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THE EMPIRICAL PROCESS OF SOME LONG-RANGE
DEPENDENT SEQUENCES WITH AN APPLICATION
TO U-STATISTICS

By HEROLD DEHLING' AND MURAD S. TAQQU?

Boston University

Let (X;)%2, be a stationary, mean-zero Gaussian process with covari-
ances r(k) = EX,,,, X, satisfying r(0) = 1 and r(k) = k~PL(k) where D is
small and L is slowly varying at infinity. Consider the two-parameter
empirical process for G( X)),

[Nt]

{FN(x, t) = % gl [I{G(Xj) < x} - P(G(Xl) sx)];

-0 <x< +oo,0$tsl},

where G is any measurable function. Noncentral limit theorems are obtained
for Fy(x, t) and they are used to derive the asymptotic behavior of some
suitably normalized von Mises statistics and U-statistics based on the G(X;)’s.
The limiting processes are structurally different from those encountered in
the i.i.d. case.

1. Introduction. It is well known that if (Y;)7, are i.i.d. random variables
with cumulative distribution function F(x) = P(Y; < x), then the normalized
two-parameter empirical process N~Y2ELINI(1(Y; < x} — F(x)} converges
weakly to the Kiefer process [see Miiller (1970) or Shorack and Wellner (1986)].
Moreover, von Mises and U-statistics defined in terms of the Y;’s converge
weakly to Wiener-Itd integrals of the Kiefer process [see Denker, Grillenberger
and Keller (1985) and Mandelbaum and Taqqu (1984)]. For a general discussion
on empirical processes and symmetric statistics, see Dehling and Taqqu (1987).

We want to find out what happens when (Y;)%, is a strongly dependent
stationary sequence (i.e., when its spectral density diverges at the origin). We
focus on the case where Y is a nonlinear function of Gaussian variables. In that
case, normalized sums of Y; may themselves have non-Gaussian limits which are
expressed as multiple Wiener-It6 integrals [see Dobrushin and Major (1979) and
Taqqu (1979)]. Thus the study of von Mises and U-statistics defined in terms of
the strongly dependent {Y;}2, may involve a combination of two sets of
multiple integrals, one set resulting from the strong dependence, the other from
the degree of degeneracy in the von Mises or U-statistics. It turns out that
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1768 H. DEHLING AND M. S. TAQQU

strong dependence causes a separation of variables which prevents the interfer-
ence of these two sets of multiple integrals. This paper deals with weak conver-
gence. Extensions of the results to a functional law of the iterated logarithm can
be found in Dehling and Taqqu (1988a).

Let (X;)7, be a stationary, mean-zero Gaussian process with covariances

r(k) = EX, X, satisfying
r(0) =1,
(1.1) ©
r(k) =k PL(E), 0<D<1,

where L is slowly varying at infinity and is positive for all large k. Such an
(X;)7%, exhibits long-range dependence. We want to study the empirical process
of Y; = G(X;) where G is any measurable function. We will also obtain results
on von Mises and U-statistics for the Y’s.

Let

(1.2) Fy(x) = % ;1{G(Xj) < x)

be the empirical distribution function of the observations G(X;),..., G(Xy) and
let F(x) denote the c.d.f. of G(X;). Since r(k) - 0 as & - o, both {X;} and
{G(X,)} are ergodic sequences. The ergodic theorem ensures that Fy(x) — F(x)
a.s. for fixed x, and a technique similar to that used for the classical
Glivenko—Cantelli theorem yields
sup |Fy(x) — F(x)| >0 as.
—o<x<+o0

We first want to examine whether a properly renormalized process
dyN'N(Fy — F) converges to a nondegenerate limiting process. For a fixed x,
one can use the theory of nonlinear functionals of Gaussian processes to
find the right normalization. To do so, we must expand the function A () =
1{G(+) < x} — F(x) in Hermite polynomials. These are H(X) = 1, H(X) = X,
Hy(X)=X?-1,....We get

© J(x
e <) - A = ¥ D n 0,

qg=m

where X ~ N(0, 1), the convergence is in L? and where
(1.3) J(x) = E1{G(X) < x}H(X).

The coefficient m = m(x) is called the Hermite rank of the function A () =
1{G(:) < x} — F(x). It is the index of the first nonzero coefficient in the
expansion.

