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ON THE INADMISSIBILITY OF STEP-DOWN PROCEDURES
FOR THE HOTELLING T2 PROBLEM!

By JOHN I. MARDEN? AND MICHAEL D. PERLMAN?

University of Illinois at Urbana-Champaign and
University of Washington

Step-down testing procedures for the Hotelling T2 problem are consid-
ered. It is shown that the classical step-down procedure proposed by S. N.
Roy, R. E. Bargmann and J. Roy is inadmissible among invariant procedures
“(for a suitable invariance group) in many situations, including all those for
which more than two steps are contemplated. It is also noted that in most
cases, the power of the step-down procedure decreases in at least one of the
noncentrality parameters over part of the parameter space. Finally, several
alternative admissible step-down procedures are proposed.

1. Introduction. Step-down procedures in multivariate testing problems,
formally introduced by Roy and Bargmann (1958) and Roy (1958), studied
further by Dempster (1963) and also implicit in work of Rao (1948) and others,
have been advocated as competitors to multivariate likelihood ratio tests (LRT).
If a null hypothesis p = 0 is to be tested against p # 0, where p = (uy,..., 1 p) 18
a vector parameter, the Roy-Bargmann-Roy (RBR) step-down procedure se-
quentially tests p, = 0 vs. p; # 0; then p, =0 vs. p, # 0 given g, = 0; then
pg = 0vs. ps# 0given p), =0, u, = 0, etc., applying a conditionally level «; test
at step i. The procedure stops if any one of these conditional tests rejects its null
hypothesis, in which case the overall null hypothesis p = 0 is rejected, or if each
conditional test accepts its null hypothesis, in which case u = 0 is accepted.

In the Hotelling T'? problem, where u is the mean vector of a multivariate
normal population with unknown covariance matrix X, at step i the RBR
step-down procedure employs the level a; LRT for testing p, = 0 vs. p; # 0,
given u, = --- =p; , =0. These LRT statistics are mutually independent
when p = 0, permitting easy determination of the overall significance level «
from the a; [see (2.12)]. Furthermore, each of these stepwise LRT’s has a
conditional optimality property (see Section 2) and each is based on a univariate
F-statistic which is easier to compute than the multivariate T'? statistic which
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determines the overall LRT for testing p = 0 vs. p # 0. (Of course, the impor-
tance of this computational advantage has diminished considerably since 1958.)
Like the overall LRT, the RBR step-down test is unconditionally unbiased,
similar and consistent (provided no step is omitted, i.e, no «; = 0). These
properties remain valid under the more general assumption, which we adopt
henceforce, that each u; represents a subvector of p, i.e., each p; consists of one
or more components of u. See Mudholkar and Subbaiah (1980a, 1987) for a
comprehensive review.

Although the RBR step-down test employs a conditionally optimal level a;
test at each step [see the comment following (2.12)], until now very little has
been learned about its unconditional optimality, but three isolated facts suggest
caution. Subbaiah and Mudholkar (1978a, b) pointed out that in the Hotelling
T? problem, the unconditional power of a two-step procedure need not be
monotonically increasing in the first noncentrality parameter A, [see (2.10)] if
the significance level «; at the first step lies in an (unspecified) sufficiently small
neighborhood of 0. The results of Marden and Perlman (1980) show that the
level a; LRT at step i > 2 is unconditionally inadmissible if a; > aX [cf. (2.13)].
In a more general setting, Jensen and Foutz (1980) suggested heuristically that
the asymptotic power at the second step may be relatively low against certain
alternatives if the first- and second-stage test statistics are not independent. To
our knowledge, however, there has been no comprehensive study of uncondi-
tional optimality properties of step-down procedures.

This paper contains a decision-theoretic investigation of the RBR step-down
procedure for the Hotelling T'? problem. This procedure is described in detail in
Section 2, where our main result (Theorem 2.1) is stated. This result implies that
in most cases, including any for which more than two steps are contemplated,
the RBR step-down procedure is inadmissible. The proof, presented in Section 4,
is based on Theorem 3.1, which gives a necessary and sufficient condition for
admissibility in a related invariance-reduced testing problem.

