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ON THE ATTAINMENT OF THE CRAMER-RAO BOUND IN
L,-DIFFERENTIABLE FAMILIES OF DISTRIBUTIONS!
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AND HERMANN WITTING

Universitdit Miinster, Universitit Augsburg and Universitit Freiburg
im Breisgau
A rigorous proof is presented that global attainment of the Cramér-Rao
bound is possible only if the underlying family of distributions is exponential.
The proof is placed in the context of L, ( P,)-differentiability, requiring strong

differentiability in L,(P;) of the rth root of the likelihood ratio relative
to P,.

1. Introduction. It is part of the folklore of parametric statistics that the
Cramér-Rao lower bound is globally attained only if the underlying family is
exponential. A rigorous proof of this result depends on which concept of differ-
entiability is adopted. Wijsman (1973) employs the logarithmic derivatives of the
density functions and solves the associated differential equation, including a
detailed discussion of the ensuing measurability problems. Fabian and Hannan
(1977) assume weak L ,-differentiability of the likelihood ratio; see also Barankin
(1949), Section 6. Cencov (1982), Theorem 15.4 uses the notion of weak differen-
tiability of charges.

We here place our derivation in the context of L ,-differentiable families of
distributions, that is, strong L ,-differentiability of the rth root of the likelihood
ratio. A detailed exposition of this type of differentiability is given in the
textbook by Witting (1985). Ibragimov and Has’minskii (1981) work with regular
experiments which essentially coincide with our continuous L ,-differentiability.
The notion of L ,-differentiability is due to Hajek (1962), page 1124 and Le Cam
(1966), Section 4.

With increasing parameter r > 1 there evolves a hierarchy of differential
smoothness that is statistically meaningful: L ,-differentiability is appropriate for
dexiving locally optimal tests; see Witting (1985), Sections 2.2.4 and 2.4.3.
L ,-differentiability applies to estimation problems; see Witting (1985), Sec-
tion 2.7.2 or Ibragimov and Has’minskii (1981), Section 1.7.2. For local
asymptotic normality see Ibragimov and Has’'minskii (1981), Chapter II. L ,-
differentiability, for all r > 1, holds in exponential families, reflecting their well
appreciated smoothness properties.

LL,-differentiability relates to the a-connections that play a central role in
differential—geometrical methods in statistics, see Amari (1985). The relation is
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given by the formula r =2/(1 — a), with r =1,2,00 corresponding to a =
—1,0,1. However, the derivation in the present paper does not require any
prerequisites from differential geometry.

In Section 2 we recall the Cramér—Rao inequality in L ,-differentiable families
(Theorem 1). Global attainment of the Cramér—Rao bound leads to a differential
equation with continuous coefficients, as discussed in Section 3. The solution of
this differential equation determines an exponential family (Theorem 2).

2. The Cramér-Rao inequality. First the notion of L ,-differentiability is
reviewed, since it is central to what follows. Let # = {P,: ¢ € 0} be a family of
probability distributions with parameter 4 € ® C R*, on some fixed sample
space Z with sigma-algebra %. The likelihood ratio of a member P, relative to
another member P, is denoted by L, ;,

Lﬂ/ﬂo(x) =pﬂ(x)/p00(x) € [0, 0]

for (P, + P, )-almost all x, where p, and Dy, are the respective densities of P,
and P, relatlve to some common dommatlng measure p, say.
For r>1thel (Py,)-norm of a random variable T is | T||, = ([|T|" dP, )",
while |9 = (Tk_,92)/ 2 designates the Euclidean norm of the 2 X 1 vector 1‘)
Let &, be an interior point of ® and let r > 1. The family & is called
L.(P;,)- dz/ferentzable when there exists a £ X 1 random vector L, , With compo-
nents in L,(Py,) such that, for ¢ — 4,

(1a) |7 (L, = 1) = (9 = 9) "Ly, |,

(lb) Pﬂ({Lﬂ/ﬂo = °°}) = 0(|'9 - 1(}0|r)-
In the case r =1, condition (1b) is redundant, since it follows from (1a) by
Hilfssatz 1.178 in Witting (1985). If (1a) and (1b) are satisfied, then the statistic

Lﬂo is P, -almost surely unique and is called the L ,-derivative of # at ¥, or, for
short, the L (P, )-derivative. When r > 2 the covariance matrix

2) F(9y) = Covy [ L, |

is called the information matrix of ? at ¥,.
The following theorem presents the Cramér-Rao bound as a property of
L ,-differentiable families of distributions.