From now on, suppose that the exponent D in (1.1) satisfies

1
14 0<D<—,
(14) -

so that the sequence 1{G(X;) < x} — F(x) also exhibits long-range dependence.
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We have [see Theorem 3.1 of Taqqu (1975)]

(1.5) d? = Var

N

j=1

where the symbol =~ means asymptotically proportional to. [The constant of
proportionality is actually 2m!(1 — mD)~*2 — mD)~'.] Using the weak reduc-
tion principle of Taqqu (1975), we get

()

m!

dy'N(Fy(x) — F(x)) - dy' ¥ H,(X;) >0

J<N
in L2 Moreover the results of Taqqu (1975), Dobrushin and Major (1979) and
Taqqu (1979) show that

{dy' [ NE](Fing(x) - F(x));0 < t <1}

(16) S {-@Zm(t); 0<ts< 1}

in the sense of weak convergence in D[0,1] with the Skorohod topology. The
limiting process Z,(t) is given through a representation involving a multiple
Wiener-It6—Dobrushin integral as

. ei(>\1+ oA 1 1
Z,(t) = K(m D)/
"‘ ’ rri(A 4+ -0 +A,) A D2
(1.7) me
X - X W{mﬁ(dkl) cee E(d)\m),
where

(1- (mD)/2)a-mD) |7

m! (2T(D) sin([(1 - D)/2]7))"

and where B is a Gaussian complex white noise measure satisfying B(A) =
B(—A) and EB(A))B(A,) =|A, N A,| for all Borel sets A, and A, of R' [see
Taqqu (1979), Theorem 6.3]. The symbol [ means that the domain of integra-
tion excludes the hyperdiagonals {A; = + A}, i # j}. The process Z,,(¢) defined in
(1.7) is called an mth order Hermite process. The normalization factor K(m, D)
ensures that E(Z,(1))® = 1.

Recall that up to now we have assumed x to be fixed. We shall now study the

joint convergence in both ¢ and x.

K(m,D) = {

DEFINITION. The Hermite rank of the class of functions
(A,(+), —0 <x <00} ={1{G(-) <x} - F(x), —o0 <x < o0},

is the smallest index m > 1 so that J,(x) # 0 for at least one x, ie, m =
inf, m(x).
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Our first theorem states that (1.6) also holds in the sense of weak convergence
of two-parameter processes.

THEOREM 1.1. Let (X,)?., be a stationary, mean-zero Gaussian process
with covariance (1.1), let the class of functions 1{G(X ) <x} — F(x), —w0 <
x < oo, have Hermite rank m and let 0 < D < 1/m. Then

{d,?,l[Nt](F[Nt](x) —F(x)); —0o <x< +00,0<t< 1}
converges weakly in D([ — o0, + oo] X [0,1]), equipped with the sup-norm, to

{Jm(x)

(1.8) -

Z,(t); —0<x< +00,0<t< 1},
where Z,(t) is defined in (1.7).

REMARK. D([— o0, + o] X [0,1]) is the natural generalization of D[0,1], the
space of all functions f(¢), 0 < ¢ < 1, that are right-continuous and have left
limits. D([ — o0, + 0] X [0, 1]) is the space of functions f(x, t), —00 < x < + 0,
0 < t < 1, that are upper right-continuous and have a limit in any of the other
three quadrants. Here, [ — o0, +o0] involves the two-point compactification
of the real line. Since [— oo, + 0] X [0,1] is compact, all functions in
D([ — 00, + 0] X [0,1]) are bounded and hence have finite sup-norm. In fact,
that space is isomorphic to D([0, 1]?).

Since the space D([ — o0, + o] X [0,1]), equipped with the sup-norm, is not
separable, some difficulties arise with the definition of weak convergence of
measures on that space. One defines the o-field Z on D([— o0, + 0] X [0,1]) to
be the o-field generated by the open balls and not the open sets and one defines
weak convergence of the measures g, to p by requiring [fdp, to converge to
[ fdp for all bounded, continuous %-measurable functions f.