In Section 5 the result of Subbaiah and Mudholkar (1978a, b) is extended by a
different argument to show that for a specifiable range of significance levels, the
power function of the RBR step-down procedure is nonmonotone in certain
portions of the parameter space. In Section 6, several alternative admissible
step-down procedures are proposed.

The proofs of our main results, Theorems 2.1 and 3.1, rely heavily on the
results in Marden and Perlman (1980) and Marden (1982), abbreviated through-
out as MP (1980) and M (1982), respectively.

2. The Roy-Bargmann-Roy (RBR) step-down procedure. We treat the
Hotelling T'? problem in the following canonical form, allowing covariates [cf.
MP (1980)]. One observes X and S, independent, where

(2.1) X~ 2), S~#,(3,n),
that is, X is a p-dimensional normal random (column) vector with mean vector p

and nonsingular covariance matrix =, and S is a p X p random Wishart matrix
with mean nZ and n degrees of freedom, n > p. Partition p into ¢ + 1
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subvectors g, f1,, ..., b, where p; is p; X 1, with p, + p, + -+ +p, = p, py > 0
and p;, > 1for 1 <i < q, and partition X, S and = accordingly. The Hotelling
T? problem (with covariates) is that of testing

(2.2) Hy:p=0 vs. Hy:py=0

based on (X, S) with = unknown. (The usual T'? problem has p, = 0; when
Do > 0, p, represents the vector of known covariate means: note that p, =0
under both H, and H,.)

Let T2 be the Hotelling 7'? statistic based on the first p, + p; + - -+ +p;
variates:

Xo ’ Soo Sm e Sot Xo
X S S e 8 X

(23) T2=|"0{lTF M - M, o0<i<aq.
Xi 'S;o S; e S.ii Xi

(T2 = 0 when p, = 0.) The likelihood ratio test (LRT) for problem (2.2) is based
on (T} — T¢)/(1 + T}) (which reduces to T, the usual T? statistic, when
Py =0).Fori=1,...,q, the level a; LRT for the component problem of testing

(2.4) HP:p,=0, 0<j<i vs. HP:p;=0, 0<j<i—1

accepts H{" when

(2.5) Y, <a;,=a(a),
where
(2.6) Yiz(Ti2—Ti2—1)/(1+Ti2—1): l1<i<gq.

(Note that H{® > --- D> H{? = H,.) The RBR step-down procedure combines
these component tests in the following way. First, test H{® vs. H{® based on Y,.
If H{V is rejected, stop and reject H,. If H{ is accepted, proceed to test H{® vs.
H( based on Y,. Continue until either (a) some H{” is rejected, 1 < i < g, in
which case H, is rejected, or (b) H{Y, ..., H{? are all accepted, in which case H,,
is accepted. Summarizing the RBR step-down procedure:

(2.7) accept H, iff Y; < a;(ai), 1<i<gq.
Let Y, = T;2. The joint distribution of (Y, Y;,..., Y,) can be described as
follows [cf. (1.2) of MP (1980)]:

A.
Yi|y;)yY1:---,K'—1~X§,, 1+—1112——)/X?z.: l1<i1<gq,
i—-1

Y;) - X?’o/xio’

(2.8)
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where n; = n — (£i_,p;) + 1. Note that
i-1
(2.9) 1+ T2, =101 +Y).

Jj=0

The x? variates in each ratio in (2.8) are independent and x2(\) (x2) denotes a
noncentral (central) chi square random variable with » degrees of freedom and
noncentrality parameter A > 0. The parameters A,,..., A, in (2.8) are given by

(2.10) Aj=r2—-12,>0, 1<i<gq,

where 77 is defined as 7,2 in (2.3) but with (X, S) replaced by (u, =). Note that
2
Ty = 0 and

q
LA =1 =2,
i=1

so that under H,, A =(4,,...,4,)=(0,...,0) and Y,,Y),...,Y, are indepen-
dent (nonnormalized) central F' random variables. Thus, if we choose

(2.11) a; = a,(e;) = (p/n;)F(p;; ni, ),
where F(p,, n;; a;) denotes the upper a;th point of the (normalized) F distribu-

tion with p, and n; degrees of freedom, then ¢; is the level of the ith component
test (2.5) and the overall level of the step-down test (2.7) is

(2.12) a=1- ﬁ(l—ai).

