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SUBJECTIVE HIERARCHICAL BAYES ESTIMATION OF A
MULTIVARIATE NORMAL MEAN: ON THE
FREQUENTIST INTERFACE!

By JAMES O. BERGER AND CHRISTIAN ROBERT

Purdue University and Université de Paris VI

In shrinkage estimation of a multivariate normal mean, the two domi-
nant approaches to construction of estimators have been the hierarchical or
empirical Bayes approach and the minimax approach. The first has been
most extensively used in practice, because of its greater flexibility in
adapting to varying situations, while the second has seen the most exten-
sive theoretical development. In this paper we consider several topics on
the interface of these approaches, concentrating, in particular, on the
interface between hierarchical Bayes and frequentist shrinkage estimation.

The hierarchical Bayes setup considered is quite general, allowing (and
encouraging) utilization of subjective second stage prior distributions to
represent knowledge about the actual location of the normal means. (The
first stage of the prior is used, as usual, to model suspected relationships
among the means.) We begin by providing convenient representations for
the hierarchical Bayes estimators to be considered, as well as formulas for
their associated posterior covariance matrices and unbiased estimators of
matricial mean square error; these are typically proposed by Bayesians and
frequentists, respectively, as possible ‘‘error matrices” for use in evaluating
the accuracy of the estimators. These two measures of accuracy are exten-
sively compared in a special case, to highlight some general features of their
differences.

Risks and various estimated risks or losses (with respect to quadratic
loss) of the hierarchical Bayes estimators are also considered. Some rather
surprising minimax results are established (such as one in which minimax-
ity holds for any subjective second stage prior on the mean), and the
various risks and estimated risks are extensively compared.

Finally, a conceptually trivial (but often calculationally difficult) method
of verifying minimaxity is illustrated, based on numerical maximization of
the unbiased estimator of risk (using certain convenient calculational for-
mulas for hierarchical Bayes estimators), and is applied to an illustrative
example.

1. Introduction. Suppose we observe
X = (X, X,...,X,)" ~4,(0,%), X known,

and desire to estimate the unknown 6 = (6,,...,6,)". We will consider both
“inference” and decision-theoretic estimation; for the latter we will utilize the
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618 J. 0. BERGER AND C. ROBERT

usual quadratic loss for an estimator 3(x) = (8,(), ..., §,(x)), namely

(1.1) L(6,3(x)) = (0 — 3(x))'Q(0 — 3(x)),

where Q is positive definite. [Some attention will also be paid to the matrix loss
(0 — 3N — d(x))".]

When X = ¢%I and the 6, are thought to be ““similar” or exchangeable, an
often recommended estimator for 0 [cf. Efron and Morris (1972)] is (when
p>3)

2
(1.2) 3(x) = x — ﬂ—?’)i_—z(x—n),
P (x; —X)

where ¥ = (1/p)L?_;x; and 1 =(1,1,...,1)". The usual derivation of this
estimator follows from assuming that the 6, are i.i.d. .#(8, 0;2), calculating the
corresponding Bayes estimator, estimating 8 and o from the data and,
finally, inserting these estimates in the Bayes estimator.

This standard empirical Bayes approach has a number of well-documented
difficulties, especially when p is small or moderate or when confidence inter-
vals are desired [cf. Berger (1985)]. These difficulties are most easily overcome
by using the hierarchical Bayesian approach to the problem. Instead of esti-
mating B8 and o2 directly, one simply places a ‘‘second stage’” prior distribu-
tion, m,(B, 0?), on them and then performs a Bayesian analysis
(e.g., calculation of the posterior mean). When prior information about B (or
o) is available, the hierarchical Bayes estimator can be substantially better
than (1.2) when p is small or moderate [cf. Berger (1982b) and Berger and
Chen (1987)]. Even when the noninformative second stage prior m,(8, 0,2) = 1
is used, the hierarchical Bayes approach will typically equal or outperform the
empirical Bayes approach. [Note that the modified empirical Bayes approach of
Morris (1983), which is itself quite successful, is patterned after the hierarchi-
cal Bayes approach.]

A recent discovery in Brown (1987) also pertains to this issue. Brown has
shown that (1.2) is inadmissible (in a nontrivial sense) and can be improved
upon by additionally incorporating shrinkage to a specified point. Such addi-
tional shrinkage is precisely what subjective hierarchical Bayes estimators
tend to produce, providing further frequentist motivation for their study.

From the Bayesian perspective, there are also purely subjective reasons for
utilizing the hierarchical Bayesian approach. Here are two examples from
Berger (1985) that emphasize the richness of the structures that can be
modelled within the hierarchical Bayesian framework. (These examples will be
utilized later.)

ExampLE 1. For years 1,2,...,7 the IQ of a child is tested. Letting 6, be
the true IQ in year i, suppose that 6, is measured by a test score X, ~
#16;,100). Here, it is quite natural to treat the 6, as being i.i.d. #(B, c2),
allowing for year-to-year variation in IQ, but recognizing that the IQs should
be similar.
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Another available piece of information here, assuming that the child is a
“random” member of the population (i.e., that he has not been identified as
belonging to some special group having a strong correlation with IQ), is that
the overall population distribution of IQs is .#(100, 225). To incorporate this
information, one could assign B a .#(100, 225) prior distribution.

To complete the hierarchical Bayesian description of the problem, a second

stage prior distribution for o2 is needed. Although an expert might well have

subjective knowledge about ¢;%, which could certainly then be incorporated, it
will probably be more common to be quite vague about this parameter and to

choose, say, m(o2) = 1.

ExampLE 2. Consider a variation on Example 1. Suppose a linear trend in
the 6, is suspected. This could be modelled as

0i=BI+B2i+£i7

where B8, and S, are unknown and the ¢; are i.i.d. .#(0, 0,2). This fits into the
hierarchical Bayesian framework by defining the first stage prior of 6 to be
A (yB, 021,), where

(1 1 1 1 1 1 1Y} _[B:
y_(1234567) and B‘(Bz)'

It is then necessary also to choose a second stage prior m4(B8;, By, 7.2). The
prior for (B, B;) could be chosen in a similar fashion to that for g in Ex-
ample 1.

A third reason to consider the hierarchical Bayesian approach is the need
for conditional measures of accuracy. To construct either error estimates or
confidence sets, there is considerable evidence that conditional (i.e., data-
dependent) measures must be used. [The recent literature on this issue
includes Johnstone (1988) and Lu and Berger (1989a, b).] The hierarchical
Bayesian approach produces accuracy measures, based on the posterior distri-
bution, that are automatically conditional. The major competitor to the hierar-
chical Bayesian approach is the conditional frequentist approach based on
unbiased estimators of accuracy [see, e.g., Stein (1981), Johnstone (1988) and
Lu and Berger (1989a, b)]. We will be partly concerned with comparison of
these alternative approaches.

A final motivation for the paper .is to consider minimaxity of various
hierarchical Bayes estimators. While it has been recognized that minimaxity
and “good” shrinkage patterns are often incompatible [cf. Morris (1983),
Berger (1985) and Casella (1985)], they are sometimes simultaneously achiev-
able. Here we are only considering estimators developed through Bayesian
hierarchical modelling designed to reflect actual beliefs about 6, so that good
shrinkage patterns are automatically obtained. If minimaxity is also present,
one has a very attractive situation.

Two minimaxity results are discussed. The first, based on ideas of Stein
(1981), Zheng (1982) and George (19864, b, c), is quite surprising, in that it
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establishes minimaxity of certain hierarchical Bayes estimators simultaneously
for all second stage priors on the first stage mean. For instance, one can model
exchangeability but also incorporate any subjective information about the
location of the common mean, all while staying minimax (and hence satisfac-
tory to a frequentist).

Unfortunately, the result is applicable only in rather special cases. Thus, we
also discuss a conceptually trivial numerical method of verifying minimaxity of
a given estimator, namely, numerically maximize the unbiased estimator of
risk and see if it is less than the minimax risk. Although there can be
formidable computational problems involved in this verification, the approach
is much more general and typically much easier than analytic verification of
minimaxity. This will be further discussed in Secticn 4.

The organization of the paper is as follows. In Section 2, the general model
being considered is developed, and useful expressions for the hierarchical
Bayes estimators are given. Section 3 considers the determination of estima-
tion accuracy (e.g., estimated variances and estimated risks), from both
Bayesian and estimated frequentist perspectives, and compares the two ap-
proaches. Section 4 presents the minimaxity results.