ExaMpLE 1. The function G(x) = x gives rise to a class of functions
H{X <x} — ®(x), —0 <x < o0, where @ is the N(0,1) c.d.f. This class has
Hermite rank m = 1 because if X ~ N(0,1) and if ¢ denotes the N(0, 1) density
function,

Ji(x) = EH(X)(1{X < x} — ®(x)) = EX1{X < x} = —¢(x)
is nonzero. Hence, the limit in the r.h.s. of (1.6) is —¢(x)Z,(¢), where Z,(¢) is a
Gaussian process with mean 0, stationary increments and covariance
EZ\(s)Z\(t) = %{|3|2H + |t|2H = |s= t|2H}
with H = 1 — D/2. The process Z(t) is called fractional Brownian motion.
ExamMpPLE 2. The function G(x) = x? gives rise to a class of functions

1{X?<x} — {®(x) — ®(— Vx)}, 0 < x < + 00, where X ~ N(0,1). This class
has Hermite rank 2, because for x > 0,

J(x) = EX(1{~Vx < X <Vx} + {®(/x) — B(~Vx)}) = 0
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by symmetry and

S(x) = E(X* - 1)(1{~Vx < X <Vx} - {0(/x) - o(—Vk))})

= (" (s2- s
J7 (8% = Da(s) s

—so(s)| g

- Vere

Note that for x < 0 both Ji(x) and J(x) are equal to 0.

The limiting process is Z,(¢). It is called the Rosenblatt process [see Taqqu
(1975)]. Z(t) is non-Gaussian, has stationary increments and the same covari-
ance as Z(t) but with H=1-D,0<D < 3.

ExaMPLE 3. Are there functions G such that the class of functions
1{G(X) < x} — F(x), —o0 < x < o0, has Hermite rank m > 2? The answer is
affirmative. In fact, for every £ < oo, there are G’s such that E(1{G(X) < x} —
F(x))H(x) =0for j=0,1,..., k.

To see this, note first that for every £ > 1 one can find a set A = A(k) such
that A(A) >0, AR\ A) >0 and [JHi(x)$p(x)dx =0 for j=1,..., k. (A de-
notes the Lebesgue measure.) This result can be obtained as a corollary of
Liapounov’s theorem on the convexity of the range of a vector measure [see
Rudin (1973), Theorem 5.5] in the following way: Define signed measures
PBos Biys - v i, ON R by dpj/dx = Hy(x)p(x) and let p = (pg, py, ..., )" be the
corresponding vector measure. We have p(9) = (0,0,...,0)’ and p(R) =
1,0,...,0) and, thus, by Liapounov’s theorem, for every a in [0, 1], there is a set
A with vector measure p(A) = (a,0,...,0)". By choosing an a different from 0 or
1, we obtain a nontrivial set A satisfying [,H(x)¢(x)dx =0 for j=1,..., k.
This set A has the claimed properties.

Now let G = 1,. The level sets 1{s: G(s) < x}, —00 < x < o0, are ¥, A and
R. Since E(1{G(X) < x} — F(x))H(X) =0 for j=0,1,..., k, the Hermite
rank of the class of function 1{G(X) < x} — F(x), c0o < x < o0, is m > k. Since
A(A) > 0, the coefficients in the Hermite expansion cannot all be zero, so that
m < co.

Note that when G = 1,, Fy(x) takes only three values, 0, (1/N)ZI¥1 (X))
and 1. The limit result for d;,l[Nt](F[ ne — F') does not require the full force of
Theorem 1.1, but can be immediately derived from the results of Dobrushin and
Major (1979).

Moreover, the preceding argument based on Liapounov’s theorem does not
provide a construction of G. A more explicit construction is provided in Dehling
and Taqqu (1988b), where a larger class of examples can be found, including
continuous functions G.

Structure of the paper. The rest of the paper is arranged as follows. Section
2 contains applications to von Mises and U-statistics. In Section 3 we show that,
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as N — oo,

(%)
sup sup dy! [Nt](F[N,](x) - F(x)) - ' Y Xj} -0
—oo<x<o00 0<t<l * J<[Nt]

in probability (weak uniform reduction principle) and we use this result in
Section 4 to establish Theorem 1.1.

2. Applications to U-statistics and von Mises statistics. Theorem 1.1
can be applied to obtain the limit distribution of degenerate U-statistics and von
Mises statistics. Let h: R* - R be a measurable function, invariant under
permutation of its arguments, and let Y, = G(X;), j = 1,2,..., be as in Section
1. The nonnormalized U-statistic Uy(A) and von Mises statistic Vy(h) with
kernel A are defined by

(2.1a) Uy(h) = Y A(Y,...Y,),
1<ji,..ns Jr<N
Ju#J, for p#v

(2.1b) Vy(h) = Y h(Y,...Y,).

