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RANDOM TRUNCATION MODELS AND MARKOV PROCESSES

By NieLs KeminG anp RicHARD D. GiLi!

University of Copenhagen and University of Utrecht

Random left truncation is modelled by the conditional distribution of
the random variable X of interest, given that it is larger than the truncat-
ing random variable Y; usually X and Y are assumed independent. The
present paper is based on a simple reparametrization of the left truncation
model as a three-state Markov process. The derivation of a nonparametric
estimator of a distribution function under random truncation is then a
special case of results on the statistical theory of counting processes by
Aalen and Johansen. This framework also clarifies the status of the estima-
tor as a nonparametric maximum likelihood estimator, and consistency,
asymptotic normality and efficiency may be derived directly as special cases
of Aalen and Johansen’s general theorems and later work. Although we do
not carry through these here, we note that the present framework also
allows several generalizations: censoring may be incorporated; the indepen-
dence hypothesis underlying the truncation models may be tested; ties
(occurring when the distributions of F and G have discrete components)
may be handled.

1. Introduction. As has been known since Halley (1693), the construc-
tion of a life table involves following persons from an entrance age to an exit
age and registering whether exit is due to death or end of observation for other
reasons (censoring, in modern terminology). Kaplan and Meier (1958) initiated
the modern mathematical-statistical analysis of the life table in continuous
time, or equivalently, the nonparametric estimation of a distribution function
from right—censored observations. Kaplan and Meier also showed that their
“product-limit”’ estimator was the method of choice under delayed entry, or
left truncation. Although this portion of their paper has escaped the attention
of many later authors, the practical use of life table and product-limit
methods under left truncation has flourished.

A different empirical motivation for the study of nonparametric estimation
under random truncation comes from astronomy, as recently summarized by
Woodroofe (1985). In fact, a heuristic maximum likelihood argument for the
product-limit estimator under random truncation was given by Lynden-Bell
(1971).

A third apparently independent line of work on this estimator concerns
estimation of the distribution of the residual in truncated regression [cf.
Bhattacharya, Chernoff and Yang (1983), Tsui, Jewell and Wu (1988) and
Bickel and Ritov (1987)].
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Following Woodroofe (1985), our basic setup is that of n i.i.d. replications of
the conditional distribution, given Y < X, of a pair of independent random
variables Y and X with distribution functions G and F, of which nonparamet-
ric estimators are sought.

The purpose of this paper is to demonstrate how an embedding of the basic
nonparametric estimation problem into a simple Markov process model allows
one to exploit the modern techniques of statistical inference in counting
processes [Aalen (1978), Aalen and Johansen (1978) and Andersen and Borgan
(1985)]. This approach sheds new light on a number of issues in the current
literature and also paves the way for several new results.

Section 2 specifies a five-state Markov process and explores its equivalence
with observation of (Y, X); some elementary results on conditioning and time-
reversal in Markov processes are also recalled. Section 3 then applies the (by
now standard) results on statistical inference for counting processes to the
present estimation problem. Section 4 shows that the estimators of Section 3
may be interpreted as maximum likelihood estimators. Section 5 contains
results on asymptotic normality and Section 6 applies these to obtain the
asymptotic distribution of the maximum likelihood estimator of a« = P{Y < X}.
The final section, Section 7, briefly discusses some of the related results in the
literature.

An extended version of this paper exists in technical report form (Keiding
and Gill, 1988), where some points omitted here may be found.

2. Interpretation of random truncation models in a simple Markov
process model. The problem is nonparametric estimation of the distribu-
tions G and F of independent, positive random variables Y and X when
sampling from the conditional distribution of (X,Y’) given Y < X. Define the
cumulative hazard functions

I(y) = fo‘"da(t)/[l - G(t-)], ®(x) = fo"dF(s)/[l ~ F(s-)].

Let a; < b; be the essential infimum and supremum of G so that (ag, bg) is
the interior of the convex support of G; define a, and by similarly.
We assume throughout that Y and X have no common atoms; in particu-
lar, P{Y = X} = 0, so that
a = P{Y < X} = P{Y < X},
which is assumed to be positive; this is then equivalent to assuming ag < bg.
We suppose also a; < ap and b < by to avoid mathematically trivial (though

possibly practically rather important) identification problems.
Define a stochastic process U = {U(¢), t € [0, <]} by

U(t) =0 whent<XAY
U(t) =1 whenY<¢<X
U(t) =2 whenY<X<t
U(t) =3 when X<t<Y
U(t) =4 when X <Y<t
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It is seen that observation of {U(#), 0 < ¢ < =} is equivalent to that of (Y, X),
and that observation of {U(¢), 0 < ¢ < =} conditional on U(x) = 1 is equivalent
to observation of (Y, X) given Y < X.

ProrosiTiON 2.1. U is a Markov process with U(0) = 0 and intensities

given by the diagram
d o)

dT@)

]

do(t)

dT(t) '

In the conditional distribution given U(») = 2 (that is, Y < X), U is again a
Markov process given by the diagram

E| dA(2) . dAy®)
’

Py(t,) ar(t)
Pyu(t—,®) PY<XX>tY>t)’

where Ay = ®, whereas

dA(t) =dT(¢)

where P, (¢, u) are the transition probabilities in the original Markov process.