Among the extensive literature on hierarchical Bayesian methodology, works
that consider estimators similar to those in this paper include Lindley and
Smith (1972), Box and Tiao (1973), Smith (1973), Deely and Lindley (1981),
DuMouchel and Harris (1983), Berger (1985) and Angers (1987). Works that
discuss minimaxity of Bayes estimators include Brown (1971), Strawderman
(1971, 1973), Efron and Morris (1972), Berger (1976a, 1980, 1982a, b, 1985),
Faith (1978), Judge and Bock (1978), Stein (1981), Li (1982), Zheng (1982),
Chen (1983, 1988), Cooley and Lin (1983), George (1986a, b, ¢), Haff and
Johnson (1986), Spruill (1986), Berger and Chen (1987), DasGupta and Rubin
(1988) and Haff (1988).

2. The hierarchical Bayes estimator
2.1. The hierarchical prior distribution. The prior distribution that will be

considered is a mixture of a “first stage” distribution on 0 w.r.t. hyperparame-
ters p and X _; in particular, we consider

(2.1) m(0) = [mi(0ln, T, )my(n, T,) dudX,,
where the first stage prior ‘
(2’2) 17'1(0“.1., E‘rr) iS ‘/{;(”"E‘rr)

and the second stage prior is 7,(p, £ ), which will always be assumed to have
a density w.r.t. Lebesgue measure on the domains of p and ¥ _. [The theoreti-
cal sections, Sections 2.3.2, 3.1.2 and 4.1, do not require assumption (2.2).] The
following two examples indicate the diverse possibilities for choice of 7,; these
examples will also form the basis of our later developments. Two important
generalizations of these examples are given in Appendix 1.
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ExampPLE 3 (Regression Structured Means). Suppose

(2.3) n=yB,

where y is a (p X ¢) matrix of known regressors (such that y'‘y is positive
definite) and B is a (1 X ¢) vector of regression coefficients. Thus, 0 is
modelled as having the regression structure

(2.4) 0=yB + ¢,

where € ~ .#,(0, X, ). An important special case is that of exchangeable means,
defined by

(2.5) y=1, BeER' and X =071,
The second stage prior density will be assumed to be of the form

772(3’ 277') = W%(B)Tr%(zﬂ')’
where either of the following holds:

CasE 1. 73(B)is #,(B° A);
Cast 2. wi(B)is I (a,B%A).

Here B° A and a are given, and 7,(a, B° A) denotes the #variate ¢-distribu-
tion with « degrees of freedom, location vector B° and scale matrix A. Usually,
B° can be thought of as a subjectively specified “guess” for B, while A is
typically a subjectively specified ‘“‘accuracy’’ matrix corresponding to this guess
(cf. Example 1). When p is small (or ¢ is a substantial fraction of p) it can be
quite important to utilize such subjective information about B [cf. Berger
(1982b)]. Note, however, that it is typically possible to be ‘“noninformative”
about B if desired, by letting A — « in 7} [which can be shown to correspond
to choosing 73(B) = 1].

Case 1, the choice of a normal distribution for 73, is calculationally easiest.
Using a ¢-distribution, as in Case 2, adds one dimension of numerical integra-
tion to the calculations but results in additional robustness with respect to the
subjective input B° [cf. Angers (1987)].

Finally, we will allow A~! to have eigenvalues that are zero. (All expressions
will be in terms of A~%, so there is no need to define A in this case.) Let

(2.6) m = Rank(A™1),

and let Q, denote the null space of A~. For g — B° € Q,, m3(B) is constant,
implying that the prior is noninformative on that part of the parameter space
of B. Note that m = 0 corresponds to a constant (noninformative) prlor for the
entire parameter space of B.

ExamMpLE 4. The second example that will be utilized for illustrative pur-
poses is based on Berger (1980) [see also Strawderman (1971), Berger (1976a,
1985) and Lu and Berger (1989a)]. The example has the virtue of often yielding
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essentially closed form expressions for most quantities of interest, allowing for
easier comparisons of various proposed methodologies.
Take, as the first stage prior,

(2.7) m1(0ln, €): A, (1, B(£)),

where B(¢) = ¢C — X, C being a given positive definite matrix and ¢ a scalar.
[Thus, X_ = B(¢) in (2.1).] The domain of ¢ is taken to be a subset of

(2.8) (ch . C1Z, ),

where ch,,. stands for maximum characteristic root, so that B(¢) is always
positive definite. This form of B(¢) is used because it allows for closed form
calculation, while resulting in robust Bayesian shrinkage estimators; this is
discussed further below.

Various scenarios will prove to be of interest in this example. For instance,
the minimax theorems in Section 4 will be established under the assumption
that the second stage prior for (p, £) has conditional densities m2(¢£|p) that are
nondecreasing in ¢ for each p. The calculational simplifications that were
alluded to earlier arise in the following special case.

SpeciAL Cask oF ExampLE 4. Let H = {p = yB: B € R}, where y is a given
matrix of covariates, as in Example 3, and [yC ~'y‘] has full rank /. Suppose
further that

(2.9) Ag=ch_ (C'8) <1,

and that the second stage prior for (p, £) is supported on H X (1, %) and has
constant density therein.

The assumption about p above is equivalent to placing a noninformative
prior on B, as mentioned in Example 3 (there, setting A~! = 0). The case /= 0
is allowed and will be defined by H = {n°}, n° given.

When <= 0, the usual choice of C is

(2.10) C=7(X+A), r=(p—-2)/p,
where A is a specified positive definite matrix satisfying (2.9), i.e.,
(2.11) ch, . (A7'2) < 3(p — 2).

This choice of C and H results in a prior that is similar to the usual conjugate
#,(u, A) prior, in that it is unimodal with subjectively specified mode p, while
A can be thought of as a subjectively specified accuracy matrix (for the best
guess p). The reason for building a two stage prior (i.e., introducing the
random ¢) is that this robustifies the usual conjugate prior, resulting in
familiar robust shrinkage estimators. See Berger (1980, 1985) for general
discussion [though Berger (1985) uses a slightly different prior].

When C = X =1, then this prior can be seen to specify shrinkage towards
the subspace H. When ¢= 0, one then has shrinkage towards the point p°.
Indeed, defining 0,2 = ¢ — 1, the prior reduces to the Example 3 scenario with
3 =021 » and a noninformative prior on B. Note that we will, therefore, also
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be providing closed form expressions for the hierarchical Bayes estimator in
that case.

2.2. Existence of the Bayes estimator. The Bayes estimator that we will
consider is the posterior mean (optimal for quadratic losses). Since we will
often be working with improper second stage prior distributions, 7,(p, 2_), it
is important to keep track of when the Bayes estimator actually exists (i.e.,
when the posterior distribution has a mean). The following lemma gives such a
result. [We use f(x|0) to denote the .#,(8, X) density of X.]

LemMma 2.1, If, for all x € R?, the marginal distribution

(2.12) m(x) = ff(x|0)7r(0) de

= [F(xI0)m(0lp, =,) 7o(p, 2,) dO dp d=,
is finite, then the posterior mean and covariance matrix exist.

Proor. The reason for this result is essentially the analyticity of the
Laplace transform on its domain of definition. In fact, we can write

m(x) o e IxI*/2 fe°‘xe_"°"2/27r(0) de

o eI /2 (x),

where A (x) is the Laplace transform of e ~1°1*/27(9). As m(x) is finite for every
x, it follows from Corollary 2.6 of Brown [(1986), page 38] that all derivatives
of m exist at every x € R?, and the posterior mean and the posterior covari-
ance matrix can be expressed in terms of derivatives of m (see Sections 2.3.2
and 3.1.2). O

The following lemmas give conditions under which m(x) is finite for the
situations of Examples 3 and 4. The Proof of Lemma 2.2 is given in Appendix
2.

LemMMa 2.2. Consider the sztuatwn of Example 3 (Case 1 or 2) when
Y =21 If, for some K,

(2.13) [“r3(0?) do? <,
0
and
(2.14) [w—;— (o2)da? <
: ® (0_3)(p—/+m)/2772 O O ’

then m(x) < « for all x.
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Note. The conditions of Lemma 2.2 are satisfied if, for some ¢ > 0,
K,>0and K, > 0,

K,
o\[1—(p—s+m)/2+el*
(a?)