1<ji,.-s Je<N

Recall that F(x) = P(Y; < x) = P(G(X,) < x). Then h is called degenerate if

+ 00 + 00
(2.2a) /_ f_ |A(xyy. ..y x) | dF(x;) - - dF(x,) < o0
and
+0
(2.2b) f h(xy, xg,...,x,)F(dx;) =0, Vx,,...,%,.

Vn(h) can then be written as a stochastic integral of A(x,,..., x,) with integra-
tor Fy(x),

Vi) = NA[" oo [* By 2 F(ds) -+ Fiy(ds)

(2.3) _ Nkf°°

— 00

S s ) (Fy(dy) =~ Faiy)

e (FN((ixk) - F(dxk))

The last step follows from the degeneracy of . We would of course like to apply
the weak convergence of d;‘[Nt](F[ ne(x) — F(x)), established in Theorem 1.1.
Unfortunately, in general, the map @ — [ -+ [A(x,,..., x,)Q(dx,) - -+ Q(dx})
that maps elements @ of D[ — o0, + 00] into R is not continuous with respect to
the sup-norm on D[— o0, + 0]. Actually this map is not even defined on all of
D[ — 0, + o]. However, as long as & has bounded total variation, continuity
holds, as can be seen through integration by parts.

COROLLARY 1. Let h have bounded total variation and satisfy relations (2.2).
Assume that h(x,,...,x,) and F(x,)--- F(x,) have no joint discontinuities.
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Then the D[0, 1]-valued random elements
(dv*Vina(h), 0 < t < 1)

converge weakly to

(24) ((L)k(fm”' [ B m) ) dJm(xk))(z,,,(t))”,

m! —w -
0<tx< 1).
Here Z,(t) is the mth order Hermite process, as defined in (1.7).

REMARK 1. Relation (2.2a) is always satisfied because A is bounded. More-
over, the integral in (2.4) is well-defined because ||/, ||rv < [Z |H,(8)|$(s) ds <
00, where || ||pv denotes the total variation norm and ¢ is the N(0,1) density
function.

REMARK 2. The integral in (2.4),

f+°° f:oh(xl,...,xk) dJ,(x,) -+ dd(x,)

— 00 —

can be rewritten as

/+°° _/+:h(G(u1)w--,G(uk))Hm(ul) Hm(uk)

— 00 —

X ¢(u,) -+ ¢(uy)du, - du,.
To verify this, it suffices to show that for all bounded, measurable functions
f(x), the following holds:

(2.5) [t dnx) = [ THGw) ) o(w) du.

Assume first that f(x) = 1{x < a} for some a € R. Then the Lh.s. of (2.5) equals
J,(a) and the r.hs. equals [1{G(u) < a}H,(u)¢(u) du = J,(a) by definition.
For step functions f, the equation (2.5) follows by linearity and for general
bounded measurable f, it follows via approximation by step functions.

For the proof of Corollary 1 we need an integration by parts formula for
higher-dimensional integrals. It can be found in Young (1916). For simplicity of
notation, we let & = 2. '

Let H, K: R? - R be right-continuous functions with no common discontinu-
ities. Then

[0 [ H (G, 5) dR (3, 5,)

a, “a,

= 7[R (1 xy) dH (21, 55) — [

a, Ya, a

b xp=
[K(xv x,) dH(x,, xz)]x2=i";’

b = = =
— [P[K (%, %) dH(x,, x,)] 520 + [HK 13225228,
Qg
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where the [ ] symbols are defined by
[ f(xy, x2)]x1—a f(b,x3) — f(a, x,),

- x9=b
[Py, )] 22020 = ([ (o, )220 22

= f(by, by) — f(ay, by) = (b1, a3) + f(ay, ay).

PROOF OF COROLLARY 1. Again, for simplicity of notation, we let & = 2. We
will apply the integration by parts formula to H(x, ¥) = h(x, y) and K(x, y) =
(Fy — F)(x)(Fy — F)(y). The set of discontinuities of K lies on a countable
union of lines parallel to one of the axes. Since the probability of a pair of
observations (¥, Y,) falling on a discontinuity point of H is 0, the functions H
and K have almost surely no joint discontinuities.