Proor. Using product-integral formalism, Johansen (1978, 1987) defined
finite-state, nonhomogeneous Markov processes from general (not necessarily
continuous) intensity measures. That the conditional process given U(x) = 2
is Markov with the stated intensity measures is well known and easily seen by
direct calculation. O

Consider now the time-reversed conditional Markov process U(#) on [0, =]
with time running backward and U(x) = 2:

The following proposition is a standard result in Markov processes and is
easily proved directly.

ProposiTiON 2.2. Consider a Markov process with states {0,1,2} defined
from intensity measures A, and A, as in Proposition 2.1. The intensities of the
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backward Markov process (the “backward intensities’) are given by

Py _y(,t —)

_ i =1,2.
Py (o, t) ’ ‘ ’

dA,(t) = dA(t)

Define the (left-continuous) backward cumulative hazard

dG(u)

P ==, 6w

then an easy calculation from Proposition 2.2 gives dA (¢) = dT'(¢), which, of
course, also follows directly by symmetry of time.

For the maximum likelihood theory in Section 4, we need the characteriza-
tion results below, informally formulated as follows: Given a Markov process
with transition intensities dA,(¢) from 0 to 1 and dA4(¢) from 1 to 2, under
which circumstances do there exist distribution functions G and F generating
this in the above way, that is, such that dT'(¢#)/P{(Y < X|X > ¢, Y > t} = dA(?)
and dF(¢)/[1 — F(¢t —)] = dAy(¢), where Y and X are independent with distri-
bution functions G and F?

As preparation, we consider arbitrary integrated intensity measures A on
[0, ]; define the minimal convex support 2. (which is an open, half-open or
closed interval) as the smallest convex set such that A(3¢) = 0. Define ¢ to be
a termination point of A if either A({c}) = 1 or A(c — &,c] = « for all ¢ > 0,
but not both. An intensity measure A on (0,%) with minimal convex support
with endpoints a < b corresponds to a probability measure if and only if A is
finite on [a, b — ¢) for all £ > 0 and it has one and only one termination point,
which is the essential supremum b.

ProposiTION 2.3. Let U= (U(s), 0 <s <) be a Markov process with
state space {0, 1,2}, intensity measures A;: i — 1 — i, i = 1,2, all other transi-
tions having zero intensity and P{U(0) = 0} = P{U(x) = 2} = 1. Define K (the
backward intensity measure from i to i — 1) by dA(¢) = dA(£)P{U( —) =
i — 1}/P{U(¢) = i} and assume that Ay, A, as well as A, A2 (with time
running backward) correspond to probability measures.

Then there exist distribution functions F and G given by

x ! —
1-F(x) = Z(1-dAy),  G(y) = (9”)(1 - dAy),
y,OO

such that the Markov process corresponds to the left truncation model specified
by the conditional distribution of independent random variables Y and X on
(0, ) with distribution functions G and F, given Y < X. These are the unique
G and F subject to ag < ay, bg < bg.

REMARK. Here and in the following, & denotes product integral [cf. Gill
and Johansen (1989)].
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Proor. The conditions directly imply that F and G are well-defined
distribution functions. We need to check that the construction in Proposition
2.1 of a Markov process from these F and G lead us back to the integrated
intensities A; and A,. This can be seen by a direct calculation which we omit
here. O

2.1. The Markov process parametrization (A, A,) and the truncation model
parametrization (G, F). Note that, while A, = ® corresponds to the distri-
bution function F, = F, A, corresponds to the distribution function of Y
given Y < X,

1= F(y) = 2(1 - dA(w))

(2.1)

- F)] dG(s)/[:[l ~ F(s)] dG(s)

a—ljoy[1 — F(s)] dG(s),

and that G may also be recovered from F, and F, = F by the inverse relation

G(y) = a/oy[l — Fy(s)] " dFys),

since
a =[0 [1 - F(s)] dG(s) = 1//0 [1 - Fy(s)] ' dFy(s).

The key point of this paper is the interplay between these two alternative
representations: the “random truncation model,” specified by G and F, and
the Markov process model, specified by F, and F,, as well as the two routes
from A; and A, to G—that via time reversal and that via a.

3. Estimation. In this section we assume the distributions G and F to
be continuous with support (0, ®); then the corresponding integrated intensi-
ties I' and @ are also continuous. By Y*, X* we denote random variables with
the conditional distribution of Y, X given Y < X, and G*, F*,T'* ®* denote
marginal distribution functions and integrated intensities in this distribution.