[From (2.8) and the monotone likelihood ratio of the noncentral F density, it is
seen that test (2.5) is the conditionally uniformly most powerful level «; test
based on Y, for the component problem (2.4).]

In order to investigate the decision-theoretic properties of the step-down tests
(2.7), we shall use the fact that (Y, Y,,..., Y,) is the maximal invariant statistic
under a group G of block triangular matrices acting on (X, S) defined in Section
3. In that section we shall apply Theorem 2.1 of M (1982) to characterize the
minimal complete class of G-invariant tests for problem (2.2) (Theorem 3.1). In
Section 4 we use this characterization to prove the following main result:

THEOREM 2.1. For 0 < a < 1, the step-down test (2.7) is admissible among
G-invariant tests for problem (2.2) if and only if

(1) po > 0, at most one of ay, ..., a, is positive and that one (say «;) satisfies
O0<a;<af

or

(i) po = 0, at most one of ay, ..., a, is positive and that one (say «;) satisfies
0 < a; < af, where o} is defined by

i

(2.13) F(p;,ng;ar) =1

The case p, > 0, g =1 was treated in MP (1980), page 45, where typical
values of aX* are tabulated.
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If a; = 0 for some i (i.e,, @; = o), then the step-down test (2.7) skips step i, so
cannot be consistent. To see this, set A™ = (0,...,0,v,0,...,0), where y > 0
occurs in the ith position. Clearly YAY) — o0 as y — o, but the statistics
Yo, Yy, Y1, Y, y,..., Y, remain independent central F variates, hence the
power of the test (2.7) remains at a.

3. The minimal complete class of G-invariant tests. Let G be the group
of nonsingular p X p matrices A of the lower block-triangular form

Ay, O . 0
A Ay Ay
I : (U
Ag Ag Ay

where A;; is p; X p;. The testing problem (2.2) is invariant under G acting on
(X, S)via A: (X,S) » (AX, ASA"). The maximal invariant statistic and maxi-
mal invariant parameter can be represented by

YE(Y;),YI,. Y) and AE(AI,...,AQ),

s Iy

respectively [Giri, Kiefer and Stein (1963); Giri (1968)]. The invariance-reduced
problem (2.2) can be described as that of testing

(3.1) Hy:A=0 vs. Hy:A >0,...,A

based on Y.

Let y = (%, Y15--+» ¥,), let fx(¥) denote the density (with respect to Lebesgue
measure) of Y under A and let
(3.2) Ry = fa/lo

denote the likelihood ratio of Y. From (2.8) [also see Giri, Kiefer and Stein
(1963)] it follows that

>0, A=+0,

q

q
(3.3) R, = HRX,)(I - U, 0),
i=1
where
(3.4a) v, = y,/((l + yi)(l + t?,l)), 0<i<ug,
(3.4b) 1+62=T101+y), 0<i<gq,
j=0
(3.4c) u; =y, v; (= tf/(l + tf)), 0<ix<gq,
j=0

(3.4d) Rﬁ\i‘)(l — U, 0) = eXp(_Ai(l - ui—l)/2)Gi(Aivi/2): l<i<g,

(3.4e) Gi(2) = F((p; + n;)/2, p/2; 2), l<i<gq,
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and where

© T(a+k) T(b) =z

(3.5) lFl(“’b¥z)=k§0 T(a) T(b+k) k!

denotes the confluent hypergeometric function for a, b > 0. [We set ¢t2, = 0, so
vy = ¥%/(1 + %) = ug; if p, =0, then ¢2, y,, u, and v, are absent.] Note that
R, can be expressed solely as a function of v, i.e., R,(v), by (3.4c). Also note that

(36) : Rgi,)(l — Uiy, vi) = RA(Ui’ ui)’

where R (v, u) is given by (2.11) of MP (1980).
Define u = (u,,...,u,) (regardless of whether p,=0 or p,>0), v=
(vg, 0y, v,) and set

U= {ul0<u < - <u, <1},

q
V= {v|0< ZU;’< 1, O<vo,vl,...,v}.

