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ESTIMATING JOINTLY SYSTEM AND COMPONENT
RELIABILITIES USING A MUTUAL
CENSORSHIP APPROACH!

By HaNI Doss, STEVEN FREITAG AND FRANK PROSCHAN
Florida State University

Let F denote the life distribution of a coherent structure of independent
components. Suppose that we have a sample of independent systems, all
having the same structure. Each system is continuously observed until it
fails. For every component in each system, either a failure time or a censoring
time is recorded. A failure time is recorded if the component fails before or at
the time of system failure; otherwise a censoring time is recorded. We
introduce a method for finding estimates for F(t), quantiles and other
functionals of F, based on the censorship of the component lives by system
failure. We use the theory of counting processes and stochastic integrals to
obtain limit theorems that enable the construction of confidence intervals for
large samples. Our approach extends and gives a novel application of censor-
ing methodology.

1. Introduction and summary. Consider a system of independent compo-
nents labeled 1 through m. We assume that the system forms a coherent
structure, which we denote by ¢. In particular the system and each component
are in either a functioning state or a failed state, and the state of the system
depends only on the states of the components; see Barlow and Proschan (1981),
Chapters 1 and 2, for definitions and basic facts relating to coherent systems.

Suppose that we have a sample of n independent systems, each with the same
structure ¢. Each system is continuously observed until it fails. For every
component in each system, either a failure time or a censoring time is recorded.
A failure time is recorded if the component fails before or at the time of system
failure. A censoring time is recorded if the component is still functioning at the
time of system failure. From these failure times and censoring times we wish to
estimate F,, the distribution of the system lifelength.

Let

T, = lifelength of system i.

We note that F may be estimated by the empirical estimator

CE) B = YT <),

i=1

where I(A) is the indicator of the set A. However, Fem is unsatisfactory in that
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it does not fully utilize the information contained in the sample. Specifically, it
does not use the identity of the components still functioning at system failure
time, nor the failure times of the components failing before system failure time.

The purpose of this article is two-fold. First, we present an estimator Fof F
that does use all the information contained in the sample. Second, we apply (in
Section 2) the statistical theory of counting processes initiated by Aalen (1978)
to obtain the asymptotic distribution of F in the observational scheme described
above, and show (in Section 5) how this theory can be used to study several
other problems involving related observational schemes.

To construct our estimator ¥, we first obtain estimators of the distributions of
the component lifelengths, and then combine these in a suitable way. To describe
F fully, we introduce some notation.

X, is the lifelength of component j in system #; .

F 1s the distribution of the lifelength of component j (thus, X, ;, X,;,..., X,,;
are iid. ~ F; ),

Zy = mm( o T;

=I(X;; < T),

Hj is the common distribution of the independent random variables
Zyjyeoos 2y :

Here and throughout the article the letter i indexes systems and j indexes
components; i ranges over 1,...,n, and j over 1,...,m. For each 7, let
Zyy; < Zgy; < +++ < Z,; be the ordered values of Z, ;, Zy, ..., Z, ;. Define

1 if Z, ; corresponds to an uncensored lifetime,
(1.2) 8, = ®1
. @)J

(When an uncensored and a censored observation are tied, the uncensored
observation is considered to have occurred first.) Let F denote the Kaplan—Meier
estimator of F),

(1.3) F(y=1- TI (—n._—i—)sw.

E:Z(,')jSt n_l+ 1

0 if Z;,; corresponds to a censored lifetime.

The definition above differs from the usual definition of the Kaplan—Meier
estimator in that F(t) is not arbitrarily defined to be 1 for t > Z,,, ;.

