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BOOTSTRAPPING EXPLOSIVE AUTOREGRESSIVE
PROCESSES

By I. V. Basawa, A. K. MALLIK, W. P. McCorMICK AND R. L. TAYLOR
University of Georgia

Asymptotic validity of the bootstrap is established for the least squares
estimate of the parameter of an explosive first-order autoregressive process. It
is noted that nonnormal limit distributions are obtained for both the tradi-
tional and the bootstrap estimates. The theoretical bootstrap validity results
are supported by appropriate simulation.

1. Introduction. It is now well known that Efron’s bootstrap method pro-
vides a useful tool for studying the distributional properties of various statistics
of interest. See Efron and Tibshirani (1986) for a recent review. The bootstrap
can be used as an alternative to the conventional sampling distributions of
statistics for both finite samples and asymptotics. In a seminal paper, Bickel and
Freedman (1981) established the asymptotic validity of the bootstrap. See also
Singh (1981) for an important contribution to the rates of convergence of
bootstrap estimates. In a series of papers, Beran (1982, 1984, 1986) discussed
various aspects of asymptotics for bootstrap estimates, confidence sets and test
statistics for both parametric and nonparametric problems. Freedman (1981,
1984) studied bootstrap asymptotics for regression, and stationary econometrics
models.

The current literature on the bootstrap is predominantly concerned with
independent observations. Freedman (1984), however, discusses a stationary
model involving dependent observations. Freedman’s (1984) model also covers
implicitly the stationary autoregressive process with a nonzero intercept. Bose
(1988) discusses Edgeworth correction by bootstrap methods in stationary au-
toregressive processes. Qur main aim in this paper is to establish the asymptotic
validity of the bootstrap estimate for a nonstationary (explosive) first-order
autoregressive process {X;, X,, - -+ } defined by the difference equation

where {e;} is a sequence of independent and identically distributed random
errors with an unknown distribution and E(e;) = 0, Var(e;) = o2 (unknown). If
|B| < 1, the process {X;} is (asymptotically) stationary and |B| > 1 corresponds
to the nonstationary case. The nonstationary case is further divided into two
cases: (a) explosive case, |8| > 1, and (b) unstable (or critical) case, |B| = 1. In
this paper we discuss the explosive case; the unstable case will be considered
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elsewhere. The least squares estimate of 8 is given by

(1.2) B, = ( f Xf_l)_ ( i Xij-_l).

Jj=1

It is known that ,én is consistent for B for all values of 8 in (— o0, ); see Rubin
(1950). The limit distribution of ﬁn is, however, drastically different for the three
cases, viz., stationary, explosive and unstable. In general, the limit distribution of
,l?n is normal for the stationary case and nonnormal for the two nonstationary
cases. The two nonstationary cases can be considered as examples of nonergodic
models of Basawa and Koul (1979) [also, see Basawa and Prakasa Rao (1980),
Basawa and Scott (1983) and Basawa and Brockwell (1984)].

In the next section, we summarize some preliminary results for the explosive
case and describe the bootstrap estimate. The asymptotic validity of the boot-
strap estimate is established in Section 3. Some simulation results are presented
at the end of Section 3.

2. Some preliminary results and the bootstrap estimate. We first re-
view some basic limit results for the explosive case. The details may be found in
Anderson (1959). Throughout this section we assume |8| > 1 and consider the
model defined in (1.1). Define

n n

(2.1) U= Y 8 U™ and V,= Y B,

j=1 j=1

where {e;} are iid. random variables with E(e;) =0 and Var(ej)=02.
It is easily seen that U, and V, are identically distributed for each n.
If {¢;} are normal, U, (and V,) is also normal with mean 0 and variance
(1 — B72")(1 — B~2)"L Anderson (1959) has shown that there exist random

variables U and V such that
(2.2) (U, V,) »4(U, V) asn— oo,

where U and V are independent and identically distributed. If {¢;} are normal, U

and V are normal each with mean 0 and variance (1 — 872)" .. In the general
case, U and V can be represented by

d & v, d
U= ZB (¢} 1)€j=V’
j=1

where, in view of the assumption Eef = 0% < 00, the series is almost surely
convergent by an easy application of the three-series theorem. We note the
common characteristic function of U and V is

o(t) = ﬂ@(ﬁ‘“’“’t),

where ¢(+) is the characteristic function of ;.
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Let ,l?n denote the least squares estimate of 8 given by (1.2). The following
theorem summarizes the limit distribution of B, for the case |8|> 1. See
Anderson (1959) for a proof.

