B=1 i=0 a,B=1
d m-r( d 2
= X {Z g”"<N(i),Am,>}
a,B=1i=0 \n=1

(C.8) i 14 2
: zl{zgwmm 1)
a,f=1\n=

1

a,

d m—r 2
Z Z <N BnA >
B=11i=0 17

d
_ Bn ) )
=1{21g <<I>®a)”nd>®>}.
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Differentiating the identity (® - ®,® > ®) = 1 with respect to A, and A, leads
to

32

o0, — D@ )= —
* oA, Ban>

so the second term in (C.8) is just EZ,le{Zf,=1gB"gm,}2 =X4,5.188=d. To
simplify the first term in (C.8), let 1 , denote the orthogonal projection onto
A= span{N(0),..., N(m — r)} and let II_, . (v) denote the orthogonal projec-
tion of v onto the orthogonal complement of .#” in R™*!, Using the fact that
A+ =span{®,, @ = 1,...,r} and Remark 3.2,

i (N(i),v)* = |ITL, (V)| = ||jv]|* = ITL, - (v)|?
i=0

- 2
== X E“%v,d,),
u,w=1
and the result follows. O
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