We assume that a sample of n independent identically distributed replica-
tions (Y*, Xi¥),...,(Y,*, X*) of (Y* X*) is observed. Corresponding to
(Y;*, X*), i = 1,...,n, we construct (conditional) Markov processes U, as in
Proposition 2.1, which yields the counting processes

Ny(¢) = #{Y;* <t} = #{jumps by U,,..., U, from 0 to 1 in [0, ¢]},
Ny(t) = #{Y;* <X* <t} = #{jumps by Uy, ..., U, from 1 to 2in [0, ¢]}.
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With respect to the self-exciting filtration, the bivariate counting process
N(t) = (N((2), Ny(#)) has compensator A(¢) = (A(¢), Ay(¢)) given by

t t
A2) = [Vi(w) dAy(u),  Ay(t) = [Vy(u) dD(w),

0 0

where we have used the fact (Proposition 2.1) that A, = ® and where
Vi(¢) = #{Y* > ¢}, Vo(t) = #{Y* <t < X*};
define also J,(¢) = {V,(¢) > 0}, i = 1,2.
3.1. Estimation of the distribution of X. According to standard methodol-

ogy for statistical analysis of counting processes [Aalen (1975), Section 5D,

Aalen (1978) and Aalen and Johansen (1978)], we use as estimator of the
integrated intensity ®(¢) the Nelson-Aalen estimator,

<I)( )_/t Jo(u) m H{X* <t}

dN,(u) =
Vtw) ) = L Yk

It is then a basic result in the statistical analysis of counting processes that,

defining

b(¢) = foth(u)m(u),

the process ®(¢) — ®(¢) is a zero-mean, square integrable martingale with
predictable variation process given by

tedy(u)
d-d = do(u).
(@ - &)(1) = [y 49w
These properties imply the unbiasedness result
(3.1) E($(T)) = E((T))

for any stopping time T (both sides may be «) and suggest the estimator

e dy(w)
"0 = [ o 2

or a Greenwood-formula modification, acknowledging the discrete nature of ®,
teo(u)(Vy(u) — 1)
a(t) = dNy(u),
fo [Vo(u)]?
of the mean squared error function 7(¢) = E[(® — ®)(#)]. [For a detailed
numerical comparison of 7(¢) and 74(¢) in the simple survival analysis situa-
tion, see Klein (1988).]

Let us take a concrete look at the process Jo(u) = {V,(x) > 0}. Since we
have assumed that essinf X = essinf Y = 0, we will, with probability one,
have Y {j > 0,Y{ as usual denoting the smallest Y*, so that V() = 0 on a
proper interval [0, Y,§]. It may happen that Vy(x) = 0 on further intervals
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0, 2),...,(U,, 2], Z, <X}, (it certainly becomes 0 for u > X(’,';)) The
serious problem is that in this case of “‘empty inner risk sets,” A<I>(U ) =
ANYU)/Vy(U;) = 1, “using up” the probability mass in the middle of the
observation interval.

The estimator of the distribution function F of X or (equivalently) its
survival function 1 — F, is [Aalen and Johansen (1978), Theorem 3.2] the
product-limit (or generalized Kaplan—Meier) estimator

1-F(t) = 2 [1-dd(u)] = TT[1 - {X> <t} /V,(X)].
[0,¢] i=1
Unbiasedness and mean square error results derive from the fact that defining
1-F(t) = Z[1-dd(u)],
[0,¢]

we have that

1- ) 1—Fu-) . .

is a zero-mean, local square integrable martingale with predictable squared
variation process given by

{1-F) f1-F(u )T . .
= S FERE

A 2
1-F(u - Jo(u
- [ ) 192 o).
of 1-F(u) | Vy(u)
Hence, for any bounded stopping time T we get
1-#(T
gl 12 FD ]

1-F(T)

Taking into account the discrete nature of the estimator 1 — F, the squared
variation of (1 — £')/(1 — F') may be estimated by

/OJ2(u)(V2(u) — 1)Vy(u) "* dNy(u),

and it follows that a natural estimate of the covariance function of 1 — F' is
given by Greenwood’s formula [cf. Meier (1975) and see Klein (1988) for a
Monte Carlo study]:

cov(1 - F(s),1 - F(2)) = {1 - F(s)}{1 - F(2)}
X [0 [Valw) Va(w) = 1] dNy(u).

Note that since d<I>(U) =1,i=1,...,k + 1, and, in particular, dCD(UI) =1,
the estimator 1 — F(¢) = 0 for ¢ > U1 This is a serious problem if there exist
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values of Y;* (and hence X}*) larger than U, because the estimator of the
dlstrlbutlon of X will then be supported by a proper subset consisting of the
smaller observed X*. We shall see in Section 4 that a formal nonparametric
maximum likelihood estimator does not exist in this case.

3.2. Estimation of the distribution of Y. By reversing time, it is immediate
that the backward integrated hazard T'(¢) may be estimated by a backward
Nelson-Aalen estimator; similarly, G(¢) may be estimated by a generalized
backward Kaplan-Meier estimator. (Care should be taken regarding left or
right continuity, etc.)

The various complications are exactly as for the estimation of the distribu-
tion of X, and moreover, there are complications in estimating both distribu-
tions or not estimating at all. In particular, there is no information in the
sample on the distribution of Y on [X}), ).

Alternatively, one might start from the Markov process representation of
Section 3.1. Then estimators of the integrated intensity A; and the corre-
sponding distribution function F, are immediately given as

Jy(u) » HY* <y}

M) = [ cay M) L 2 sy)
and the corresponding product-limit estimator 1 — Fl, where F1 is nothlng but
the empirical function of the Y;*. Since the martingales A — A, and A, — A,
are orthogonal by the general theory of statistical analys1s of counting pro-
cesses, we further have the important property of approximate independ-
ence of A, and A,; this property will be crucial for the asymptotic theory of
Section 5.