Since A has bounded TV, we may let a,, a, = —c and b,, b, > + o0 in the
integration by parts formula. Both A(x, y)(F,(x) — F(x))F,(y) — F(y)) and
h(x, y)J, (x)J,(y) vanish at infinity so that

V[Nt](h) = N2ff2h(x, y)d(F[Nt] - F)(x)d(F[Nt] - F)(J’)
= N[ [ (Fown = F) () (Fing = F)(3) dh(x, ).
Now the map A: D([— o0, + o0] X [0,1]) = D[0, 1] defined by
MQ) = [ [ Qx, )@(y, 1) dh(x, y)

is continuous with respect to the uniform topologies on both spaces. Hence we
can apply Theorem 1 and the continuous mapping theorem to get

d;/2V[Nt](h) = /deﬁl[Nt](F[Nt] - F)(x)dﬁl[Nt](F[Nt] - F)(J’) dh(x, y)

o) [ ) iz, 3) - (2,000

o L ) d(3) a2 (3) - (2,(0)" .

Let us now evaluate the limit behavior of the U-statistics Uy (%), defined in
(2.1a). The difference between Uy(h) and Vy (k) is given by

(2.6) Vy(h) — Uy(h) = ¥y r(Y;,....Y,).

1<ji,een, Jy<N
Ju=J, for some p#v
One may think of this as being the sum over all the hyperd1agonal terms. We will
show that Vy (k) — Uy(h) =0 (d ) so that dN Ving and dy* U[M] have the
same limit. This is due to the fact that N = o(d%) and hence the situation here
is quite different from that encountered in the study of U-statistics of i.i.d.
observations.
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COROLLARY 2. Under the same assumptions as in Corollary 1 the D[0,1]-
valued random elements

(dy*Ung(h); 0 < t < 1)

converge in distribution to

((L) /+°°,.. j‘+°°h(x1,...,xk)dJm(x1)... CUm(xk)(Zm(t))k;Os r<1l.

m! — o

Here Z,(t) is the mth order Hermite process defined in (1.7).

ProoF. It suffices to prove that dy* max,_, . n(V,(h) — U(h)) - 0 in
probability. The r.h.s. of (2.6) can be decomposed into a finite-sum of (nondegen-
erate) von Mises statistics of order lower than k, namely, according to which
indices coincide. Then one can apply the Hoeffding decomposition to each of
these statistics to finally represent Vy — Uy as a sum of degenerate von Mises
statistics, all of order lower than k. To these, Corollary 1 may be applied. Rather
than going into the combinatorial details of the general case, let us consider a
special, but representative, situation. Take & = 4 and let j, = j,, i.e.,

L r(X, X, X, X,).

Ju» Jas Ja
Define g(xy,x3) = [ h(x;,%,,%9,%3) dF(x;) and h(xy,%9,%5) = h(xy,%,%9,%3) —
8(x,, x5). Observe that both g and A are degenerate kernels and both have
bounded total variation. We have then

dy* max Y kX, X,X,X,)

n=1’“"Nj1:j3yj4Sn

_ -4 -

=dy' max | Y A(ZX,X,X,)+N ¥ gX,X,)
v J1s J3s A= oy Jazn

<dy n=IflaX N Z h(le, Xfa’ Xj:‘) + dy n=rlnax . Z g(Xja’ Xj4)
YN J3y A< s N G i<n

and by Corollary 1 both terms on the r.h.s. converge to 0.
For general &, the worst situation involves £ even and
-y
dN ) Z ) h(le’ Xfl’ sz’ ij’ e ka/z’ Xjk/z)'
Jiseeos Jry2 ‘
The dominating term is the lowest order one in the Hoeffding decomposition and
in this case it is Eh. However, as N — oo,
dy*® max Y Eh < d3*N*/?Eh — 0. O

n=1,...,N 1<, .., fpp<n

Corollaries 1 and 2 assume that A has bounded total variation. We can relax
this assumption in the case & = 2 by requiring that A has locally bounded

variation and satisfies some additional condition. The details will be given in a
subsequent paper.
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We derived Corollaries 1 and 2 from Theorem 1 via a continuous mapping
theorem. A referee remarked that this method may not be optimal since the
integral in (2.4) can be 0, indicating that the normalizing factor d% is not
necessarily always the correct one.