= 0("9 - 00')7

THEOREM 1. Suppose the family .@ {Py: ¢ € O} is Ly(P, )-differentiable
at an interior point 9, of ® C R*. For some dimension [ > 1 let Thean I x 1
statistic whose components have second moments in a neighborhood around &,

limsupVar,,[’I}] <o forall j<lI.
99

Then the mean-value function % — E,[T] is differentiable at 4, with Jacobian
matrix 9(9,), say, and the covariance matrix obeys the Cramér—Rao inequality

(3) Covy [T = 9(99)#(9,) " 9(8,)".
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Moreover, equality holds in (3) if and only if
(4) T(x) = Ey [T]=9(8)F(8) L)

for P, -almost all x. The expressions in (3) and (4) do not depend on the choice
of the generalzzed inverse for £(9,).

ProoF. See Witting (1985), Satz 2.133, or Ibragimov and Has’'minskii (1981),
Theorem 1.7.3. O

The merits of this theorem lie in that it establishes the Cramér—Rao inequal-
ity as a property of the underlying family 2, covering all statistics except those
which show an aberrant variance behavior around 9, anyway, compare Pitman
(1979), page 39. In contrast, Joshi (1976) presents the Cramér—Rao inequality as
a joint property of both, the underlying family of distributions and the particu-
lar estimator under investigation.

Next we proceed to show that global attainment of the Cramér-Rao bound
entails exponentiality. The essential step of the proof entirely relies on the
weakest type of L ,-differentiability, namely, on L ,-differentiability.

3. Attainment of the Cramér-Rao bound. In this section we study the
global attainment of the Cramér—Rao bound (4), with statistic T and parameter ¢
having the same dimensionality, [ = k. Let every parameter vector ¢ be an
interior point of @, that is, the parameter domain © is open. Let us consider the
equality

Covy[T] = 9(9)#(9)” 9(9)" forall 9 € ©.

When the covariance matrix of T is nonsingular, the matrices (%) and #(%)
are nonsingular as well. Thus (4) leads to the differential equation

=(9)'T - b(9),
with &Z(3)" = £($)%(9) " and b(¥) = F(3)%(9) E,4[T]. In other words, the
derivative L, is an affine transformation of a statistic T' not depending on 4,
with coefficients /(%) and b(¥) depending on . To solve this differential
equation it is helpful to have the coefficients depend on 4 continuously.

To this end we introduce continuous L ,-differentiability. Let & vary over a
neighborhood of 9,. The derivative L, is a member of the space L%(P,) with
norm ||S||,. 0= =Yk (JIS,|"dPy)'/", that is, it is a k2 X 1 random vector with

components in L (Py). Multlphcatlon with Ly, yields a member of the space
Lk(P, ,)- Thus the family & is called contznuously L,( Py, )-differentiable when 2
islL (P )-differentiable for all ¢ in a neighborhood of ¥, and when, for ¢ — 9,

(5a) ||L8L}$//",O - L%”r, 8 o(1),
(5b) 1L 5Lz, 5, =aapllr, s = 0(1)-

It is straightforward to show that continuous L ,-differentiability of # on ©
implies that the information matrix #(#) in (2) and the Jacobian matrix %(#9) in
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(3) depend continuously on #. Again, smoothness increases with r; in particular,
continuous L ,( P, )-differentiability implies continuous L (P, )-differentiability.

The only additional assumption not mentioned so far is that the parameter
domain © be connected so that any two points &, and ¢ can be joined by a
continuous path 4, with s € [0,1]. Let GL(%) denote the general linear group of
nonsingular £ X k& matrices.

THEOREM 2. Suppose the family # = {P,: ¢ € ©} has a parameter domain
© C R* that is open and connected. Let T be a k X 1 random vector; when the
Jacobian matrices of the mean-value function & — E4[T] exist they are denoted
by 9(9¥). Then the following three statements are equivalent:

(a) 2 is an exponential family of order k in T and a(?¥), for some continu-
ously differentiable mapping a: ® — R* whose Jacobian matrices /(%) are
nonsingular.

(b) & is continuously L ,-differentiable on ©, and the covariance matrices
Covy[T] are nonsingular and attain the Cramér-Rao bound Covy[T] =
G(8)L(9) 19(3) forall & € 0.

(c) 2 is continuously L ,-differentiable on ® and the derivatives L, admit a
representation Ly = /()T — b(§) for all 9 € ©, where the mappings
&: © —» GL(k) and b: ® > R* are continuous, and where the distributions of T
under ? do not concentrate on a proper affine subspace of R*.

ProoF. That (a) implies (b) is easy to verify. That (b) implies (c) follows
from the smoothness hierarchy mentioned below (5b). It remains to show that (c)
implies (a).

Fix 4,, % € 0, and choose a continuously differentiable path J, from 3, to ¥,
with s € [0,1]. Its derivative with respect to s is denoted by 153. For s € [0,1]
and x € Z define

8uls) = (3)8,,  a(3) = ['g(s) ds,
g(s) = 810(8,), k() = [‘a(s) ds,

f(x) = exp(j(;lﬂsTLﬂs(x) ds) = exp(a(ﬂ)TT(x) - x(m‘})).

In view of the continuity assumptions these quantities are well defined, and f is
measurable.