Since F, estimates

(3.2) Fyy) = a™! /0‘”[1 — F(s)] dG(s),

one could then apply the inversion

G(y) =af (L= F(s) df(s),  a= [/”{1 ~ () dfs)|

However it is not immediate that G equals the s1mple product-limit estimator
G of the time-reversal approach and that @ = & = [ G dF'. This is, however, a
direct consequence of the propositions on Markov processes of Section 2 and
the transformation invariance of maximum likelihood estimators, which we
will discuss in the next section.

4. Nonparametric maximum likelihood estimation of (G, F). The
purpose of this section is to show that (G, F') is the nonparametric maximum
likelihood estimator (NPMLE) of (G, F), and that this fact is a direct conse-
quence of the embedding of the left truncation model into the Markov process
model, for which results on NPMLE were provided by Johansen (1978). First
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we discuss the easier result that F is a conditional NPMLE of F given
Yl*, ey Yn*n

4.1. Conditional nonparametric maximum likelihood estimation of F given
Y*,...,Y* As an introduction, consider the factorization of the (‘“‘full”)

n

likelihood,
lik(G,F) =a™" HdG(Y}) dF(X,),

into the marginal likelihood of (G, F') based on (Y;*,...,Y,*) and the condi-
tional likelihood of F given (Y*,...,Y*),

lik(G, F') = marg liky.(G, F)cond likg.y.(F),
where, in particular,
. » dF(X)
cond.llkx*ly*(F) = tl:[1 T(Y*)- .

As in the derivations of the NPMLE for censored data by Kaplan and Meier
(1958) and Johansen (1978), it is seen that the candidates for the maximizer F'

of the conditional likelihood must have support < {X*,..., X*}, and for such
F we have the simple combinatorial result
dF (X} dF (X3
cond lik(F) = (X3) _ ( ‘2’)* -
[1 _ F(X(T) _ )] Vo X3 [1 _ F(X(g) _ )] Vo(Xg) —Vo(X3) +1
dF(X,)

X
[1 _ F(X(’;) _)] VZ(X(’;‘,))—Vz(X(:zﬁl

n Vi X)—1

- l‘[ldd)(X(;?‘))[l —do(x3)]
ie
using dF(X;) = F(X,;)) — F(X,_,) and the definition d® = dF/(1 — F_).
Recall that a discrete intensity measure ¥ with support contained in n points
a, < '+ <a, corresponds to a probability measure if and only if 0 <
d¥(a;) <1, i =1,...,n—1,d¥(a,) = 1. The maximization problem is then
trivial: If and only if Vyi(X;) > 1,i=1,...,n — 1 (no empty inner risk sets),
the solution exists and is given by
dé’(Xi) = 17V2(Xi),

or exactly the Nelson-Aalen estimator & of ®. By transformation invariance
of maximum likelihood estimators (the relevant transformation here being the
product integral), it follows that the conditional NPMLE of the survivor

function 1 — F = (1 — d®) is the product-limit estimator 1 — F=201-
d®) studied in Section 3.

4.2. F is not always the unconditional MLE. Turning to the full likeli-
hood, the maximization has to be done over (G, F') jointly. Let us first remark
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that if G cannot vary freely, it is easily seen that the NPMLE F of F may
differ from F'. Indeed, Vardi (1985) showed that if G is known,

Fxg) = ¥ 6(xz) " 5 6(xs)™

Jj=1 Jj=1

(a “weighted empirical distribution function”); the asymptotic behavior of this
estimator is a special case of Example 4.2 of Gill, Vardi and Wellner (1988).
Wang (1989) generalized Vardi’s analysis by noticing that if G varies across a
parametric family G = {G,: § € 0}, then the NPMLE of F is obtained from F
by replacing G by G, where 6 is the MLE derived from the conditional
distribution of Y * given X*. These results strongly suggest that the NPMLE
of F in the full model may be similarly obtained by replacing G by G in F,
and this approach was used by Wang (1987). In the next subsection we show
that the independent parametrization provided by the Markov process repre-
sentation of the left truncation model furnishes an immediate answer.

4.3. NPMLE in the left truncation model. We embed the class of all left
truncation models corresponding to distribution functions G, F' on (0, ©) with
dGdF = 0 in the class of conditional Markov process models as specified in
Propositions 2.1 and 2.3. Now we consider estimation of A; and A, in this
larger class (thus, with A; and A, not necessarily corresponding to distribu-
tion functions). NPML estimation in such models was studied by Johansen
(1978). The likelihood is of the form

[T 2dA, ()P — dA,(¢))O=aN®,
i t

It follows directly that the NPMLE of A; and A, are given by the discrete
cumulative intensity functions A and A as specified in Section 3.
Now from the Markov process

A, A,
o] =[] =12}

one may recover distribution functions F° and G° corresponding to a left
truncation model, if and only if there is no inner jump of size 1 of A (i=1,2)
—this could only happen for A2 because A1 corresponds to an ordinary
empirical distribution, with jumps of size j - J=n,...,1, in that order.
When F ° and G exist, they coincide with F and G by Proposmon 2.3 applied
to A = 1,2, and it furthermore follows from the transformation invariance
of magumum likelihood estimators and the definition of backward intensities
that G of Section 3.2 equals G.