(2.15) m2(a?) <

In particular, the conditions are satisfied by 72(a;%) = 1 if

(2.16) p>2+</—m.

LemMa 2.3. Consider the situation of the special case of Example 4. Then,
ifp>2+4 ¢, mx <x forall x.

Proor. A straightforward calculation yields

(217) m(x) o fwf—(P—/)/ze—x’Dx/2§ dé,
1

where

(2.18) D=C"'-C lyyC ly’] 'yC L.

The conclusion is immediate. O

2.3. Expressions for the hierarchical Bayes estimator. There are two quite
different representations for the hierarchical Bayes estimator (the posterior
mean) 3”B. One is useful for calculation and relies upon the normality of the
first stage of the prior distribution; the other will be used for theoretical
purposes and is based on a representation in terms of the marginal distribu-
tion (2.12). Explicit formulae will be presented when ¥ = ¢’ ,.

2.3.1. Calculational formulae. We have [cf. Lindley and Smith (1972) or
Berger (1985)]

(219)  57(x) = E7O[0] = B 305 (xln, 5],
where, letting W= (X + £ )71,

(2.20) 3(x|p,X,) =x —EW(x — p)

and

‘

(2.21) my(m, T, %) o (det W)/ exp{—3(x — n) W(x — p)}ma(n, =,).

Note that 8(x|n,X) is the conditional mean of 6 given w and X_. This
decomposition can be calculationally advantageous when p and ¥_ have low
dimensional distributions; in that case, the calculation of (2.19) requires only
low dimensional integration. Also, when p has a normal distribution or a
t-distribution, the computation of (2.19) simplifies further, as indicated in the
following examples. For motivational purposes, we begin with the exchange-
able scenario of Example 3, as defined by (2.5).
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ExampLE 3 (Exchangeable Means Case). Here, p = B1 and B has a normal
distribution. Then (2.19) becomes

3HB(x) = E"g("f%'x)[ 8(x|a1,2)] ,
with

0_2 2

(2:22) 3(xlo) =x — oy gy (x — £1)

g
B (pA+0'2+0'2)(£_BO)1

and

exp{_1[||x—£1n2+ p(z - B°)° ]}

2 (0'2+0',,2) (pA+o-2+0',,2)

(02 + a2)? V") (pA + o + 02) /2 A 12

(2.23) 73(ax) « 73(a?)

[see Berger (1985), pages 183-184]. If one chooses the noninformative second
stage prior distribution 7,(p, 0,2) = 1, i.e., if A = © and 72(c2) = 1, then 3?5
is given by

0_2
(2.20 $2(x) = x - E”%“’g""[m]‘x -
where
o x —x12
(225) »-n-%(a"flx) o g (0'2 + gﬁ) (p—-1)/2 eXp{— H}

This estimator is the hierarchical Bayes version of the estimator (1.2) given in
the introduction.

Note that 875 is defined even for p = 3, as long as A < ®; when A = o, s0
m = 0, 378 does not exist for p = 3 (see Lemma 2.2). Thus, when A < «, 378
defines an exchangeable shrinkage estimator when p = 3, while (1.2) requires
p > 4. Furthermore, 372 will be shown to be minimax even when p = 3; thus
a frequentist who desires to use an exchangeability-based minimax shrinkage
estimator when p = 3 must, in addition, incorporate subjective prior informa-
tion about the location of the 6, [see also the discussion in the introduction
concerning Brown (1987)]. Of course, if A is very large and p = 3, there will
be very little shrinkage. Indeed, for large A and p = 3, it can be shown that

2yp

(log A)x — =17 1

(2.26) 3"%(x) =x - — eTIx-EP/CoN) (x — 51).

Thus, significant practical gains when p = 3 will only be available if subjective
information about B is not too vague. In contrast, when p > 4, even A = »
[yielding (2.24)] will result in significant practical gains.
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ExampLE 3 (Case 1, Continued). If X ~ .#,(0, %), 7,(8|B, o) is
A (yB,c’1,) and B is .#,(B’, A), it is shown in Berger [(1985), pages 190-192]
that

81B(x) = E"87™[3(x|02)],

where
3(xlo?) = x — TW(x - yB) - SWyUA~'(B - B°),
(2.27) W=(2+02L,) ", B=('Wy) y'Wx
U=(y'Wy+A) ",
(2.28) w3(o71x) o m(x(o?)m3(7),

m(x|o?)

@29 exp{—4[(x—yB) W(x—yB) + (B—8")' (v Wy)UA (3 - )]

[det W]~ '/?*[det U]"/?
Recall that setting A~! = 0 corresponds to choice of a noninformative prior

[73(B) = 1] on B.

ExamPLE 3 (Case 2, Continued). Consider the situation above, except that
now B ~ Z,(«a,B%A). As in Generalization II of Appendix 1, we can use the
representation of the 7 («a, B°, A) distribution as a Gamma(2 /a, « /2) (denoted
) mixture of normals, to derive analogous expressions for 372, Indeed, one
need only replace A~! by AA~! in (2.27) and (2.28) [call the resulting expres-
sions 3(x|A, 0,?) and m(x|A, 0,2), respectively] and define

w%()t, af|x) = m(x|/\, 0'1,2)/\’"/2173()0172(0;72)
[recall that m is the rank of A~!]. Then
(2.30) 87B(x) = E™8X 7™ [3(xA, 0.2)] -

Angers (1987) gives a related expression for 82 in this case.

ExampLE 4 (Special Case, Continued). As in Berger (1980) [see also Berger
(1985) and Lu and Berger (1989a)], it can be shown that

(231) 8HB(X) =X- h(p—/—Z)(”X”?k)EC_I(X - PX),
where

(2.32) P -y [yC ly’] 'yCc 1,

(2.33) I} =xC~X(I, - P)x,

and k,,(v) is a closed form expression defined in Appendix 3.
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2.3.2. Theoretical formulae. A general expression for the posterior mean,
when X ~ .#,(0, ), is

(2.34) 3HB(x) = x + XV log m(x),

where m(x) is the marginal distribution of X. [For a proof when X =1, see
e.g., Berger and Srinivasan (1978).] Another representation that will be useful
follows from defining

m(xp) = [f(x(0)7,(0ln, ,)H(Z,ln) dOdE,,

so that

m(x) = [m(xip)7i(w) dp.
Then

3HE(x) = x + zvn':(i’;)
(2'35) — x4 Efv[vm(xll“)]wé("‘) dp
m(x)
= [3(xin)mi(uix) du.,

where
(2.36) 3(x|p) =x+ T Vlieg m(x|n),
(2.37) i) = T

m(x)

This decomposition will allow us to work conditionally on p (see Section 4.1).
For other uses of this type of representation for 8%B, see Haff (1988).

3. Estimated accuracy and loss. What error measures are to be associ-
ated with the hierarchical Bayes estimator 3#2? Two types of measures that
are often considered are (1) Bayesian posterior measures and (2) unbiased
estimators of loss or variance. The use of Bayesian posterior measures is well
established, while consideration of unbiased estimators of loss is increasing [cf.
Stein (1973, 1981), Judge and Bock (1978), Berger (1985), Johnstone (1988),
Brown (1988), Bock (1988) and Lu and Berger (1989a, b)]. Section 3.1 gives
standard posterior measures for our scenario, while Section 3.2 presents
unbiased estimators of loss and accuracy. Both “calculational’’ and ‘ theoreti-
cal”’ versions are given. In Section 3.3, the two types of measures are com-
pared.
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3.1. Posterior measures

3.1.1. Calculational formulae. For the model developed in previous sec-
tions, the posterior mean 372 is given by (2.19) and the posterior covariance
matrix is

V3 (x) = Ems 3003 — SWE

+(8(xl, £,) — 373(x)) (3(xln, £,) — 375(x))’]

where 3(x|p, X)) is given by (2.20) and m,(p, 2 _|x) by (2.21) [see Berger
(1985), pages 139-140]. When the quadratic loss (1.1) is being considered, the
posterior expected loss is given by

(3.2) p"5(x) = ETO[(0 - 3"5(x))'Q(0 — 872(x))| = tr(VF2(x)Q).

In the various examples, we will explicitly give only the formulae for V¥5; the
formulae for p#B(x) follow immediately from (3.1).