3. The uniform weak reduction principle. In order to study the weak
limit behavior of Fy(x), properly normalized and centered, we have to look at
the Hermite decomposition of 1{Y; < x} — F(x),

) Jq(

x)
(3.1) Y, <x} - F(x)= ) THq(xj).
g=m
Here m is the Hermite rank of the class of functions 1{Y; < x} — F(x), —o0 <
x < + 0. Then by Taqqu’s (1975) weak reduction principle we know that for any
fixed x the limiting distribution of

dyt Y (1Y <x) - F(x))
J<[Nt]
is the same as that of
()
dyt Y —=——H(X)).
N el m! ( j)

It is our goal to extend this to a reduction principle uniformly in both — o0 <
x< +o0cand 0 <t<1.

THEOREM 3.1 (Weak uniform reduction principle). There are absolute con-
stants, C, k > 0 such that for any 0 < e < 1,

£ 102 x) - R - 2 ()|

Jj=1

Plmax sup dy

n<N _p<x<+oo

< CN~%(1 +¢7?).

(3.2)

For the proof, we have to introduce some notation:
F(x,y) = F(y) — F(x),

(3.3) Sy(n;x) =dy' Y, [1{16 <x} — F(x) - J,i:c) Hm(Xj)],

Jj<n

Sy(n; x, y) = Sy(n; y) — Sy(n; x),  x<y.
Also recall the definition of J(x):

(34)  J(x) = E1{G(X,) <x)H,(X;) = j;G(s)sx}Hq(s)¢(s)ds,

where ¢(s) = (1/ V27 )e **/2 is the standard normal density. Denote for x < y,
Jo(x, 5) = I (y) — J(x)

= H (s)¢(s) ds.
{(x<G(s)<y}
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LEMMA 3.1. There exist constants y > 0 and C such that for n < N,

ElSw(ni 2 0 < € 5| - N () - Fx).

Proor. Since Jy(x) =0for g =1,..., m — 1 and for all x, we have
© Jx, y)
Hx <Y<y} -Flx,y)= Y ——F p H/(X,).
g=m :

Observe that by orthogonality of the H (X)),

o J%(x, 2
5 _(q‘i) ~E(i{x< Y,<3) - F(z, 7))
(3.5) -
= F(x’ y)(]- - F(x’ y))
< F(x, y).
Thus
E| Y 1{x<Y;<y} - F(x,y) - Jm—:;—ysz(xj)

2 JHx,y) 1
= Z 4 Q' ET Z EHq(XJ)Hq(Xk)
g=m+1 : “Jyk=sn
<F(x,y)- X |r(j- k)™,
Jyk<n

1777

since EH (X;)H (X,) = q'r%j — k). We now have to distinguish three cases,

namely,
(m + 1)D < 1: Y |r(j = k)™ = p2-m+0D(L(n))™,
Jyk<n
(m+1)D>1: Y |r(j—k)|(m+l)=n,
Jyk<n
(m+1)D=1: ¥ |r(j— k)" = nLy(n),
Jyk<n ‘

where L, is slowly varying. In general, we get

Z (r(] _ k))m+l ~ nlv(2—(m+1)D)L/(n)’

Jyk<n

where L’ is slowly varying. Keeping in mind that d3? = N™?~2(L(N))™™,
E|Sy(n; %, 5)[* < CF(x, y) - nt¥ @+ DONmD=2L(n)(L(N)) "

n )lv(2—(m+1)D)

= CF(x, y)(ﬁ

N™P=1V DL (n)(L(N)) ™.

m
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The conclusion follows because for each A >0, max,_nL(n)L(N)) ™™ <
C(A\)N* for some constant C(A), since lim,_,  L'(n)n"*/2 =0 and
limy_, (L(N))"™N~*/%2 = 0 [see Bingham, Goldie and Teugels (1987), Proposi-
tion 1.3.6(v)]. O

LEMMA 3.2. There exist constants p > 0 and C such that or n < N and
0<ex<l,

(36) - P{ sgp|SN(n; x)| > e} < CN‘”{(%)8”3 + (%)2—”0}.
Proor. Let
s@-rw+ [ Py 6

so that F(x, y) and (1/m!)J,(x, y) are both bounded by A(y) — A(x). The
function A is monotone, A(—o0) =0, A(+ ) < oo. In what follows it is
important to keep in mind that A could have discontinuities. We define refining
partitions of R,

-0 =xo(k) <x)(k) < -+ <xp(k)=+4+0, k=0,1,...,K,

by x;(k) = inf{x: A(x) = A(+®0)i27%}, i=0,...,2% — 1. The integer K will be
chosen below (as a suitable function of N and e¢).