Finally, to show that an NPMLE in the left truncation model does not exist
if there are inner jumps of size 1 in the NPMLE for the Markov model we now
only need to remark that one can then make the (‘“discrete’) likelihood
function in the left truncation model arbitrarily close to the maximum likeli-
hood in the Markov model, without, however, being able to achieve this value.
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As a corollary of the NPMLE property of 1 — F' and G we remark that the
NPMLE of

a=P(Y<X}=P(Y <X} = [0°°G(u) dF(u) = jo°°[1 — F(u)] dG(u)
is

a= fowé(u) dF(u) = 1/]:{1 - F(u)}_ldﬁl(u).

5. Asymptotic results. In this section it is assumed throughout that the
distributions of G and F are continuous with support (0, ) and integrated
hazards I" and ®.

As we have seen, in interpreting ® and 1 — # in a practical situation, it is
rather important to take account of the fact that d® can really only be
estimated on the interval or intervals {¢: V,(¢) > 0}. In deriving asymptotic
distribution theory for our estimators, we shall similarly take care of the thin
information in the tails by first only estimating

—®-®(e) and 1-Fe=(1-F)/{1 - F(s))

on an interval [, M ], this is the content of Section 5.1.

In Section 5.2 we generalize the results to [0,], handling the delicate
tightness problems near 0 and « in a similar way as Gill (1983) [cf. Ying
(1989)] did for product-limit estimators for right-censored data. These results
are most conveniently derived in the original parametrization in terms of
1 — F and G with associated product limit estimators 1 — ¥ and G.

In contrast, in order to obtain joint convergence results, it is advantageous
to use the second parametrization in terms of the conditional Markov process
integrated intensities A; and A2 (with correspondlng dfss. F, and
F, = F) and associated estimators AL A, B, F,. Because the martingales
A - A1 and A — A, are orthogonal and hence asymptotlcally independent,
covariance calculatlons are easier. We briefly mention the joint convergence
results in Section 5.3 and more fully demonstrate the techniques in Section 6
with a derivation of the asymptotic distribution of &.

5.1. Convergence on [e, M],0 <& <M < . Assume that ¢ = ¢, M satisfy
P(Y <t <X|Y<X}>0. Let ®, ®°, F'* and F* be defined similarly to ®*
and F°. Let us also write

vo(t) = E[n"WVy(¢)] = P(Y;* <t < X} = P{Y* <t} — P{X/ <)
[= C(¢) in Woodroofe’s (1985) notation]. We have
va(¢) =P(Y <t <X,Y<X}/P{Y <X} = G(¢)[1 - F(¢)] /e
> G(e)[1 - F(M)] /a > 0
for ¢ <t < M by the assumption that Y and X have support (0, «).
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Now n~'V, is the difference between two empirical distribution functions,
so by the Glivenko—Cantelli theorem

In"WV, —vy|M >0 as.

as n — », where || - | denotes the supremum norm over [¢, M]. Thus, by

boundedness away from zero of v, we also have
log! —nVy M >0 as.

as n - o, and J, = 1 on [¢, M] for all sufficiently large n a.s. Thus, ¢ = ¢
and F° = F° on [¢, M] for all sufficiently large n a}lmost suArely.

With these preparations made, consistency of ®° and F* as well as weak
convergence of n'/?(®° — @) and/or of nl/%(F* — F*) follow immediately
from standard results on the Nelson-Aalen and the product-limit estimators
in the counting process literature.

ProposiTiON 5.1. We have
16 — @41 —>p 0 and | Fg — Fy|¥ -5 0.
Proor. Apply the inequality of Lenglart (1977) exactly as Gill (1980, 1983)
[cf. Andersen and Borgan (1985), Appendix]. O
COROLLARY 5.1. We have

& — @Y >, 0 and [|F ~ F|¥ -, 0.

Corollary 5.1 is obtained easily from Proposition 5.1, using
E{|d - @[5} < 20(e)
by (3.1).

COROLLARY 5.2. The event of the existence of s <t < u < M with Jy(s) =
Jo(u) = 1, Jy(¢) = 0 (“empty inner risk sets”) is asymptotically negligible.

It is curious that the probabilistic result of Corollary 5.2 [obtained easily
from Corollary 5.1, cf. Woodroofe (1985), page 172] is derived via the proof of
consistency of a statistical estimator!

THEOREM 5.1. Under the stated conditions,
(5.1) n/%(&c — ®°) 5, W* in Dle, M]

as n = », where W¢ is a Gaussian martingale with zero mean and variance
function

¢ 1

vo(s) a®(s);

(5.2) var We(¢) = [
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we also have

(5.3) nl72(Fe — F¢) -, (1 — FE)We,
and &¢, F¢ converge jointly. Furthermore, [(nVy(s)~2dN,(s) is a consistent
estimator (in || - ||M) of the variance function of W*.