(3.1)

ExampLE 3 (Continued). For Case 1, the posterior covariance matrix is
[Berger (1985), page 190]

VH3(x) = ETHeI0[ 3 - SWE + SWyUy' W

+(8(xlo?) — 373(x))(3(xl0?) - 873(x))'],

where 3(x|0;%), W, U and 72(o;%|x) are given by (2.27) through (2.29).

For Case 2, the same formula holds, but with AA~! replacing A~! in U (and
elsewhere), 3(x|A, 0;?) and 73(02, A|x) replacing 3(x|0;2) and 72(02|x), and
3HB(x) given by (2.30).

(3.3)

ExamPLE 4 (Special Case, Continued). As in Berger (1980, 1985), it can be
shown that the posterior covariance matrix is given by
(3.4) VHB(X) =X - h(p—z—2)(||x||3<)EC_12
3.4
+ 8-~ (IXI%)ECTI(I, - P)xx'(I - P)'C™'%;

here |x||% and P are defined in (2.33) and (2.82), while % ,, and g,, are defined
in Appendix 3.

3.1.2. Theoretical formulae

ProposiTiON 3.1. If H, (%) is the Hessian matrix of m(x) [i.e., the matrix
with (i, j) element 3>m(x)/(dx; dx;)] the posterior covariance matrix can be
written

H, (x)

m(x)

(35) VHB(x) =3+ % 2 — ¥(Vleg m(x))(Vlog m(x))‘E.
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Proor. Straightforward, using (2.34) and differentiating inside the first
integral representation for m(x) in (2.12). O

COROLLARY 3.2. Under quadratic loss, the posterior expected loss of 3%B is

1
(3.6) p"P(x) = tr(QZ) + m(x)

—(Vlog m(x))'Q(V log m(x)),

tr(H w(X) Q)

where

(3.7) Q-=:qxz.

3.2. Unbiased estimators of accuracy. For quadratic loss, the usual fre-
quentist measure of performance of 8 is the risk function

(3.8) R(0,3) = E,(0 — 3(X))'Q(0 — 3(X)),

E, denoting expectation with respect to the distribution of X conditionally on
0. Stein (1973, 1981) introduced the unbiased estimator of risk (for the normal
problem), which is an expression 2% satisfying

(3.9) R(0,3) = E[73(X)],

where Z is a certain differential operator. The concept has been mainly used
to establish minimaxity results, though it is being increasingly used for other
purposes [cf. Berger (1982), Spruill (1986), Chen (1988), Bock (1988),
Johnstone (1988) and Brown (1988)].

A useful related concept follows from consideration of the matricial mean
square error of 3, defined as

(3.10) V(0,3) = E,[(0 — 3(X)) (6 — 3(X))‘].

While dominance of one estimator over another according to this criterion is
rare, an unbiased estimator of V(0, 3772) can be used as a frequentist version of
VHB(x); i.e., it can be used as an estimated ‘‘accuracy matrix”’ and to calculate
the unbiased estimate of risk.

ProposiTION 3.3. For SHB(xs in (2.34), assume m(x) satisfies
E,|V log m(X)|? < o, Eo|H; (X)/mX)| < » for all i, j [where H; ; is the (i, j)
entry of H,,] and

| llim |V log m(x)|exp{—%(x -0’2 Y(x - 0)} =0

for all i. Then
(3.11) V(8,378) = Ey[V,us(X)],
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where Vsms(~), the unbiased estimator of the matrical MSE of 3B, is given by
H,(x)

(3.12) Vyus(x) = X + 2% oy

3 — 3(Vlog m(x))(Vlog m(x))'E.

Proor. A standard integration by parts argument; see Stein (1981) or
Berger (1985) for similar proofs. O

CoRrOLLARY 3.4. Under the conditions of Proposition 3.3, an unbiased
estimator of R(0,3"8) is given by

(3.13) R5ns(x) =tr(QY) + tr(Hm(x)Q) — (Vlog m(x))'Q(V log m(x)),

m(x)

where Q = Q3.

Proor. Follows immediately from Proposition 3.3, since

R(0,378) = tr(QV(0, 37B)). m]

Note the considerable similarity between the results of Propositions 3.1 and
3.3, and between the results of Corollaries 3.2 and 3.4. Indeed, it follows
immediately that

(3.14)  Vums(x) = 2VHB(x) — 3 + (x — 358(x))(x — 378(x))’,
and

(3.15) Ryms(x) = 2p7B(x) — tr(QZ) + (x — 353(x))Q(x — 375(x))".

These expressions are quite convenient for calculation of V,us and Ryus (see
Section 3.1.1).

3.3. Comparisons of the measures of accuracy. The posterior covariance
matrix VZ5(x) and the unbiased estimator of the matricial MSE V,xs(x) are
natural candidates for an “error matrix” to use in the evaluation of 3HB (Of
course, VHB would likely be preferred by Bayesians, while Vyzz might often be
preferred by non-Bayesians.) The possible uses of VZ5 or V,zs are many; the
diagonal elements give “estimated variances” for the §7Z, and “confidence”
ellipses or rectangles, based on these matrices (and a normal approximation),
are easy to construct [see Berger (1980, 1985) for examples].

Not surprisingly, VZ2 and V,#s can be very different. The purpose of this
section is to give some indication as to the types of differences that can be
expected, so as to allow a more informed choice between VZB and V,us.

In Section 3.3.1, V#B(x) and V,us(x) are compared in a hopefully represen-
tative special case. Analogous comparisons between the posterior expected loss
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pHB(x) and the unbiased estimator of risk R,us(x) are given in Section 3.3.2.
Section 3.3.3 contains some discussion.

Some might argue that comparing VZ2 and Vyus (or p#2 and Ryus) is
meaningless; after all, they are derived from completely different statistical
perspectives and mean very different things. Furthermore, since 87% is de-
rived using a prior distribution, it might seem odd to some statisticians to even
consider using an unbiased estimator of accuracy. Our rationales for this
comparison include the following:

B

1. In practice, V2 and V,us (or p?B and R,us) will be used in exactly the

same way: to convey the possible error in 878, That they are derived from
different perspectives will not mean much to a practitioner; in particular, if
they are very different numbers, the natural question will be ‘ which one is
a better reflection of accuracy?”’ It is a conceit of theoreticians to believe
that practitioners will be intimately aware of delicate theoretical differences
in esoteric situations. T'o most practitioners, a standard error is a stan-
dard error.

2. Although 872 is derived using a prior distribution, the prior distribution
may be viewed by a frequentist as simply a technical device. Very strong
arguments can be made that, if one desires to use a shrinkage estimator for
frequentist reasons, it should still be developed in a hierarchical Bayesian
fashion (to direct the shrinkage properly and possibly to ensure admissibil-
ity). In this case, the prior would be viewed simply as an artifact and the
frequentist would not necessarily desire to use the posterior measures of
accuracy. Much of empirical Bayes analysis [cf. Morris (1983)] can also be
viewed in this light.

3. Related to 2, we feel that it is wrong to argue that the unbiased estimators
of accuracy are ‘“more robust” or require ‘fewer assumptions’ than the
posterior measures of accuracy. If the prior distribution is viewed simply as
a helpful technical device, then the posterior measures of accuracy should
start out on an equal footing with the unbiased estimators. Each prior just
yields a different accuracy procedure, and it is fair simply to consider and
compare such procedures. We have always found it rather curious that a
non-Bayesian will often consider and compare a variety of different proce-
dures, but will not include procedures that happen to arise as Bayes
procedures because ‘“then you must believe in the prior.” This is an unfair
double standard. Of course, Bayesians will argue that it is valuable to treat
the prior seriously, but our argument is that frequentists will do better if
they develop procedures in a Bayesian way, even if they do not take the
prior seriously.