THEOREM 2.1. For B, defined in (1.2), under the model (1.1) we have,
18] > 1,

(2.3) (B = 1) 1BI"(B, - B) »4 V/U,
where U and V are defined in (2.2).

Note that, in particular, when {e,} are normal the limit distribution (2.3) is a
Cauchy distribution. In the general case, when {e;} are nonnormal the limit
distribution in (2.3) depends heavily on the distribution of e -+ and does not have a
simple form. This makes it especially appealing to obtain a bootstrap approxima-
tion for the limit distribution in (2.3) when the density of {¢ } is unknown.

We now descrlbe the bootstrap estimate. Let & = X, — B.X; i_1 and define
g =& — n"'L7_2, the centered residuals. Denote by F, the empirical distribu-
tion functlon based on (&, j=1,...,n}. Thus F, associates mass n~! to each of
&,J=1...,n. Now pretendlng that F_ is the true distribution, draw a random
sample {s ¥, J=1,...,n} from F Thus conditionally on (Xj,..., X)), the
random variables {¢¥*, j =1,..., n} are ii.d. with distributed functlon E,. Now,
construct the bootstrap sample {X*, j=1,..., n} recursively by

(2.4) X*=B.X* +ef Jj=1,..,n,

with X* = 0. The bootstrap least squares estimate is then given by
n n
(2.5) An* = Z XrXx, )y th21-
j=1 Jj=1

The main aim of this paper is to derive the conditional limit distribution of ,B *
g1ven (X;, X5,...) and to show that it is the same as the limit distribution given
in Theorem 2.1.

We conclude this section with the statement of a technical result needed in
the proof of the validity of the bootstrap procedure. We refer to Basawa, Mallik,
McCormick and Taylor (1988) for a complete proof.

LEMMA 2.1.  For the model given in (1.1) with Ee; = 0, Vare,; = 6% < o0 and
|Bl > 1, we have

(2.6) %i(e—e)ﬁO as n — oo.

Moreover

(2.7) B,25 B as n— .
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3. Limit distribution of the bootstrap estimate. We can now state the
main result of the paper.

THEOREM 3.1. Conditionally on (X, X,,..., X,) as n - oo we have, for

1Bl > 1,

(3.1) (82— 1) "8m(B* - B,) ~a V/U

for almost all sample paths (X,, X,,...), where U and V are defined in (2.2),
and ( ,Bn, B.¥) are defined, respectively, in (1.2) and (2.5).

Proor. Define
n n
(3.2) Ur= Y AU % and V= Y By Per.
j=1 Jj=1

The result in the theorem can be deduced analogously to that of Theorem 2.1
provided we show that, conditionally on (X,..., X,), (U*,V.*) >, (U, V) for
almost all sample paths, where U *, V., U and V are as deﬁned earlier. This is
because the limit distributions of ,8* and ,B are determined respectively by
those of (U*, V,*) and (U,, V,). In what follows we shall show that the condi-
tional charactenstlc function of (U*, V,*) given (X,,..., X,) converges to the
characteristic function of (U, V), for a]most all sample paths (X;, X,,...). Let
E *(') denote the expectation with respect to the distribution F, (of &) condi-
tional on (X,..., X,). Let oys(t) = E*(exp itU.¥).

It is shown ﬁrst that

n
(3.3) dyx(t) = T1 E’*(exp it/fn‘(j‘”ej’-“)
J=1
converges a.s. to ¢,(t) as for each ¢ € R where the null set does not depend on ¢.

To accomplish this it suffices to show

(3.4) lim sup Z |E*(expzt,8 U= Dgx )— 1|=0 as.,

m— o0 n=m j=m
where the convergence in (3.4) is uniform on compact sets in R and
(3.5) lim ‘E*(exp it,é,:(j_l)ej’-") - qbel(t,B—(j_l))‘ =0 as.
n—oo
for each j > 1 and uniformly in ¢ in bounded intervals. First,
|E*(expitB; U= Ver) — 1| < E*(|th; Y~ Vey|)
A .12
=187V 0= X [El-
np
Since by Lemma 2.1 ,l?na—'s;'/i, B8] > 1 and (1/n)EZ=1|Ek|a—'§'E|el| < o0, it follows

that for almost each sample path there exist positive integers C and m such that
1/n)L;_|§,| < C and |B,| = 8 > 1 for all n > m. Thus, for almost each sample
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path,
|E*(expith; V= Ver) — 1| < |18~V 1C
for all n > m, and (3.4) is established. Next,

|E*(exp itﬁ;”‘”e}") _ 4>€1(t,8_(j‘1))‘

1 n R . 1 R )
<|= X expith, Vg, — — Y expith; U Ve,
L no,_
(3.6) 1z o 1z .
+|= 2 expith, Y Ve, — — Y expitBU Vg,
=1 g1

n . .