Proor. We use Rebolledo’s (1980) version of the martingale central limit
theorem and note that the verification of Rebolledo’s conditions is direct in the
approach used here, establishing Glivenko—Cantelli convergence for V,/n. O

5.2. Convergence on [0,»]. Since v,(¢) > 0 for all ¢ € (0,») one can ask
whether or not these results can be extended to yield weak convergence in
D[0, M] or D[e,»] or even D[0, =], cf. Woodroofe [(1985), Section 6; (1987)].
The extension of (5.3) at the right-hand endpoint of the time interval was
partially carried out by Gill (1983) for the random censorship model under the
natural finiteness condition on the asymptotic variance, see Ying (1989) for the
final result. The analogous condition in the left truncation model is empty. We
shall here illustrate the use of these techniques to study the left-hand endpoint
problem.

Since Sy and Sy are both close to 1 near ¢ = 0, one easily discovers that
the extension problem for (5.3) is hardly more difficult than that for (5.1), on
which we will concentrate. Also, there is no hope of making an extension
unless the limiting process can be extended too; for this we need to assume [cf.
(5.3)] that

fsdd>(s) s=af€ dF(s) <o
o vy(s) 0 G(s)(1 - F(s))”

Since F(s) — 0 as s — 0, we have finiteness if and only if

(5.4) j:G(s)—ldF(s) <
for some (and then all) ¢ > 0. From now on we assume (5.4) holds. We will
have our required result. .
(- d) 5, W in D[0, ),
n'/2(F — F) »,(1 - F)W in D[0,«],
where W is W¢ with ¢ = 0 of Theorem'5.1, if for all & > 0,
(5.6) lim lim sup P{n'/?|® — ®||5 > §} = 0,

el0 n—o

(5.5)

and for all 6 > 0,
(5.7) lim lim sup P{n'/?|® — &/ > 8} = 0;

el0 n—ow

see Billingsley [(1968), Theorem 4.2] for the basic idea here and Gill [(1983),
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Proof of Theorem 2.1] for a similar application. We look at the easier term
(5.7) first,
Since ® — & is a square integrable martingale, Lenglart’s (1977) inequality

gives us
A ~ ) F ——62
P{nV2|d — d|5 > 8 <m+ P{n(‘b - ®)(e) > }
n

But

N e 1
n(d — ®y(e) —[ V( )dd)(s) S2Li,£s—;Td®(s).

Since V,(s) is binomially distributed, E[(n + 1)/{Vy(s) + ] < P{Y;* <s <
X}, s0

dd(s) ¢dF(s)
Y1 - F(s) 1 —F(so)) [ G(s)

for all ¢ < &,. Thus, having assumed [ dF(s)/G(s) < (), we can prove the
required result: By Chebyshev’s inequality, taking ¢ arbitrarily small, we can
bound n(® — &), by an arbitrarily small constant with probability arbitrarily
close to 1, uniformly in n; and this establishes (5.7).

As far as (5.6) is concerned, we note that

E(n(® — dy(e)) < za[: e

n2)® — @fjs = n'/? [((1 = Jy(5)) d@(s) = n1/2B(Y5)
0

with probability — 1 as n — » by Corollary 5.2. It suffices therefore to show

n'/2®(Y) »p 0 as n — », which may be proved by a direct calculation
(omitted here) using that Al(Y(i")) is the minimum of n ii.d. exponential(1)
random variables.

5.3. Joint weak convergence. By symmetry we can immediately write
down weak convergence theorems for n'/2(T™ — T™) and/or nV/(GM — G™).
To get weak convergence on the whole line we must extend condition (5.4) to

(5.8) [(1-F)"dG <=, [GdF <.
0 0

Joint weak convergence may be proved using compact differentiation [cf. Gill
(1989)] and exploiting the functional relationships between A;, A, on the one
hand and F,G on the other, taking special care all the time with the tail
problems at ¢ =0 and ¢ = ». (By transformation invariance of maximum
likelihood estimators, the same relationships hold between the estimators.)

Since G and F will be dependent, the identification of the covariance
structure is (as already mentioned) more conveniently based upon the orthogo-
nal and hence asymptotically independent martingales A — A, and A2 - A,
from the counting process approach.
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We shall not carry through this program in detail here, but rather illustrate
the techniques by a study of the asymptotic properties of the estimator & of
a = P{Y < X}, in the next section. Woodroofe [(1985), Corollary 4] proved
consistency of Q.

6. Asymptotic distribution of a.

THEOREM 6.1. Suppose F and G are continuous with common interval of
support (0,). Then yn (& — a) > N(0, 0?) with

© dG »(1—G\*dF
2 _ 3 — 2 3 _
o a-/;l—F a+a_/;)(1_F) G

»dF »(F\* dG
- W el BURE- I Rl el It
a/;G a+a];)(G)1_F,
which is finite if and only if (5.8) holds.