In this section we will only consider the special case of Example 4, Section
2.1, because the closed form expressions for V2 and V,xs will allow for easier
comparison. We also restrict attention to the «= 0 case, with C as in (2.10)
and (2.11). Again, therefore, the prior is to be thought of as a ‘“robust”
alternative to use of the conjugate .#,(p,A) prior, p. and A being subjectively
specified location and “scale’ factors for 6.
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For this situation, it is notationally convenient to define [recalling that
7= (p - 2)/p]
B=3(+A)""% z=(+A) "(x-p),
Ix]? = (x — p) (Z+A) " (x — p) = 2z = |z/%,
h(v) =7~ h(p—z)(’r v), g(v) = T_Zg(p—z)(T_lv)»
so that
3HB(x) = x — A(|x|*)Z(T + A) '(x - n),
V#8(x) = = - h(||x|*)BB’ + g(|x|*)Bzz’B’
Vyus(x) = 2 — 2h(|Ix|*)BB’ — (R*(|Ix|*) + 2g(|Ix|*))Bzz'B*
p"B(x) = tr(QX) — h(|Ix||*)tr(QBB’) + g(|x||*)z‘B‘QBz,
Ryus(x) = tr(QT) — 2h(||x|*)tr(QBB’) + (A2(||x||?) + 2g(|x*))z'B'QBz.

3.3.1. Comparison of variances

I. Small values of |x||2. As v — 0, it is shown in Berger (1980) that
h(v) > 1 and g(v) » 4/(p? — 4). Hence, if ||x||? is small,

VHB(x) =3 —BB' =3 — 3(Z + A) '3,
VSHB(X) =Y -2BB'=3% - 23 (X + A)~ 's.

This exposes a potential problem with VaHB, since Vays will have negative
eigenvalues unless ¥ < A. One might thus need some type of positive part fix
for Vyus. Even then, however, Vyus can be accused of being too small. To see
this, note that, for small ||x||2

3B(x) =x - 32(T+A) '(x—p),
which happens to be the posterior mean w.r.t. a conjugate .#,(n, A) prior. For
this conjugate prior, £ — (X + A)'X is the posterior covarlance matrix, and
is often considered to be an optimistic assessment of the accuracy of the
posterior mean (because of possible prior uncertainty). The often substantially
smaller VSHB might strike many as definitely too small, therefore.

II. Large values of ||x||%2. As v — =, it is shown in Berger (1980) that
vh(v) = (p — 2) and v3g(v) — 2(p — 2). Hence, for large values of ||x||?,

(p-2)__ 2(p-2)
~— _—“BB'+ — B
(1] (1]
2P~ 2) pn,, (PP 4)
(1] 12]/*

Note first that both V#2 and VSHB converge to X (at a rate proportlonal to
[Ix[|~2). This is natural, since it can also be shown that 872(x) — x, and lends
credence to the analysis being robust w.r.t. possible misspecification of p and
A. (If p and/or A is misspecified, ||x||? will tend to be large.)

VHB(x) = % — zz'B’,

V,ue(x) = 2 — ——F—Bzz'B’.
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Note next that

V,u(x) — VHE(x) = (—%‘%[—Bw +pB(i)(i)tB‘].

2| /\ |z

The interest here is that the difference clearly has a comparatively large
eigenvalue (at least when p is large) in the Bz = (X + A)”(x — p) direction.
Thus Vyus seems to assess the accuracy in this direction to be less than does
VHB, This behavior will be seen to hold also for moderate ||x||> and will be
discussed further in Section 3.3.3.

III. Moderate ||x||> and large p. Recall that p and A are roughly to be
thought of as the prior mean and covariance matrix for 0. Hence p and
(2 + A) are roughly the marginal mean and covariance matrix of X, so that we
would “expect” to have

IxI? = (x — p)(E+A) '(x—p) =p.

Indeed, as p — o, ||x||2/p would then converge to 1.
In Appendix 3, it is shown that, if ||x||?/p — 1 as p — =, then A(||x||?) > 1
and pg(||x||?) — (2 — 4 /). Hence, for large p and |x||% = p,

4
VHEB(x) =¥ — BB’ + (2 - —)Bii‘B‘,
w

V,u5(x) = X — 2BB’ + pB7z‘B,

where z = z/|z| = (£ + A)"V%(x — pn)/|x — pll.
Interestingly, this exhibits features of both the small ||x||* and large |x]?
cases simultaneously. To see this, let

Bz 3I(Z+A) '(x—p)

Wi, = — = —
DBzl x(T+A) (x - p)

and {w;), W), ..., W,)} be an orthonormal basis. Then the ““ variances” of the
“contrasts” w; (0 — 37B(x)) are, for i > 2,

W(ti)VHB(x)W(i) =/W(ti)(z - BBt)W(i),
W(‘iysys(x)w(i) =w( (2 - 2BB")w,,,
and, for i = 1, '
t HB t t 4 SIPNRIPS
wi VvV (x)w(l) =w;(2 - BB)w,, + |2 - = z'B'Bz,

wi Vyun(x)w;, = w(E - 2BBY)w,,, + pz'B'Bz.

For i > 2, the variances arising from V;#s might seem ‘“too small,” much as
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in the small ||x||? situation. On the other hand, for large p and i = 1, the
variance arising from V;zs can be huge, much larger than that arising from
VHB; this is related to the difference between V;zz and V#2 that was noted for
large =2

IV. A numerical example. To indicate that the insights gained from the
previous ‘‘limiting’’ cases can hold for ‘“normal” situations, consider the
example p =6, p =0, X = diag{0.1, 1.0, 1.0, 1.0, 1.0, 10.0} and A =
diag(1.55, 2.0, 2.0, 2.0, 2.0, 6.5}. [Note that ch ,, A™!¥ =10/6.5 <2 = 2(p —
2), so that (2.11) is satisfied.]

We will investigate the behavior of VZ2 and Vyu» when z = |z|e;, e; being
the unit vector on the ith axis; thus, we assume that y (and hence x) hes ona
coordinate axis. It is then easy to see that VZ2 and V,us are both diagonal
matrices, with diagonal elements

4

VER(R) = o = oy [hl) - 1ePg(er)],

0'
VHB(x) = o - mh(mz) if j # i,

4

0.0) = 2 = oy (2R (al) = (42(a1?) + 282l )el?),

00 = o = gy k) it 4

o’ and A, being the diagonal elements of ¥ and A, respectively. Here » and g
have the comparatively simple forms (see Appendix 3)

9v

h(v) =5 = 2(4e%/* — 4 — 3v)’

9(e® /4[4 — 3v] - 4)
g(v) ==+
v? (4e%°/4 — 4 — 3p)°
Figure 1 graphs h(v), h,(v) = [i}(v) —vg(v)] and hy(v) = [2h(V) —
{h%(v) + 2g(v)}v] as functions of v. It is then easy to compare the VkHB(x) and
V,(x) for any value of |z|2. For instance, if |z|> = 6 (recall that |z|> = p is what

one ‘“‘expects’ to observe), then h(6) = 0.587, h(6) = —0.149 and h,(6) =
~2.36, so that the V;"2(x) for j # i are the “conservative”

4

_ %
(of +4))

[compared with the conjugate prior variances o2 — o*/(c? + A;)], while the

VHB(x) = g? — (0.587)
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F1c. 1. Graphs of h(v), h(v) and hy(v).

Vj(x) are the “optimistic”
4

;
(o7 +4;)

On the other hand, the variances V;#3(x) and V,(x) for |z|? = 6 are given by

Vi(x) =02 - (1.17)

4
g
‘,iHB(x) = 0'1‘2 + (0149)—('—5—_'—_—-A—)-,
g; i
4

A g;
V,(x) = 0':‘2 + (236)-(—0_-2—'_—1_77

Interestingly, both V2 and V, are larger than o2, but V,(x) is dramatically
larger. For instance, '

100
Vi (x) = 10 + (0.149) 7 = 10.90,

17/ 10 + (2.36 100 24.30
G(X) - ( M )16.5 - . M

To emphasize: In this example, if one observes z = (0,0,0,0,0,V6) [ie.,
x =(0,0,0,0,0,9.95)], then the estimated variance of 6, obtained from V2
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is 10.90, while that obtained from VSHB is 24.30. Note that, here,

10
- 9.95 — (. 587)m(9 95) = 6.41,

so that 62 shifts Xg = 9.95 about one sample standard deviation (v10).
Of some interest is the observation that

sup sup w!(Vyms — VEB)w
x w:w|=1

= supes(Vyus — VEB)e,
[z]
4

- ey e [-h) + (#0) + 2]

60606 20 9u(10 + 3v)
- ( . )S‘:.p 4(4e3v/4—4—3v)

= 13.44

(the maximum occurring for v = 6.24, which is near the ‘‘expected value” of 6
for ||x|2).