We claim that f is a P, -density of P;. Then neither f nor k(&) will depend
on the path 9, that enters into the definition, and the same will be true for a()
since the distributions of T do not concentrate on a proper affine subspace. In
order to establish our claim we must verify that, for every event B € %,

(6) _/deP.so= 0(3)-
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For arbitrary ¢ > 0 there exists a partitioning of R* into measurable rectan-
gles R, R,,... of diameter no greater than e. Let the set B € # be fixed, and
define B, = BN T YR)).

First we show that if B; has positive probability under 9,, then the same is
true under ¥; since ¥, and ¥ are arbitrary, this actually proves that the
distributions in &£ are pairwise equivalent. The function s — Py(B,) is continu-
ously differentiable, compare Witting [(1985), Satz 1.179]. We argue that it
cannot start with P, (B;) > 0 and finish with Py(B;) = 0. Let us assume this is
the case and, w1thout loss of generality, let us assume Py(B,) to be positive for
intermediate values s € (0,1). Then the function H(s) = log Py(B,) is finite and
differentiable for s < 1, but equals — oo for s = 1. Hence its derivatives A(s) are
unbounded, tending to — oo as s converges to 1.

On the other hand, the differentiability assumptions of part (c) imply that, for
s<l1,

4T vP,(B,
(7) h(s) = SPV"S(B{) ) P(IB) st dP m(sle) _gb(s)»

where m(s|B;) = [p $T(8,)'T dP, /Py( B;)—the conditional expectation under
9, of $]/(9,)'T, given B;—exists since #(9,)'T = L, + b(¥,) is integrable.
The points 4] (3,)T(x), with x € B,, lie in the image of the set R; under the
mapping $JA(#,)T, and hence are bounded by

(8) max, ¢ o, ;|(8,)J,| - sup,c ot = ¢ - p;,

say. It follows that sup, (o 1)|A(s)| < cp; + max, ., 1;84(s) < 0. This contra-
dicts the earlier conclusion that A(s) is unbounded. Hence we have shown that,
for s € [0,1], the probabilities P;(B,) either stay positive throughout or else
vanish identically. In the latter case, (6) evidently holds with B, in place of B.

Next we verify (6) when Py(B,) stays positive. In this case, the function
H(s) = log Py(B,) is the integral of its derivative h(s), for all s € [0,1]. Thus we
have

Py(B;)
P(B) "

exp( [#5) ds) — exp(H(1) — H(0)) =

Upon replacing f by its definition and inserting 84(s) = m(s|B;) — h(s) from
(7), we obtain

foalPﬂo fexp(fl MM(&S)TT—g,,(s)}ds)dP,,O

dP,

Jar, 2B
"Py(B)

= | exp 1{19;.2/(1‘)3)TT—m(s|B,~)}d9
B 0

i
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Again the points 4]./(9,)"T(x), with x € B,, lie in the image of the set R,
under the mapping 4] .%/(¥,)", and—being an average—so does m(s|B;). There-
fore, the distance between 9]./(%,)"T(x) and m(s|B;) is bounded from above by
| (3,)0|diam(R;) < ce, with the same constant ¢ as in (8). Thus the inner
integral is bounded by + ce. Summation over i gives

e~“P(B) < jdeP,,o < e“P,(B).

Since ¢ is arbitrary our claim that f is a P, -density of P, is established. Hence
2 is an exponential family.

Finally we investigate a. Fixing 4, and varying ¢ defines a on all of 0, with
a(¥,) = 0. Next we show that « is differentiable at #,. For a point ¢ close to 3,
we may choose a straight-line path o, =4, + s(4 — 4,), whence a(?)=
JoZ (8,)(% — B,) ds. Then we have

|a($) — a(By) = (3)(% — B)| _ fll(ﬂ(ﬂs) = (35)) (8 — B) s
[ — ﬂo| ) |9 - 190|

Since this tends to 0 as ¢ tends to 3, it follows that « is differentiable at 3§,
with Jacobian matrix &7(49,).

Fixing ¢ and varying &, we similarly know that for ¢, # &, the distri-
bution Py has a P, -density proportional to exp(a,(%)'T), where «a, is differen-
tiable at ¢, and has Jacobian matrix 2/(%,). The chain rule dP,/dP, =
(dP,/dP, )(dP; /dP; ) leads to a(¥) = a(?,) + a,(#). Hence, since a; is differ-
entiable at #; so is «, and their common Jacobian matrix is #/(#,). Thus « is
differentiable on ® and has nonsingular Jacobian matrices /(¥).

This also implies that « is an open mapping, hence the image set a(®) is an
open subset of the canonical parameter domain of the exponential family .
Since T is not concentrated on a proper affine subspace, the family £ must be of
order k. O

Note that Theorem 2 provides a particular instance where L,-differentiability
entails L -differentiability, for all r» > 1.
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