Proor. Suppose (5.8) holds. Since Vrn (F — F) and Vn (G — G) are each
tight in D[0, «] with weak limits in C[0, ], the same holds for the pair jointly.
Any subsequence from n = 1,2, ... therefore contains a subsubsequence along
which the pair converges weakly to a pair of continuous processes. By the
representation a = [fGdF and the generalized §-method [Gill (1989), Theo-
rem 3 and Lemma 3 and Remark] vn (& — &) converges in distribution to a
finite random variable along such a subsequence. We show that the limit is the
same whatever the subsubsequence, thereby proving weak convergence of
Vn (& — a) in general. We split the integral

at= ["(1-F)'dF,
0

into an integral over [0, M ], to which the generalized §-method can again be
applied, and a remainder term, integrating over (M, ). For the remainder
term, we have

" (1 - F) Y(1-F)dG
fM(l"‘Fz)_ldF1=[M( ) ) za_l(l_G(M))

4]

and similarly for the estimators. Thus,
Va6t —at) = \/;[fM(l —F,) "df, - fM(1 — F,) ' dF,
0 0

+m (6741 - G(M)) - (1 - G(M))]
=Zy,+ Ry,, say.

Since Vn (& — @) converges in distribution, 1 — G(M) - 0 as M — », and
Vn (G — @) converges in distribution to a tied down (Gaussian) process (the
limiting process evaluated at time M converges almost surely to 0 as M — ),



RANDOM TRUNCATION MODELS 597

we have easily
hm limsup P(|Ry; ,| >¢) =0

n—o

for all £ > 0. By the generallzed 5-method
- F, dF;
1-F, 1-F,

(6.1) Zy,= [ (1 - F)~'d(Vn (F, - F))) +f J’ + 0p(1)
as n > », for each M < ». So Z,,,, converges in distribution to a zero-mean
normal varlate whose variance can be calculated by replacing vn (¥, — F,) and
Vn [(F F,)/(1 — F,)] in (6.1) by the limiting independent Gaussian pro-
cesses described above. Therefore Z,, , = Vn(&~! — a~!) converges in distri-
bution to the normal variate, with necessarily finite variance, obtained by
letting M — . Combining these two steps, we find that this variance is a sum
of two variances o and o2 coming from the asymptotically independent
terms in (6.1), namely,

2

of = [~ F)?aF; - (fo“’(l - FyldF)

Fy(s) — Fy(s) Fy(t) — Fy(t)\ Fy(ds) Fydt)
2 _ 2 2 2 2 1 1

o= o ”°"(“’7 R " T Fo ) 1 - Fy(s) 1 - Fy(t)’

which must be finite under (5.8). The double integral is more conveniently

evaluated as twice that over {0 < ¢ < s < »}; also use (1 — F,) ! dF, = o~ 1 dG.
Thus,

- /‘”(1 —F) 'a~'dG - a2,
0

02=2 [f /A; Fldu) ~a"'G(ds)a"1G(dt)

u=0a"'G(u)[1 - F(u)]
o G(ds)G(dt) F(du)
“% ] Gon—Fwr

O<u<t<s<wo
ff 2[1 — G(¢)]G(dt)F(du)
G(u)[1 - F(w)]*

O<u<t<o
- [1 - G(u)]*F(du)
u=0 [1 - F(u)]?G(u)

0<t<s<w

Hence,

« dG »(1— G\*dF
2 402 4 02) = | o8 — o2 3 :
0% =a*(of + o2) (a-/;)l—F a)+a/;)(1_F)G.
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Note that the first term is positive by, e.g., Jensen’s inequality applied to the
G-expectation of (1 — F)~*. Also note that ¢ < « implies f, »(1—F)"1dG <
w, trivially, and f, G ! dF < o, too, since (1 — G)/(1 — F) is close to 1 near
0, where G~! — . The converse has already been established but is easy to
check explicitly. The alternative expression for o2, under the assumed condi-
tions, follows from symmetry or by a (rather tedious) exercise in integration by
parts. O

6.1. Chao’s asymptotic results. Chao (1987) [cf. Chao and Lo (1988)] con-
jectured asymptotic results for ¥, G and & using an influence function
approach. By similar techniques as just demonstrated, it can be seen that the
asymptotic covariance of Vn (G — G) and Vn (¥ — F) is indeed as given by
Chao [(1987), formula (3.2)], except that a~! should be replaced by « in that
formula (twice). Chao’s expression for the asymptotic variance of Vn (& — @)
differs from ours as shall be seen below.

6.2. Numerical examples. To illustrate some of the asymptotic results
above, a number of Monte Carlo simulations were performed. A simple exam-
ple of distributions G and F on (0,) and satisfying conditions (5.8) is G
exponential, F gamma(3), from which one may derive a« = 0.875 and n times
the variance of the approximate distribution of & as 0.3500. [This result differs
from that conjectured by Chao (1987), whose formula for this example yields
0.31.]

Table 1 contains summary data from 10,000 Monte Carlo simulations of n
independent samples from the conditional distribution of (Y, X) given Y < X
for n = 5, 10, 20, 50, 100 and 800. [The random number generator RAN3 of
Press, Flannery, Teukolsky and Vetterling (1986) was used on an Olivetti M24
personal computer.] Replications with empty inner risk sets were recorded but
could not be included in the averages, which thus represent conditional values,
given that there was no empty inner risk set.