3.3.2. Comparison of risks. For illustrative purposes, here we take Q = I,
in (1.1). The formulae for p*2(x), analogous to those in Section 3.3.1, are as
follows (we only give the analogs of Parts III and IV):

III. Moderate ||x||?> and large p. Under the condition |x||?/p — 1 and p
large,

4
pfB(x) =tr T — tr BB’ + (2 - —)i‘B‘Bi,
™

Ryus(x) = tr = — 2tr BB! + p'B'Bz.

To highlight the differences, consider z;, the unit eigenvector corresponding to
the characteristic root A; of B‘B. Then [writing x* for the corresponding value
of x, and A = (tr BB — A))]

A , 4
pHB(x!) =trT — A — (— - I)Ai,
o
and
Ryus(x') =tr T — 2A + (p — 2)A,.

Note first that the pB(x?) are always less than tr X, while Rxs(x?) can be
much larger (if p is large and A; is large compared to the average of the
other characteristic roots). On the other hand, p2 is bounded below by
tr ¥ — tr BB? > 0, while R us can be much smaller (even negative) when A, is
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a small characteristic root. (This is true even for |z|* = p; for smaller |z|, it will
often be the case that R,xs is negative.)

IV. The numerical example. For z = |z|e;,

P15 = T of - ha) T 1S + () iy

2+A
4 4

Ryus(x) = z of — 2h(z") L m + [21°[ A*(2*) + 2g(12%)] 0,20;' y

Forz = |z|e6, these become
pHB(x) = (14.1) — (7.4)h(|z*) + (6.061)|z|’g(z|*),
Rymn(x) = (14.1) — (14.8) k(122 + (6.061)|z[2(h2(|z[2) + 22(2I2)).

At z = V6ey pHP =14.23 and R,us = 26.83. This is quite a discrepancy,
R ;5 estimating the risk as being almost twice pfB
At the other extreme, for z = |z|e;,

pHB(x) = (14.1) — (7.4)A(2?) + (.00606)|z[’g (|2 ]?),
Rymn(x) = (14.1) - (14.8) h(|2*) + (.00606)[z*(h*(|zI?) + 2g(1zI2)),

which, at z = V6 e,, become p?® = 9.76 and R,us = 5.43. Here R s evalu-
ates the risk as being only about half of p2. (Again, we have chosen |z|> = 6
to make the comparison because it is what we expect to observe.)

For intermediate z, p?Z(x) and R,xs(x) can be much closer. For instance, if

z=1z/(1,1,1,1,1, 1)f/‘/‘
pHB(x) = (14.1) - (7.4)[h(1z?) - |121%(|zI?) /6],
Ryna(x) = (14.1) - (7.4)[2h(|z|2) ~ 22(R*(12I?) + 2g(21%))/6],

which, at z = (1, 1,..., 1), become p#2 = 10.67 and R,xs = 9.78.

Graphs of p#B(x) and Raaa(x) for the three cases, z = |z|eq, z = |z|e, and
z=12/(1,1,1,1,1,1)/ V6 1/_ are given as functions of |z| in Figure 2. They are
labelled p,, py, p; and R,, R,, R, respectively. Note that the R, > —0.7 as
|z| - 0, and are always substantially smaller than the correspondmg p; for
small |z|.

3.3.3. Discussion. The differences between V,us or R us and VHB or pHB
can be partly explained by the differences between frequentist and Bayesian
evaluations of error. For instance, in the example of Section 3.3.2.IV, the
actual frequentist risk at 6 = (0,0, 0,0, 0, 10)* is about 21 [see Berger (1980),
Figure 1], while the posterior Bayes risk for x = (0,0, 0, 0,0, 10)* is about 14.
The large Rsya(x) 27 for this x is thus partly due to its estimating an
inherently larger quantity.

Whether the frequentist risk of 21 or the Bayesian posterior risk of 14 is a
better measure of accuracy when x is near (0, 0, 0, 0, 0, 10)’ is an issue we will



638 dJ. 0. BERGER AND C. ROBERT

20 25

15

10

o
—
(=]

20 30 40 50

Izl

Fic. 2. Graphs along various rays of the posterior expected losses, p,(|z|), and unbiased estima-
tors of risk, I?ti(|z|); here i =1, 2 and 3 denote the |2/(0,0,0,0,0,1), |2/(1,0,0,0,0,0) and
121(1,1,1,1,1, 1)/ V6 rays, respectively.

sidestep. Note, however, that there are arguments both ways. For instance, on
the frequentist side, one might argue that a situation of possible nonrobust-
ness w.r.t. the prior has been identified; in particular, the ‘“great” fit of
(x4,...,25) to the prior beliefs about (6,..., 05)° overcomes the “bad” fit of
x¢ to the prior belief about 8, (recall that ug = 0 and /A, = V6.5 = 2.55), so
that the Bayesian estimator will substantially shrink towards p = 0. But one
might worry about the bad fit of x4, especially upon observing that much less
shrinkage would result from utilization of a prior for which the 6, were
independent. [An alternative type of ““fix”’ for individual extreme coordinates is
discussed in Berger and Dey (1985)—see also Berger (1985)—based on an idea
in Stein (1981).] In general, a frequentist risk that is substantially larger than
pHB(x) would cause us to investigate the robustness of 872 more carefully.

Of course, we are not considering the report of R(0,3%2), but instead the
report of R +#5(x) [or Vyus(x)], and we have identified a seemingly systematic
problem with the latter: When ||x|| is small, Rz#s or Vyus seem themselves to
be too small (even sometimes negative), while if ||x||? is moderate or large (in
certain directions), R 3HB OF VSHB will be too large [such as in the previously
discussed example in which R;x5((0,0,0,0,0, 10)) = 27 while the risk func-
tion in the vicinity of (0,0, 0,0, 0, 10)’ is no more than 21 and p?% is only
about 14].
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Upon reflection, the reason for Rszm or VSHB being ‘“‘extreme’ is clear.
Consider Rus, for instance, recalling that '

(3.16) EoRsHB(X) = R(0,378).

Let 0,, and 0,, be values of ® minimizing and maximizing R(8, 5%E). [In the
numerical example, 8,, = 0 and 6,, = (0,0, 0, 0,0, 12)".] For x in the immediate
vicinity of 0,, it must be the case that Rsna(x) is generally less than
R(8,,,378), or (3.16) will not hold when Rsmz(x) is averaged over all x.
Similarly, for x in the immediate vicinity of 0,,, R z5(x) must typically exceed
R(0,,,378) for (3.16) to hold. This systematic tendency toward extremes is
troubling, especially at the lower end. Our opinion is that having errors (or
estimated risks) less than V75(x) [or p”2(x)] is very hard to justify and is the
most serious potential failing of Vsma and Rus.

In conclusion, our preference is to use V#2(x) and p*5(x) as the estimates
of accuracy, with, however, the qualification that if V,xs(x) or Rsma(x) are
much larger, then investigation of robustness with respect to the prior as-
sumption (in particular, w.r.t. the strong implied dependence of the 6,) should
be undertaken.

4. Minimaxity of 378

4.1. Analytic sufficient conditions. To show that 372 = x + TV log m(x)
is minimax, it is sufficient to show that [see (3.13)]
(4.1) Ryue(x) < tr(QZ) for all x,

because then R(8,378) = E,R,ns(X) < tr(QY), the minimax risk for the
problem. It is straightforward to show that (4.1) can be rewritten as

(4.2) Y(QVym(x)) <0 forallx,
where Q = 2QZ, and

_ P9

B = T 5-u(x).
When Q = I p» (4.2) is the celebrated ““superharmonicity” minimax condition
of Stein (1981); see also Zheng (1982), George (19864, b, ¢), Haff and Johnson
(1986) and Haff (1988).

In general, analytic verification: of (4.1) [or (4.2)] can be very difficult,
especially for complicated estimators such as 3#B. In one circumstance, how-
ever, verification is relatively easy. The following proposition, generalizing
results of Stein (1981), Zheng (1982) and George (1986a), provides the needed
tool.