q
i1=0

Let %, denote the set of all relatively closed, convex and nonincreasing subsets
of %.[C C % is nonincreasing if (v € C, u’ € %, u/<u;forl<i<qg)=u'€
C). Define % to be the set of all pre-images in ¥ of sets C € %, under the
mapping v — u given by (3.4c). Note that

Ce ¥ {C is relatively closed and convex in ¥~, and
(3.7)

i i
(UEC,U’EV,EU;SZujforlsiSq)=>v’eC}.
0 0

Thus all vectors » normal to the boundary of C in ¥~ are of the form

v = (v, 7y,...,7,) Wwith », = », (or », absent if p, = 0) and
3.8
(38) vy 2ve> e 29,20,
Now define

l,=1 0 R

i=1i(v) = GTAL A
(3.9) A=0

1 ;tn;
=§{£uvi—(1—ui_l)}, i=1,...,q,
RA -
d(v; N, my,m) = LA+ A mo(dA)

(3.10) Osrh=nl &%

+ R,m(dA),
{1<XA}
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where 7, is a finite measure on {A|0 < XA, < 1}, =, is a locally finite measure on
{A]ll <¥XA;} and A = (A,...,A,) is a vector in R? with A; > 0,1 < i < g. The
following theorem describes the minimal complete class of G-invariant tests for
problem (2.2). [A test is described in terms of its test function ¢ = ¢(v) =
P(reject Hy|v). Note that the mapping y — v determined by (3.4a, b) is 1-1, so
that v is an equivalent representation of the maximal invariant statistic. Also,
I; denotes the indicator function of a set B.]

THEOREM 3.1. A test ¢(v) is admissible for problem (3.1) [i.e., is admissible
among G-invariant tests for problem (2.2)] if and only if it is of the form

(3.11) ¢(v) =1—1I,,4 a.e.[Lebesgue],
where C € €,
(3.12) A’ = {vld(v; A\, my, m) < ¢}

for some (A, m,, m,) as above, |c| < oo and

d(v; N\, my, m)| < o0 forv € interior(C).
0> M

Proor. We shall show that Theorem 2.1 of M (1982) can be applied to
problem (3.1) under the following correspondences [quantities appearing in M
(1982) are written first]: 6 © A, peogq, ® o R}, Vo R}, xov, weuy,
XoV , #Wo AU, ¢, %, and €< %, where R, denotes the closed nonnega-
tive orthant in R ..

First, condition (2.2) of the Local Assumption of M (1982), page 963, is
satisfied here with /; « [,(v) and ¢ & LA, while condition (2.3), page 964, is
verified by showing that there exists K < oo such that

(3.13) sup |Rl_—y—<K
' o<za,<1 XA

for all v € ¥". To show the latter, simply note that

Iz_ill é{'RX):”,:U 5{’}

and apply (d) of MP (1980), page 55.

Next, we show that the problem (3.1) is covered by Case B of M (1982), page
964, and is in fact “almost exponential” [M (1982), page 969, equatlon “4.1)]
That is, R, in (3.3) can be written as

q

(3.14) Ry(v) = a(A)b(v; A)exp( Z Aiui/2),
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where u; = u,(v) is given in (3.4) and

a(A) = exp(— i A/2) lf[l(l +A)™2,

q
b(v; A) = [T6%(v;; 4,),
i=1
where
(3.15) b (v; 4;) =1+ Ai)_nl/zRg,)(Uia v;)-
Condition (4.2) of M (1982) is written here as
(3.16) 0 < i(v)

inf b(v; A) < sup b(v; A) =s(v) < .
AEIR; AER;

To verify (3.16), note that for fixed v, > 0, b®(v,; A;) is continuous in A,
b®(v;;0) = 1 and

(3.17) lim 59(v; A,) = x,0™/?

A, - o0

for some «; > 0 [cf. 13.1.4 of Abramowitz and Stegun (1964)]. Thus the first and
last inequalities in (3.16) hold. Equations (2.21), (2.26) and (2.27) of MP (1980)
show that

(3.18)  RY(v;,v;) [hence 5@ (v;; A;)] is strictly increasing in v, when A, > 0,
so that for all v, b®(v; A;) < b(1; A,;), which by the above is bounded in A,
by a constant s, < co. Hence we also have that

(3.19) s(v) < i=lzl1$i < 0.