+|— X exp it U Ve, — E(expitB~U V)|
k=1

For the first term in (3.6),

1 » . 12 A

— ) expith, Vg, — — 3 expith, U Ve,
=1 g

1 2 n . "
< - Yy ,exp itﬂn‘“_”ekl lexp itB, VI(E, — &) — 1,
k=1

IA

ltl - 3—-(J-Dy |z
; Z 18, [ 1€, — &l
k=1

Y v

A ; 2

= (|t|:3n_2(j_1))1/ (_ 2 (8~ ek)2) -0 as.
g

uniformly in ¢ on compact subsets by Lemma 2.1. Similarly,

. . t| 2
B - g S0 s,
k=

uniformly in ¢ on compact subsets, which implies that the second term in (3.6)
goes to zero a.s. By the Glivenko—Cantelli theorem and the convergence theorem
for characteristic functions, the third term in (3.6) goes to 0 a.s. and uniformly
for ¢ in a compact set. Hence, (3.5) is established, and it follows that

(1) 4u(0) = TLog(B:972) S T, (87972) = 9(0).
J= J=

The convergence in (3.7) is, for almost every sample path individually, uniform
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on compact subsets. Hence, one exception set can be used for all ¢ Similarly,

dys(s) = qusef(s/?,:‘"‘f’) = Y o, (B~ YY) = ¢y(s) = oy (s).
J= Jj=1

For m = [n/2],
m n . R X n—m R n
Susva(tss) = L 0u(tBr ™0 + sf ) TT ¢u (B, "0 + 5B, 07D).
j=1 =1
Moreover,

m m
,Dl"’ff*(tﬁ"_”_n + 5B, D) — jl:[lcmf(té;‘f‘“)

m m
E*(expi > (tB7Y + s/?,:(”‘f))sl*) - E*(expi Z tﬁ;(f‘l)el"‘)

Jj=1 J=1

m m
< E*||lexpi ) tB, Y Vex||expi ). sB; e¥ — 1
j=1 j=1
m A -
< X Isl 1B~ " PE ek
j=1

IA

m e o 12
(,- Is| 1B, ¢ ’))(;kgllskl),

=1

which can be made small a.s. by choosing n large since, by Lemma 2.1

)

12 ~
— L |8l = Ele| and [B,] = |B> 1.
k=1

Similarly,
n—m n n n—m n
Y 0 (B0 + sf7¢V) — ¥ 0. (sB V)
=1 =1

n—m R ' 1 n 3
< X ItI(IBnI‘("‘“)(— ¥ |£k|).
=1 n .-,
Thus, by virtue of (3.7) and the above, for each ¢ and s,
e 0
¢Un*,V,,*(t’ s) _s; I—‘[1¢81(tB_(1_1)) l_[ ¢51(S:8_(1_1))
J= Jj=1

= ¢y (t)ov(s),

where the exceptional set can be chosen independently of ¢ and s. Theorem 3.1 is
thus proven. O
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TABLE 1
Bootstrap cumulative distribution of T,

P(T, < t) 0.01 0.025  0.05 0.10 0.25 050 075 090 095
¢ -2.356 —2001 —1652 —1284 —0661 —0031 0661 1273 1.644
N(,1)

(values) —-2.327 -1960 -—1.645 —1.282 —0.679 0.000 0.674 1.282 1.645

CoroLLARY 3.1. If {e;} are assumed normal, we have, for |B|> 1, condi-
tionally on (X, X,,..., X,),

n 1/2
ﬂ=@f(2Xﬁﬂ (Bx — B,) »4 N(0,1),

=1

for almost all sample paths, where
. & A 2
§2=n1Y (X,- B.X;_,).
j=1

We omit the proof of this corollary for the sake of brevity. We refer to
Basawa, Mallik, McCormick and Taylor (1988) for the details.

The cumulative distribution of 7T, in Corollary 3.1 was simulated with
n =200, and B = 1.05 with {¢;} taken as N(0,1) variates. Table 1 gives the
simulation results using 5000 bootstrap samples. The N(0, 1) cuamulative distribu-
tion values are given for comparison.
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