SHB

ProprosITION 4.1. For the situation of Proposition 3.3, is minimax if

(4.3) V(QVm(x|n)) <0 forall x and p.
[See Section 2.3.2 for definition of m(x|p).]
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Proor. Clearly,
YQVm(x) = [ (QVm(xin))mi(n) du,

so V(Q Vm(x)) < 0. But it can be easily verified that this implies (4.2), proving
the result. O

The great simplification in use of (4.3) is that one can work conditionally on
p. Furthermore, if (4.3) is satisfied, then 3872 is minimax regardless of the
distribution m} chosen for w (subject to the mild conditions of Section 2.2 and
Proposition 3.3). This is startling, not only because of its generality, but also
because it is an instance in which essentially any subjective prior information
about a parameter (p) can be utilized while maintaining complete frequentist
justification (minimaxity). In the next section we will discuss conditions on
m3(2,|p) under which (4.3) holds.

4.2. Minimaxity of "B in the examples. Consider first the scenario of
Example 4, in which the first stage prior is A (w, §C — 2), C given, and (p, £)
has a second stage prior density

o, £) = my(w)m3(£lw).
We will choose
(4.4) Q=x"Cx L

Minimaxity results for other choices of Q can be given but are of less interest,
in that for other Q the condition (4.3) can only be satisfied by inadmissible
estimators. Furthermore, if Q differs substantially from (4.4), then 378 will
not be minimax; basically, minimaxity and Bayesian shrinkage patterns are
compatible only for rather special Q.

THEOREM 4.2. If, for all w, w3(£|w) is nondecreasing on (0, »), then (4.3)
is satisfied.

Proor. Since (see Section 2.3.1)
W=(2+2 ) '=¢1C! and Q=3QX=C,
calculation yields

(x - w)'C i (x-p)
2¢

m(x|p) =Kf§"’/2 exp{— }wg(flu) d¢
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and

§2

{ (x—p)'C Y x—p)
X exp{ — T

Defining a@ = (x — p)*C~(x — p)/2, condition (4.3) is equivalent to

-, o~ 0 _ tc—l _
V(va(xm)):K/0 {—§+ (x—p)Ci(x u)}

}§"’/27T§(§Iu) dé.

¥(a) = [(2a — p&)EPTO/2e-a/in2(£1u) dE < 0, forall a > 0.
Letting [¢,, ©) denote the support of 73(¢£|u), integration by parts yields
(45)  d(a) = —2e/botg?Ami(tol) — 2[ €77 %/ Emi(Elw) di,

0

where ) denotes the (almost everywhere existing) derivative of 72(£|p).
(Note that the monotonicity condition on 72 ensures that this integration by
parts is valid.) But, since 72(¢|n) is nondecreasing, my(¢|p) > 0 and the
right-hand side of (4.5) is clearly negative, completing the proof. O

A natural choice for 72 is m2(£|p) = 1 [on a subset [¢,, ) of (2.8)]. This
clearly is nondecreasing, and so (4.3) is satisfied and the resulting 872 will be
minimax. Note that this covers the special case of Example 4 that we have
frequently discussed.

In Berger (1980), the second stage prior distribution for ¢ that was consid-
ered was (with p being given)

m3(£lw) o €7 FITP/D on (1, ),

where any n < (p — 2)/2 could be selected. These are all nondecreasing, but
only n = (p — 2)/2 [corresponding to the uniform prior on (1, )] yields an
admissible estimator. Indeed, it is unlikely that one would ever want an
unbounded increasing 72(¢|p). [Note that, for fixed w, minimaxity theorems
based on hierarchical priors of this type were given in Strawderman (1971) and
Berger (1976a, 1980).]

It might, on the other hand, be desired to use decreasing m2(¢|n). Unfortu-
nately, (4.3) cannot be satisfied for such 72, as the following lemma shows.

LEMMA 4.3. If there exists t, such that, on (t,,®), w2(¢|p) is continuous,
nonincreasing and nonconstant, then (4.3) cannot hold for all x.

Proor. In the proof of Theorem 4.2, it was shown that (4.3) is equivalent
to showing that (4.5) is negative. Now, by the assumptions on 72, there exists
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an interval (b, ¢), b > t,, such that 74(¢|p) < —& < 0 on (b, ¢). Clearly,
fw‘f_p/ze_a/fﬂé(‘ﬁlu) d¢ < (—8)fc§_p/2€_a/§ d¢
to b

< (—g&)c P/ %7 2/%(c - b).
Thus [see (4.5)],
Y(a) > —2e /Pt P/ 272(¢o|ln) + 2ec P/ 2e%/%(c — b).

Letting @ — o« in this expression, it becomes clear that (4.5) can be positive. O

Although Lemma 4.3 rules out decreasing priors, a variety of nonmonotonic
priors will also satisfy (4.3) for every x and p. For instance, certain 72 which
decrease for a while, then increase, and then either are constant, or continue
to increase, can be shown to satisfy the condition. Oscillating priors (that
finish on an increase) also might work. We have not attempted to determine
which of these more general priors satisfy the condition, because they do not
seem hatural in practice.

Although we have presented the results in this section in terms of Example
4, they also apply to the Example 3 scenario, providing one wants to choose
2. = 02%; then simply set C = ¥ in Example 4, so that o2 = (¢ — 1).

4.3. Numerical verification of minimaxity of 38, Because of the special
choice of Q and the special nature of 72(£|p) required for the analytic
minimaxity proof in Section 4.2, an alternative general method for verifying
minimaxity of 878 is clearly desirable. An obvious method exists: for a given
estimator, simply numerically verify (4.1) or (4.2). In this regard, (3.15)
provides the most useful calculational formula for Rz, so that the numerical
problem can be rewritten as showing that

(4.6) A(x) = 2[tr(Q2) — p"B(x)] - [x - 37B(x)]'Q[x — 375(x)] > 0.

[Haff and Johnson (1986) give a related expression.] Thus, simply have a
computer minimize A(x), and check to see if the minimum is nonnegative.

Numerically minimizing A(x) is not necessarily trivial. First of all, calcula-
tion of A”Z and p#® will often involve numerical integration, and inaccuracies
in the integration can cause instabilities in the minimization routine. Second,
as always in high dimensions, one needs to worry about local minima. Third, if
3”8 js minimax, A(x) will converge to its minimum (of zero) as |x| — %, so
that one has to truncate the minimization algorithm when A(x) gets within &
of 0 and |x| is large. [Strictly speaking, one has then only shown that 372 is
probably s-minimax; a tail-minimax argument, as in Berger (1976b), could be
employed to complete a proof of minimaxity, but from a practical perspective
this would hardly seem necessary if ¢ were small.]
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ExampPLE 1 (Continued). In the notation of Example 4 (Continued) in
Section 2.3.1, (2.5) holds and p = 7, o2 = 100, 8°'= 100, A = 225 and 72(c;?)
= 1. For sum of squares error loss [Q = I, in (1.1)], the results in Section 4.2
(and Lemma 2.2) show that %2 is minimax. Here, however, the current 1Q,
0., might be of substantially more importance than the previous 1Qs, so that
Q = diag{1,1,1,1,1,1, g} (with ¢ > 1) might be deemed to be more reason-
able. We will investigate the minimaxity of 8¥E for such Q, using the
numerical method.

For this example, algebra yields

(100) "2 A(x) = 2(E, — 225E;)(6 + q)
+(E? - 2E,)[s% + (g — 1) (%, — %)
+(E2 - 2E,)(% — 100)*(6 + q)
+ 2(E,E, — 2E)(x, — %)(% — 100)(g — 1),

where s2 = ||x — X1||? and the E, are the expectations with respect to 72(0;2|x)
of, respectively, (100 + o;2)7 1, (1875 + a2)71, (100 + 0272, (1875 + 02)~2
and (1875 + ¢.2)~1(100 + 02) 1. From @7 [and (2.23)] it is not hard to show
that A(x) actually depends only on the three quantities x,, x* = X%_, x,/6
and s*2 = Y% (x; — ¥*)? and that these quantities vary independently. The
minimization of (4.7) was thus done in only three dimensions; IMSL minimiza-
tion and integration routines were used throughout.

Figure 3 presents the minimum of A(x)/100 as a function of g. (The
accuracy of the minima is about 0.05.) For ¢ < 1.7, the minimum is zero,
indicating that 3¥2 is minimax for such q. For ¢ > 1.7, however, 878 is
clearly not minimax.

(4.7)

The simplicity of the above numerical verification of minimaxity, compared
with analytic verification in general, should arguably make it the preferred
technique (unless the analytic technique simultaneously handles a wide range
of useful estimators). This is especially so because analytic verification is only
occasionally possible (and then typically only in simple situations), while the
numerical approach is always available (though not necessarily always doable
computationally) A bonus that is obtained from the numerical method is a
bound [the minimum of A(x)] on the degree of nonminimaxity [since R(0,3) —
tr(QX) < —inf AX)].