By the discussion in Section 4 of M (1982), therefore, Case B of that paper covers
problem (3.1), since (2.7) and (2.8) of M (1982) hold trivially, while [s(v)f,(v) dv
< oo follows from (3.19).

Finally, to verify that the hypothesis (2.17) of Theorem 2.1 of M (1982) holds,
it must be shown that if (A, m,, 7, ¢) # (0,0,0,0), then

(3.20) {vld(v; X, My, m) = c} has Lebesgue measure 0.
From (3.3), however, R, can be rewritten as
q q-1 q q
(321) Ry=exp|—(1-1,) ) Ai/2) Hl exp(ui h Aj/z) 1_'[1~Gi(Aivi/2),
i=1 i= J=i+1 i=

so that R, is strictly increasing in v; if A;> 0, 1 < i < q. Since [,(v) also is
strictly increasing in v; [cf. (3.9)], it follows that if (A, m,, m) # (0,0,0), then
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d(v; A, my, m) is strictly increasing in some v;, implying (3.20). If (A, 7y, 7)) =
(0,0,0), then ¢ # 0 but d = 0 for a.e. v, so (3.20) holds in this case as well. O

4. Proof of Theorem 2.1. The acceptance region A of the step-down proce-
dure (2.7) can be expressed as

(4.1) A= {u € ¥o; < (1 — ug),...,0, < c (1 - uq_l)},

where ¢; = a,/(a; + 1). For later convenience, we note here that by (2.11) and
(2.13),

D;
p;+n;

(42) a(E)ar = a2} o cfZ)

If any ¢; = 0, then A is empty, and if all ¢;’s are 1, then A = ¥". Thus to avoid
trivialities, we will assume c; > 0 for all ¢ and some ¢; < 1. We break the proof of
Theorem 2.1 into two parts: the necessary condition for procedure (2.7) to be
admissible and the sufficient condition.

Part 1: The necessary condition. Suppose that procedure (2.7) is admissible
for problem (3.1), so that

(4.3a) A=A'NC
for some A’ and C as in the statement of Theorem 3.1. For i > 1, let
(4.3b) pP.= {ului =c(1-u;_4),v< cj(l - uj,l) for j + i}

denote the ith “face” of the set A, so that

q
(4.4) 0A = closure( U Pi).
1=1
[For Bc 7", dB denotes the relative boundary of B in %7, and closure(B)
denotes the relative closure of B in ¥".] Figures 1, 2, 3 and 4 represent A when
(p07 q) = (07 2)7 (11 1)1 (O’ 3) and (11 2)1 respectively.

The proof proceeds in steps. We first show that the only time a face P, can
arise from set C in (4.3a) is when p, = 0 and i = 1. Step 2 involves showing that
at most one face can arise from the set A’. Finally, in Step 3 we show that for
any face P, to arise from A’ it must be that ¢; = p;/(p; + n,;), hence by (4.2),
a; < a¥. The technical statements of the results to be verified in these three
steps are as follows:

(4.5) P. N 34C is empty if either p, > 0 or p, = 0and i > 1,
(4.6) P. C JA’ for at most one i with ¢; < 1,
(4.7) P. C §A’ implies that ¢; > p,/(p; + n;).
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D s

Fic. 1. The acceptance region A [shaded area; cf. (4.1)] for the step-down procedure (2.7) when
q =2, p, = 0. The hyperplanes P, [cf. (4.3b)] are indicated.

Equations (4.5), (4.6) and (4.7) prove that (i) or (ii) of Theorem 2.1 holds, as
follows. By (4.3a), dA € dA’ U dC, hence by (4.4),

q
UP caa uac.
i=1

By (4.5),

Ce

q
UPcaa iftp,>0; © UPcaa ifp,=0.
i=1

2

~.
Il

By (4.6), only one P, in the above unions can be nonempty (c; = 1 implies that P,
is empty), so there exists a & such that

q q
48 UP=P, k=1,ifp,>0; UP =P, k=>2,ifp,=0.
i=1 i=2
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N

Uo'—_>

Fic. 2. The acceptance region A [shaded area; cf. (4.1)] for the step-down procedure (2.7) when
g =1, py > 0. The hyperplanes P, [cf. (4.3b)] are indicated.

