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CORRECTION

COMPLETE CLASSES FOR SEQUENTIAL TESTS
OF HYPOTHESES

By L. D. BRowN, ARTHUR COHEN AND W. E. STRAWDERMAN
The Annals of Statistics (1980) 8 377-398

Theorems 3.1 and 3.2 as stated are incorrect. Corrected versions of these
results are given below. Theorem 3.1 was concerned with an essentially complete
class. Theorem 3.2 was concerned with a complete class. The corrections do affect
a qualitative change in Theorem 3.2 in that now the result requires an assump-
tion of a one dimensional exponential family and treats only a one-sided testing
problem. There is essentially no qualitative change in Theorem 3.1, where the
assumptions on distributions are minimal and there are no changes in the rest of
the paper.

The new version of Theorem 3.1 is also concerned with an essentially complete
class. To describe this class let 2* be the class of procedures characterized by
(v, p, m*, I')*, I';*) where vy is the probability of stopping at time zero, p is the
probability of rejection given that the procedure stopped at time zero and
(m*, I'*, T,*) are defined on pages 384 and 385, m* > c. A procedure 8§ corre-
sponding to a (v, p, m*, ['*, I;*) lies in 2* if whenever 0 < y < 1, § is condi-
tional Bayes with respect to (m*, I'*, I';*) given that an observation has been
taken.

THEOREM 3.1'. The class 2* is essentially complete.

Proor. The error made in the paper involves Lemma 3.1 and its subsequent
use, only when n = 0. Note that for n =0, g{,(x) =1 since the o-field
generated by X, is trivial.

Thus 7, &3 w(* ) = my — #; [instead of '”ik’g((?)),k’(x(O)) - 7*8D (%) 8s
claimed in LLemma 3.1]. Corresponding minor modifications need to be made for
the case n = 0 in Lemma 3.2 and in the proof of Theorem 3.1 on pages 386 and
387. The outcome of these modifications is that the limiting rule §(X) is Bayes
with respect to (7*, I'*, I;¥) only after X ;) has been observed. Before X, is
observed (i.e., for n = 0) § will stop and accept (reject) if #, > 3 (7, > 3) and
min(7, M) < B, (%), Whereas the Bayes procedure for (7*, I'*, I,*) substi-
tutes 7;* for 7; in the preceding rules. Since #, < m* and %, > m,* it follows that
8 can reject at stage 0 when the Bayes procedure does not or § (based on ;)
would say to continue but the Bayes procedure (based on 7*) would say to stop
and accept. Hence 8 is Bayes only after an observation has been taken. O
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REMARK. It is possible to construct a procedure in 2* which is admissible
but not Bayes. This shows that the original Theorem 3.1 is false.

Theorem 3.2 can be replaced by a theorem requiring additional assumptions.
We require that X, X,,... are independent, identically distributed random
variables from a continuous parameter exponential family. The density is in
terms of the natural statistic x and natural parameter §. We test 6 € ©, versus
6 € ©, where 8’s in O, are greater than or equal to all 8’s in ©,, that is, we test
a one-sided alternative.

THEOREM 3.2'. 2* is a complete class.

PROOF. Suppose 8’ ¢ 2* and assume &’ is admissible. Otherwise it is clear
from Theorem 3.1’ that there exists a test in 2* which is better. Let 6 € 2* be
such that R(8,8) = R(8, &’) for every real §. Then

y(1=p) + (1 —v)e+ (1-7v)Ry(6,3)

g v -p) + (L= 7)e+ (L= V)R(0,8) ford e,
and
@ ™" (1 -y)e+ @ —-7)R(6,8) =vp' + (1~ v)ec+ (1-v)R(6,8)

ford € ©,,

where R (0, d) is the risk of § for 6 € ©, given that the first observation is free
and taken and R1(0 8) is defined similarly for 8 € ©,.

Since 8’ & 2%, vy’ # 1, otherwise 8’ € 2*. Also §’ does not accept at stage 1
with probability 1 otherwise it would lie in 2*. This, plus the fact that §’ is
admissible implies that R(6,8) - 0as 8 = oo. This follows from the facts that
(i) among procedures which observe at least once, % is a complete class [see
Brown, Cohen and Strawderman (1980), page 395, Theorem 4.2] and (ii) every
procedure in % is monotone [see Brown, Cohen and Strawderman (1979), page
1228, Remark 3.4] and furthermore every such procedure (except one which
always accepts at stage 1) must reject for x; sufficiently large. Similarly § does
not accept at stage 1 with probability 1 since the procedure which accepts at
stage 0 with probability (1 — yp) and rejects at stage 0 with probability yp is
better. It follows that R (6,8) = 0 as § — oo as well. [Note: If y = 1, take

R,(6,8) = 0]
The properties above for § and &’ along with (1) imply
3) R,(6,8) = BR/(0,68’) forallf e 0,,

where B=(1-7)/1—-7v), 0<y<1, 0<y <1. (The case y =1 implies
¥’ = 1, which was ruled out.) Hence 0 < B < oo. Furthermore B # 1. To see this
suppose B = 1, i.e., y = y". Then from (3) and (1), p = p’, which in turn implies
R, 8) = R,(8, §"), which in turn with (3) implies 8’ € 2*.
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We will show that [R,(8, §)/R,(0, 8")] is not constant for all § € ©,. This
contradicts (3). Consider

(4) Ry (6,8) = P(As Ns=1) + cPy(Ny > 1) + Ry(6,8)P)(N; > 1),

where A; is the acceptance set for 8, R,(, ) is the risk for given § given at least
two observations are taken and 6 € ©,, N; is the stopping time for 6. Clearly
R,(6,8) —> 0 as 8§ — oo as does Ry(8, §') by the same reasoning used before for
R (8, 8). Now for & at stage 1, there are the following two possibilities.

(i) Stop and accept if x, < a,, continue if @, < x, < b, stop and reject if
x> by
(ii) Stop and accept if x, < a,, stop and reject if x; > a,. Similarly for 8’ we
have corresponding a; and b;. .
When 8 and &’ are of form 1 with b, < b] we have
Ri(6,8) _ Py(Ny>1)(c+ Ry(6,8) + [Py(As; Ny = 1)]/[P(D > 1)])
R\(0,8) BN, >1)(c+ Ry(6,8) + [B(Ay; Ny = 1)]/[B(N; > 1)])

(5) Py(N; > 1) P)(As; Ny=1)
S——_Po(st>1)((c+(1+c)+———Pa(N.s>1) )/c) -0

as § - oo by using the fact that X, has an exponential family distribution.
Clearly when the ratio on the left-hand side of (5) tends to 0 or oo as § — oo, the
ratio is not constant. Similarly b, > b{ is impossible, so b, = bj. If b, = b}, then
the ratio in (5) tends to 1 as § — oo, which contradicts the fact that B =1 is
excluded.

If both & and &’ are of form 2, then a, = a{ and again B = 1. Finally suppose
one of §, §’ satisfies form 1 (say &) and the other (say &’) satisfies form 2. Then
for 6§ € O, the ratio on the left-hand side of (5) is

Fy(a,)  Ry(6,8)(Fy(b,) — Fy(a,))
Fy(b,) Fy(b,) ’

where Fj(-) is the c.d.f. of X. Note (6) is not constant for § € ©,. O

(6) c+(1-¢)

REMARK. Theorem 3.2’ can be extended to the two-sided symmetric case.
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