If A has discontinuities larger than A(+ o0)2~%, then a number of subdivision
points x (k) will be the same. But in all cases

A(x; (k) =) — A(x;_ (k) < A(+o0) - 27%,
For k = 0 we obtain the trivial partition
— o0 = x4(0) < x,(0) = +o0.
For each x and for each 2 = 0,1,..., K define i,(x) by
xi,,(x)(k) <x< xik(x)+1(k)'
One can then define a chain, linking each point x to — oo,
—00 =% (0) < x; (1)< o0 <xy, (K- 1)

< xiK(x)(K) <x< xiK(x)+1(K)'

Then
SN(n; x)= SN(n; xio(x)(o)’ xi,l(x)(l))
(8.7) + SN(n; xil(x)(l)’ xiz(x)(2)) t o

+ SN(n? xiK_l(x)(K -1), xiK(x)(K)) + SN(n§ xiK(x)(K)1 x)
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Let us first bound the last term in (3.7). Setting A(x, ¥) = A(y) — A(x), we get

|SN(n; xixm(K)’x)l =|dy’ Z [l{xik(x)(K) <Y<axf- F(xix(x)(K)’x)

j<n

_ ‘n%!‘Jm(xix(x)(K), x)Hm( Xj)]

< dy Z [l{xix(x)(K) <Y< x} + F(xix(x)(K), x)]

1 -1
+ ‘ ;‘JJm(xiK(x)(K), x) dy

Y H,(X;)

Jj<n

<dy' X [1{xiK(x)(K) <Y< xiK(x)+1(K)}

Jj<n
+F(xix(x)(K)1 xiK(x)+1(K) _)]

+ A(xix(x)(K)1 xiK(x)+1(K) _)dl_vl Z Hm(Xj)

J<n

=< |SN(n; xiK(x)(K)r xiK(x)+1(K) _)I
+ 2nd;,1F(xiK(x)(K )s X (xy+1(K) _)

+ 2A(xix(x)(K )’ X (x)+ I(K ) - )d;JI

Y H,(X;)

Jj<n

= |SN(n§ xiK(x)(K)’ xiK(x)+1(K) _)I

+ 2A(+ 00)ndy'2 K + 2A(+ )27 %3 X H,( X))
Jj<n

since (1/m!)dJ,(x, y) < A(y) — A(x). Moreover, since L3_o¢/(k + 3)* < ¢/2, we
get

P{ sup |Sy(n; x)| > e}

I

< P{ mfxlSN(n; xio(x)(O), xil(x)(l))l > £/9>
+ P{ meISN(n; X (1), xizl(x)(2))| > e/16> + -
+ P{ maxlSN(n; X o(K—1), xiK(x)(K))| >e¢/(K + 2)2}

+ P{max|Sy(1; %y (K ), g a K) =) | > e/(K + 9)’)

(3.8)

Y H,(X))

Jj<n

+ P{2A(+oo)2_Kd,_\,1 > (e/2) — 2A(+o00)ndy! 2_K}.
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Using Chebyshev’s inequality and Lemma 3.1 we obtain

P{ m;lx|SN(n; xik(x)(k)’xikn(x)(k + 1))| > : 2}

(k+3)
= I RS 0 (he 1) > )
<o’ (E)v D (b 1) = Bl + 1))

n
< C(N)N‘Y(k +3)% 2,
In the same way we get

€
P{mfx|SN(n; x,-K(x)(K)yxiK(x)ﬂ(K) _)| > m}

< C|=|N""(K + 3)*2.
= (N) (K +3)
Choose now

(3.9) K= [logz(ﬂ;mNdN )] +1

so that 2A(+o0) - N - dy'27% < /4. The last probability in (3.8) can then be
bounded by

P{d;,l

IA
Q

[ o)
) vl )

n \2-mD
S'C(ﬁ) N~mP+A for any A > 0.