Finally, (4.7) shows that for the & in (4.8),

(4.9) cp 2 P/ (pp + ny)

and (4.2) shows that (4.9) holds if and only if a; < a}. Thus, recalling (4.4) and
(4.8), we have that

(4.10) dA = closure( P,), a, < af, if py>0,
' dA = closure(P, U P,), ' a, <ajf, if p,=0.

Since the boundary of A in (4.1) determines A, condition (i) or (ii) of Theorem
2.1 follows from (4.10).
Now we verify (4.5), (4.6) and (4.7).

STEP 1: PROOF OF (4.5). Suppose that P, intersects dC. Since P, is relatively
open in the plane which contains it, C must intersect P; at an inner point

12
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1

v3

v

¥

F1G. 3. The acceptance region A [shaded area; cf. (4.1)] for the step-down procedure (2.7) when
q = 3, py = 0. The hyperplanes P, [cf. (4.3b)] are indicated.

‘

of P,. But since P,C C and C is convex, it must be that P, dC. Thus P,
is in a plane tangent to C. Vectors normal to P, are proportional to v =
1,1,...,1,1/¢;,0,...,0), where there are i (resp. i — 1) 1's if p, > 0 (p, = 0),
since P, is contained in the hyperplane
1
ooy + v+ -0+, + —v;=1).
i
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<« *

s ¢f. (4.1)] of the step-down procedure (2.7) when

region A [shaded area

> 0. The hyperplanes P, [cf. (4.3b)] are indicated.

tance

. 4. The accep
q=2, p

Fic

The only way that » can satisfy condition (3.8) is for p, to be 0 and i to be 1, so
v =(1/c,,0,...,0). Hence (4.5) holds.

that

which ¢; < 1 and

STEP 2: PROOF OF (4.6). Let i be the smallest index for

in v, (3.12) shows that

tinuous

d is con

P, c dA’. Since

¢ forveP,.

771)

v; A, o>

d(

(4.11)
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Fix v, for 2 # i + 1. From (3.4e) and (3.5), it is clear that G,(z) is strictly
increasing in z > 0. Thus from (3.21), R, is strictly increasing in v, , unless

Ay, = -+ =A4,=0. Also, by (3.9), X{v,l; is strictly increasing in v,,, unless

Yis1= "+ =7, =0. Thus d in (3.10) is strictly increasing in v,,, unless
Ajyy= - =A,=0 ae.[n]and[m], and

(412 Y= =Y =0

Since P, depends only on (v, ..., v;) in some neighborhood N of a point v° € P,

(4.11) shows that d must be constant in v,,; over N N P,. Thus (4.12) must hold.
But then d does not depend on (v, ,, ..., v,). Thus P, ¢ dA’, or P, is empty, for
k > i. Hence (4.6) holds.

STEP 3: PROOF OF (4.7). Suppose that P,C JA’ and c¢; < 1. As in Step 2,
(4.11) and (4.12) hold. From (3.4c, d) and (3.9), it is clear that for j <i,
RY)1 — u;_,,v;) and I; are nondecreasing in each of vy,...,v;_,. Suppose that

(4.13) ¢;<p/(p;+n;).

Since v; = ¢;(1 — u,_,) if v € P, from (3.9) and (3.4c) we see that [; is strictly
increasing in each of v,,...,v;_; for v € P, Also, by Lemma 2.6(a) of MP (1980),
exp(—2)G,(2) is strictly increasing and exp(—2z)G,(2p,/(p; + n;)) is strictly
decreasing in z, hence

Rg,)(l —u; g, 0l —u;y))

is strictly increasing in each of v,..., v;_; if A; > 0. Since (4.12) holds, we see
that for v € P, d is strictly increasing in each of v,,...,v;_; if (4.13) holds
and if

(4.14) (Ai, mo({4; > 0}), m({4; > 0})) # (0,0,0).

By (4.11), we know that d cannot be strictly increasing in v,,..., v;_;. Hence
(4.13) or (4.14) must be false. Since (4.14) being false would imply that d does not
depend on v;, an impossibility given that P, C dA’ and P, is nonempty, we have
that (4.13) is false, proving (4.8).