TABLE 1
Results from 10,000 Monte Carlo replications of samples of size n from the conditional
distribution (Y, X|Y < X) with Y exponential, X gamma(3) and Y and X independent

Sample Frequency of replications nVar(a)

size, n with empty inner risk set Mean, a (observed)

5 0.0364 0.9014 0.0988

10 0.0091 0.8770 0.1646

20 0.0030 0.8743 0.1869

50 0.0003 0.8744 0.1985

100 0.0003 0.8742 0.2127

800 0.0000 0.8748 0.2400

o (theoretical value) 0 0.875 0.3500
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Note first that empty inner risk sets occur also for rather large sample
size n.

The approximation of Var(&) is rather poor, indicating a very slow approach
to the limiting distribution in this particular example. It may be seen (not
documented here) that the problem is primarily in the (right-hand) tail of the
distribution and that the distribution of & is heavily skewed to the left, as was
to be expected from the restriction & < 1. It is interesting that by calculating
the estimator of o2 suggested by Theorem 5.2 (just replacmg F, G and « by
their estimates), a strong negative correlation between & and & is revealed:
The intuitive explanation being that the closer & is to 1, the closer we are to
full separation between the Y; and the X,, in which case a = P{Y < X}
becomes apparently much easier to estimate. The estimator 62 overcompen-
sates for that feature to the extent that the distribution of Vn (& — a)/é
becomes skewed to the right, but now with about the correct, approximately
unit, variance.

As F and G become more different, the approach to the limiting distribu-
tion of Theorem 5.2 becomes less slow. Thus, for the case G = exponential,
F = gamma(5), one has a = 0.968706, o ?(approximate) = 0.03255; 8000 reph-
cations of sample size 500 gave no empty inner risk sets and an average & of
0.968710, empirical o2 = 0.03049.

Finally, the theory of Section 5.1 did not require the integrability conditions
(5.8). Appropriately modified limiting results for the functional

o= [ g dF() = [1 - K@) a [G(M) - G(w)],

estimated by
o M1l — ﬁ'(s)
£= '/; 1-F(x)

therefore hold also when (5.8) is violated. Thus, when F = G, similar simula-
tion studies (details omitted here) show the approximation of the variance of
the distribution to be good for even very small £ and M up to about 5, in the
scale given by assuming F' = G exponential (1). Further simulation results for
cases where (5.8) does not hold suggest that vn (& — a)/6(&) can still be
usefully applied for statistical inference, cf. the concept of “self norming
sums” [LePage, Woodroofe and Zinn (1981)] for nonnormal limiting distribu-
tions [cf. Woodroofe (1985), Remark 8].

dﬁ'l(x)’

7. Concluding remarks. In this section we indicate some related work
in the literature and suggest possible generalizations where the present frame-
work will be useful.

Recent biostatistical applications of the theory of this paper 1nclude Keid-
ing, Bayer and Watt-Boolsen (1987) and the AIDS incubation time distribution
investigations by Lagakos, Barraj and DeGruttola (1988), Kalbfleisch and
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Lawless (1989) and DeGruttola and Lagakos (1989). Similar Markov process
models were used to model retrospective observation in epidemiology by Aalen,
Borgan, Keiding and Thormann (1980) and Keiding (1986a, b), while
Samuelsen (1989) used a Markov process model for double censoring. The
empirical phenomenon of delayed entry (which here has been modelled using
truncation, the conditional distribution given that we are beyond entry time)
might alternatively be modelled using filtering, where the probability measure
stays the same, although the individual is not identified until entry [cf.
Andersen, Borgan, Gill and Keiding (1988)].

Testing of the independence hypothesis underlying the truncation model is
naturally achieved by stratification according to entry time (and using any
standard nonparametric test) or using entry time as covariate in, for example,
a Cox regression model.

Ties require slight extensions in two contexts. In the modelling, a fifth stage
is necessary to account for simultaneous occurrence of X and Y. In the
martingale theory, the predictable variation process will get an extra term
from the discrete component.

The maximum likelihood results were also studied by Wang, Jewell and
Tsai (1986), who pointed out that the condition of no empty inner risk set
forms a concrete example of the rather general Theorem 1 of Vardi (1985).

Asymptotic results for the estimators were studied, using classical methods,
by Woodroofe (1985) plus a correction note (Woodroofe, 1987) which employed
a martingale argument to deal with the tail problems. Further asymptotic
studies were performed by Wang, Jewell and Tsai (1986), who, adding to
Woodroofe, identified the covariance structure, and by Davidsen and Jacobsen
(1989), who developed weak convergence theory for two-sided stochastic inte-
grals. Although the counting process approach is very well suited for accommo-
dating censoring [cf. e.g., Andersen, Borgan, Gill and Keiding (1988)] and
therefore paves the way for extension of our approach to left truncated and
right censored data, we do not carry through this program here. Tsai, Jewell
and Wang (1987) gave some results in this direction, using a classical ap-
proach.

We finally mention that the NPMLE property of our estimators in conjunc-
tion with the asymptotic results allow proofs of efficiency results using power-
ful recent results by van der Vaart (1988a, b, 1990); for a sketch of this see
Keiding and Gill (1988). The main idea is that joint efficiency of the empirical
marginals #* and G* is easy to show directly; F and G are smooth function-
als of this and compact differentiability and a general theorem of van der Vaart
(1988a) on preservation of efficiency under differentiable mappings now do the
rest.
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