Finally, note that minimization of A(x) is considerably simpler than maxi-
mization of R(0,3%5) over 0, since

R(0,378) = tr(QX) — E, A(X);

the presence of the additional expectation over X, in calculation of R(,3%5),
so complicates the numerical problem as to make it unmanageable on a
routine basis for complicated 8?2. Thus, the existence of an unbiased estima-
tor of risk and the availability of relatively simple expressions for it are crucial
elements of the numerical method.
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Fic. 3. The value of inf,, A(x)/100 as a function of the loss q.

APPENDIX 1
Generalizations of Examples 3 and 4

I. Frequently, we consider the case X_ = o;’I p» in the examples. An appar-
ently more general case of considerable interest is that in which correlation
among the 6, is allowed, i.e., in which

2, =0, +pll’.

It is of interest to note that this case can be reduced to the 2 = 0;’I,, case by
defining

p*=p+ypZ1,

where Z ~ .#10, 1), and observing that

W(e) = fﬂl(‘)“l,, P, 0',”2)7T2(|.l., P, 0'7,2) dll« dp dO’,f

= [m (0", o2)ms (u*, 02) du* do;



HIERARCHICAL BAYES SHRINKAGE ESTIMATION 645
here w#(8|p*, o?) is A, (p*, o?1,) and
—-1/2 _,2
75w, 02) = [mo(w* = Vpzl,p, 02)(2m) e /2 dzdp.

II. A related apparent generalization [cf. Dickey (1968, 1974)] is that in
which the first stage prior, 7 (8w, X ), is chosen to be 7 (a,n, X,). Note,
however, that this distribution is the mixture of a normal distribution w.r.t. a
gamma distribution:

m(0l8, 2,) = [mF(0ln, 2, A) dirs(A),

where 7#(0|p, 2, 1) is A (n, A7'Z) and 74(A) is H(a/2,2/a). Therefore,
this case can also be reduced to the canonical form in (2.1) and (2.2), by writing

m(0) = [7F(0ln, 2,)w$(n, E,) dudz,,

where

1
T (w,X,) = fvz(u,;%)p%a(p) dp.

APPENDIX 2
Proor oF LEMMA 2.2.

Case 1. From Berger [(1985), Section 4.6] one obtains that (up to a
multiplicative constant)

m(x) = [ m(xlo?)w}(o?) do?,
0
where m(x|o,?) is given by (2.29). The exponential part of (2.29) is clearly

bounded by 1, so to establish the finiteness of m(x) it is only necessary to
verify that

(A1) fo " (det W) 2 [det(y' Wy + A~1)] " *72(02) do? < w.
For 0 < ¢? < K, .

(A2) (det W) < det(=71)

and

(A3) det(y'Wy + A1) > det(y‘(z + KIP)_Iy).

It follows immediately from (A2), (A3) and (2.13) that

/ ¥ (det W) *[det(y' Wy + A~Y)] "’ 72(02) do? < o,
0
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For 2 > K,
(A4) det(W) < det(o21,) " = o %
and
det(y*Wy + A~!) > det(K'o; 2y'y + A71)
[0 -
= det(K’a,,‘zyty)det(Ip + —A"Y(y'y) 1)
(A5) m 0.2
- det(K'o72y'y) [1 (1 ; ?’:pi)
e
) m
= k(62 [1n),
im1

where {p,,...,p,} are the nonzero eigenvalues of A~ y'y) ! It follows
immediately from (A4), (A5) and (2.14) that

/ " (det W) ?[det(y' Wy + A~Y)] " *72(02) do? < w.
K

Case 2. Using the representation discussed in Example 3, Case 2 of
Section 2.3.1, one has

m(x) = [ [ m(xir, 02)mE(02)Am Pmy(A) dA der?,
0“0

where m(x|), ¢,2) is given by (2.29) with A~! replaced by AA™', and 7, is a
Gamma(2/a, a/2) density. Again, the exponential part of m(x|A,a?) is
bounded by 1, so it suffices to show that
[ (det W)/ *[det(y* Wy + AA"Y)] T 73(02)Am2y(A) dA do? < .
070
For K < 02 < =, the bounds (A4) and (A5) that were given in Case 1 are still
valid, with [12 ; p; replaced by A™T1_, p;. It then follows immediately, using
also (2.14), that
fwfw(detW)l/z[det(y‘Wy +AA7Y)] _1/2773(0,,2)Am/2773(/\) drdo? < .
K70
For 0 < 02 < K, one needs to replace (A3) by

det(y'Wy + AA71) > det(y‘(E + KIp)_ly)A’" I1oz,
i=1
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where now {p¥,...,p%} are the nonzero eigenvalues of A Yyl +
K1 p)'ly)_l. Together with (A2) and (2.13), this directly implies that

/ X / " (det W)“/?[det(y Wy + AA~Y)] " *w3(a2) A" /27 (A) dA do? < =,
0“0

completing the proof. O

APPENDIX 3
Define
m v
hat0) = [1- A3
2m v v
gn(v) = 7[1 + {E(hm(v) -1)- l}Hm(E)]’
where
Co9-1
vm/z[%!{ev _ (m;Vj_:l D%}] if m is even,
H,(v) =

(m=3)/2  i+1/2 }]—1

vW{WgﬁqwaMﬁEVJJ‘ L Tavs2

i=0
if m is odd,

where @ is the standard normal c.d.f. and the summation in the last expres-
sion is defined to be zero when m = 1.

LemMMa Al. In the situation of Section 3.3.1, part III, suppose that
Ix|12/p = 1 as p = ». Then h(||x||>) — 1 and pg(||x||>) = 2 — 4/m).

ProOF. The result that A(||x||>) — 1 follows easily from Lemma 2.1.1(vi) of
Berger (1980). To show that pg(||x||*) — (2 — 4/7), note first that it is easy to
show that any ||x||?> such that ||x||2/p — 1 will give the same limiting result.
Hence, for convenience, we will choose [|x||> = 2n = p — 2. Note next that [see
Berger (1980) for definitions]

hxw—ﬁwﬂ=2mw)+@n_ww%mw)_q’

v v v

vg(v) =

which, at v = 2n = p — 2, equals

r.(2 2n —r,)?
(2n)g(2n) =2 n(z n) - ( n2n ) .

Again, Lemma 2.1.1(vi) shows that (2n) " 'r,(2n) - 1 as n —» «, so that we
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need only show that [see Berger (1980)]

2n —r,)? = ninl 17?2 4
ﬁ.___z_;l_)_ = zn[z ____] - —

izo (n+1)!

as n — o, Stirling’s formula gives

nin! nie~™+D(p + 1)"*V227 (1 + 0(1/n))
(n+0)! e ¢+itD(p 44 + 1) HYD B0 (1 4+ 0(1/n))

(A6) .
i+1 : i n+1/2 ,~ 1
(1‘ r“—ﬁ) (1 - ﬁ) i (“0(2))'

[Within this proof, O(-) and o(:) are to be understood to be uniform in
0 <i < ] Now

b e
(n+i+1) (n+i1+1) (n+1)
so, for i < n® where a < 1,
nzn! l n+i+1 )
(A7) i) (1 - m) e'(1+ o(1)).
Next note that, for i < n® where a < 2,
i n+i+1 i2
log(l - m) = —]— m +O(1),

so that (A7) becomes
n‘n! i2
Tt = exp{—m}(l + 0(1)).
Thus, for a < 2,
n*  nin! n i

= exp{ —————-—}(1+o(1))

Zo(n+i)! T 2(n+i+1)

Il
@
»

p{—%}(l +0(1)).
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Thus, for 3 < a < 2,

i 1 E nin! T
nowyn 2 i)t V2o

To deal with ¢ > n%, note that for all i,

i+1) Y\ 1 i
(n+i+1) = (n+i+1)
and
i n+i+1 i2
1 - - - .
Og(l (n+i+1)) =7t 2(n+i+1)

Together with (A6) these imply that

wrn ==z (o))

It is straightforward to check that, for 3 < a < 2,

1 f i2 0
— —_—— —
w2\ T 2(n i+ 1) ’
completing the proof. O
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