Part 11: The sufficient condition. f‘or any c; > p,/(n; + p;), MP (1980),
Section 3.4, exhibit (v;, m,, 7, ¢), where v, > 0, 7, is a finite measure on (0, 1] and
7, is a locally finite measure on [1, c0), such that

(1) 7+ LRS- 1)/8]agds) + [TREm(D) <

if and only if v; < ¢;(1 — u;_,).

Thus taking =, and =, to be @, and m,, respectively, on {A|A; >0, A, =0,
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k # i} and zero elsewhere, and A to be (0,...,0,v,,0,...,0), we obtain from
(3.10), (3.12) and (4.15) that the corresponding set' A’ is given by

(4.16) A = {olo; < ¢;(1 —u;_y)}.

Suppose that (i) of Theorem 2.1 holds. Then the test function ¢ determined by
the step-down procedure (2.7) is of the form (3.11) with A’ as in (4.16) and
C = ¥, hence is admissible by Theorem 3.1. If (ii) holds, then ¢ is of the form
(3.11) with A’ as in (4.16) and C = {v|v < ¢;}. But C € € since v, = u, if
Po = 0, so again ¢ is admissible. O

5. Nonmonotonicity of the power function of the RBR procedure. To
motivate the result of this section, we first extend the argument of Subbaiah and
Mudholkar (1978a, b) regarding nonmonotonicity of power from a two-step RBR
procedure with p, = 0 to the general RBR procedure (2.7). In the procedure
(2.7), first assume that a; = 0 (i.e., a; = o) for i # [ where1 <[ < q, i.e, every
step except step [ is omitted. Then, by (2.8) and (2.8a), the power of this
procedure is given by

.....

A,_I[PA,{YI > al|Y0’ Yl?"" Yl—l}]

.....

=Es, . AH[PA,{YI > az|Tz%1}]-

By the strict monotone likelihood ratio property of the (conditional) noncentral
F density of Y, given T} ,, for fixed A, > 0 the conditional probability is strictly
decreasing in T}? ,. Since (unconditionally),

7‘12_1 ~ X?)0+ +p,_1(A1 + - +Al71)/X?2171y

(A, ..., 4,) is strictly decreasing in A,,..., 4, ; for fixed A,,..., A,. Thus, by
the continuity of the power function of the general RBR procedure as «; — 0 for
i #+ I, this power function cannot be monotonically increasing in A,,..., 4,_; for
sufficiently small «;, i # . Note that this argument does not specify how small
the a;, i # I, must be for nonmonotonicity to occur.

Here we present a more specific result for the case p, = 0. Namely, assume
that 0 < a < 1[cf.(2.12)], a; > Oforl1 <i<land a, < a},wherel <k <l<gq
and aj is defined by (2.13). Set A; = 0 for i # k, ! and define

B(A, A;) = Py, ,{test (2.7) accepts H,}
(5.1)

=P y{Vi<a,....Y,<aq,}.



INADMISSIBILITY OF STEP-DOWN PROCEDURES 187

Then it may be shown [cf. Marden and Perlman (1988)] that

ad
(5.2) —B(A,, 4A) > 0 for sufficiently large A,.
aA, s

This shows that for sufficiently small A, and large A, B(A,, A;) (= 1 — power)
is strictly increasing, hence the power is strictly decreasing, as a function of A &

In particular, for the case I = g, this result implies that if 0 < a; < a} for
1 <i<gqand0 < a, < 1, then for sufficiently large A , and sufficiently small A,
1 <i<gq, the power of the RBR procedure (2.7) (with p, = 0) is strictly
decreasing in each A;, 1 <i <q.

6. Admissible step-down procedures. We use the general term step-down
procedure to refer to any G-invariant test for (2.2), i.e., any test depending on
(X, S) only through (Y, ¥},..., Y,). Consider the following alternative step-down
procedure for the testing problem (2.2):

(6.1) accept Hyiff T <b,, 1<i<gq,

or, equivalently,

i

(6.1)  accept Hyiff 1 + T?=[J(1+Y;) <1+, 1l<i<g,

Jj=0
where b,,..., b, are (nonunique) constants determined to achieve overall signifi-
cance level a. [Compare (6.1) and (6.1') to the RBR procedure (2.7).] Because t?
is an increasing function of u; for i = 1,..., q [see (3.4c)], the acceptance region
(6.1) is convex and nonincreasing in (u,,..., u,), hence belongs to the class ¢
defined in Section 3. By Theorem 3.1, therefore, the acceptance region (6.1)
determines an admissible test for problem (3.1), hence is admissible among
G-invariant tests for problem (2.2).