€ 2K 1
~ ZA(+00)}

Jj<n

A
2| 3

Note that C is a universal constant, possibly changing from line to line. Hence
we find

2—mD
P{sup|SN(n; x)|> e} < C(N)N g2 Z (k+3)*"+ C( ) N—mD+A
x k=0

IA

o Z\N-ve2(K + 3)° c[ 2 2_mDN-mD“
(N) e )+ (N) '
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By (1.5), Ndy! = N-™P/2L=™/%(N)), so that the definition (3.9) of K yields
5
+ |log N |5}

1
(K +3)°< C{ log;

< Ce~!- N® foranyd > 0, where C = C(8).

Now choose, for example, & = y/2 and set p = min(y — 8, mD — A) =
min(y/2, mD — \). Then

P{S‘iplSN(n; x)|> e} < CN“’{(%)(3 + (%)2_MD}. O

PROOF OF THEOREM 3.1. It obviously suffices to prove (3.2) with N = 2 for
some integer r, since dy/dy is uniformly bounded away from 0 and . For
abbreviation, define

My(n) = sup |Sy(n; )|,

My(ny, ny) = My(n,) — My(n,).

Observe that Sy(n; x) = ®(X,,..., Xy) with ®: R* - D[ — 0, + o] measurable
and that Sy (ny x) — Sy(ng; x) = (I)(an +1+++» Xp, ). Stationarity of the under-
lying sequence (X;) ensures that Sy(n; x) has statlonary increments in n, i.e.,

{SN(n27 x) - Sy(ny; x); X € R} d{SN(nz —n;x);x € R}
Thus we get
My(ny, ny) < sup|Sy(n,, x) — Sy(ny, x)|

=d SUP|SN(n2 - Ny x)|
X

= My(n, — ny).
By Lemma 3.2, we get for k£ < r,
P{MN(zk) > 8} < CN~P{2F"7e73 + 2(k=r)2-mD)}
and thus

P{j m IMN J—1)2% j2k)| > a} §1P{|MN(2k)| > e}

< CN=#{g=3 + 2k=n-mD)}

Let now 1 <n < N =2" be given. We can express My(n) as a sum of
increments over intervals of decreasing length, according to the dyadlc expansion
of n. More precisely, if n has dyadic expansion n =X¥}_,0,2"" k e, €{0,1},
then

r

My(n)= X okMN((jk - 1)277%, jk2r—k),
k=0
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where j,=1and for k2 =1,...,7r,
Jr—1)27k =027+ 02" + -+ +g,_ 27 *D,
k Y 1 k-1

Hence j, € (1,...,2*} and therefore

r

max [My(n)| < ¥ max _|(My(j - 1)2 j2*)].

E=0J=1,...,
Thus,
¢ €
P! max|M >y < P m M i — 1)2k, jok)| > }
(max M) > ) < £ p{ _max |My(( =028 29) > s
logy N log, N
SCN_"{ Z (k+2)68—3+ Z 2(k—r)(1—mD)}
k=0 k=0

< CN~ e 3+ 1}
for some 0 < k < p. O

4. Proof of Theorem 1.1. From the results of Taqqu (1975, 1979) we know
that

dy' Y H,(X;) - Z,(t) (indistribution)
J=<[Nt]

in DJ[0,1]. Note that we equip D[0, 1] with the sup-norm topology and with the
o-field generated by the open balls. Since Z,(-) € C[0,1] a.s., we may apply the
a.s. representation theorem of Skorohod and Dudley [Pollard (1984), page 71] to
find a version Z~m' ~(B) of dy'T ;<ingHn(X;) and a version Z (+) of Z,(-) such
that

”Z~m,N(.) - Z~m(')”D[O,1] - 0 a.s.

This now implies

||Jm(')Z~m,N(') - Jm(')Zm(')l|D([_°°,+°o]><[o,1]) -0 as,

which proves weak convergence in D([ — o0, + 0] X [0,1]) of

T (x)dyt L H(X)
J<[Nt¢]
to
I (x)Z,(t).

Since we have shown in Theorem 3.1 that

dyt Y (1{Y; <) - F(x)) — Jd(x)d3* X H,(X;)| -0

J=<[Nt] J=<[Nt]




THE EMPIRICAL PROCESS AND U-STATISTICS 1783

in probability, we get finally

dyt 4 %](I{Yj <x} - F(x)) - dJ(x)Z,(t) in D([-o0,+00] x[0,1]). O
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