In fact, the test described by (6.1) is admissible among all tests for problem
(2.2). To see this, slightly extend the argument on page 50 of MP (1980) to show
that for each i = 1,..., g, the acceptance region {(X, S)|T}?> < b,} satisfies the
condition of the main theorem of Stein (1956), hence so does the intersection of
these regions, which therefore determines an admissible test for problem (2.2).
[For the case p, = 0, this result is a special case of a theorem of Schwartz
(1967).]

Whether in fact (6.1) determines a test that is practical as well as admissible
depends on the ease with which the critical values b, can be determined or
approximated —this question remains to be investigated. Of course, by setting
b= -+ =b, , = oo, the test (6.1) reduces to that based on the overall T'?
statistic 7,7, which has an F distribution. See Section 4 of MP (1980) for a
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comparison of the power function of this test with that of the test based on

TZ_T2 q
1 OEH(1+Yi)_1r

6.2 —_—
( ) 1+ T02 i=1

which is the likelihood ratio test for problem (2.2).
Any (proper or improper) Bayes test for problem (3.1) has the following form:

(6.3) accept H,, iff fH R,m(dA) < c,
A

where R, is the likelihood ratio defined in (3.2), 7 is a (finite or locally finite)
measure on the orthant H, in (3.1) and ¢ is a nonnegative constant. Let »,
denote the gamma measure on (0, o) given by

(6.4) v,(dA;) = AP/2 g7 dA
where s, > 0. When
q
(6.5) 7m(dA) = []»(dA))
i=1
it follows from (3.3), (3.4c) and (3.6) above and from (3.19) of MP (1980) that

q
[ Rym(dA) = (const) - [T (2s;+ 1 - u;_,)"/*(2s; + 1 — )~/
H, i=1

(6.6) 7 1 /2 1 —(p+m,)/2
= t) - 2s;, + ——— 2s; +
(const) ,Ul ST +t31) ( ST t?)
When
q
(8.7) n(dd) = X 0,8,(8)r,(dd,),
i=1
where
8,(A) = {1, A, > O'and A;=0for j #1i,
0, otherwise,
and 7,,..., n, are nonnegative constants, then
p n/2 —(p+n)/2
. A) = hm;|2s;, + ——— 2s, + ——
(6.8) fHARAW(d ) E’l AT T t?_l) BT t?)

for some positive constants 4,,..., k,. By Theorem 3.1, the (proper or improper)
Bayes tests based on the statistics in (6.6) and (6.8) with ¢? replaced by T are
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admissible for problem (3.1), hence are admissible among G-invariant tests for
problem (2.2). In particular, when s, = --- =5, = 0, the statistics in (6.6) and
(6.8) assume the simplified forms [apply (3.4b)]

q ~ q )
(69) TI(1+Y)™ 1+ T2 =1+ ¥ T1(1+ v,
i=1 i=1

i 2 p./2
Y A1+ Y)"*(1 - T2)™
i=1
(6.10) v o »
= _thi(1+ )" T1(1+ Y)",

i=1 Jj=0

where p,=p,+ -+ +p,. Since n;+ p, decreases with i, the statistic (6.9)
assigns decreasing weights to 1 + Y7,...,1 + Y, but otherwise resembles 1 + Tq2
=[12 (1 + Y,). [When p, = 0, Y, is absent in (6.9) and (6.10).]

Mudholkar and Subbaiah (1980b) proposed a modified step-down procedure
for the testing problem (2.2). They suggested that Fisher’s method for combining
independent p-values be applied to the p-values attained by each of the

component tests in (2.5), i =1,...,q. (Recall that Y,,...,Y, are independent

under H,.) Marden and Perlman (1989) have shown that this procedure is
admissible when p, = 0 and p, = --- = p, = 2, but inadmissible when p, > 0
and min{p,,..., p,} = 1.0
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