For each coherent structure ¢ of independent components, there corresponds
a function A, called the reliability function, such that

(1.4) F(t) = hy(Fi(2),..., F,(2)).
[For a distribution function G, G(t) denotes 1 — G(¢).] A more detailed descrip-

tion of reliability functions is provided in Chapter 2 of Barlow and Proschan
(1981). The estimator F is defined by

— h(F(0),.., Fp(0)) i< T,

(15) F(t) = tes T,

Here, T}, = max(T, T, ..., T,). The estimator F has obvious intuitive appeal.
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The properties of the Kaplan—Meier estimator have been studied extensively
by various authors. Under the assumption that the censoring variables and the
lifelengths are independent, the Kaplan—Meier estimator is the maximum likeli-
hood estimator [Kaplan and Meier (1958) and Johansen (1978)]. Regarded as a
stochastic process, it is strongly uniformly consistent [F6ldes, Rejt6 and Winter
(1980)] and when normalized converges weakly to a Gaussian process [Breslow
and Crowley (1974), Aalen (1976) and Gill (1983)].

The main results of this article can now be stated. Let D[0, T'] be the space of
all real-valued functions defined on [0, T'] that are right-continuous and have left
limits, with the Skorohod metric topology. D™[0, T'] denotes the product metric
space.

THEOREM 1. Suppose F,, F,, ..., F,, are continnous, and let T be such that
F(T)<1 forj=12,...,m. Then as n > oo,
n1/2(ﬁ1 _E’ﬁé—ﬂ""’ﬁm_Fm) - (VVI’%’”"Wm)

weakly in D™[0,T], where W,...,W,, are independent mean 0 Gaussian
processes. The covariance structure of W; is given by
— = dF(u)
h J
Cov(W.(t,), W.(¢t =F(t,)F.(t _
OV( J( 1)7 j( 2)) j( 1) j( 2)_/(; H’(u)E](u)

for0<t <t,<T.

(1.6)

Since in general the dependence among the FA}-’S may be complex, Theorem 1 is
not a trivial extension of the corresponding result for the individual
Kaplan—-Meier estimators F.

Theorem 1 together with an application of the delta method yields weak
convergence of the estimator F. Let

dh
(1.7) I(t) =ﬁ(ul,...,um)

uj=17_',~(t), J=1,..., m

THEOREM 2. Suppose F, F,,..., F,, are continuous and T is such that
F}-(T) <1 forj=12,...,m. Then as n = oo,

n'/2(F — F) » W weakly in D[0,T],
where W is a mean 0 Gaussian process with covariance structure given by
& =\ n_ dF(u)
Cov(W(¢,), W(t,)) = Elfj(tl)lj(tz)l'}(tl)l'}(tz)fo H(w)F(a)

for0<t <t,<T.

(1.8)

. The commonly used estimate of the variance of the Kaplan—Meier estimate is
given by Greenwood’s formula [see Chapter 3 of Miller (1981)]. Since this
estimate is known to be consistent [see Hall and Wellner (1980)] it follows that
for fixed ¢, the variance of F(¢) given in Theorem 2 can be consistently
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estimated. This enables the construction of confidence intervals for F(¢) in large
samples.

The competing risks model corresponds to a series system. Aalen (1976)
showed that for this model, the vector of Kaplan-Meier estimates (F,, ..., F,),
when normalized, converges to a multidimensional Gaussian process, whose
components are independent. This result corresponds to our Theorem 1 for the
case of a series structure.

We note that (assuming F,,..., F,, to be continuous) the data from the
competing risks model is the death time of the system and the identity of the
component causing the death of the system. Meilijson (1981) expanded this to
the case of a coherent system in an “autopsy model”: At system death time T,
an autopsy is performed which reveals the set D of dead components (the
identity of the component causing system death is not given by the autopsy).
This model yields less information than does ours. Meilijson considered the
identifiability question of when does the distribution of (7, D) determine
F,...,F,.

The present article is organized as follows. In Section 2 we prove Theorems 1
and 2. In Section 3 we give an application of our results to system design
methods. In Section 4 we discuss the efficiency of our estimator vs. the empirical
estimator (1.1). In Section 5 we discuss Meilijson’s model as well as other models
where the data can yield more information than just T),..., T,. The Appendix
gives a proof of a result used in Section 2.

2. Weak convergence results.

2.1. Random censoring and preliminaries. Corresponding to a generic sys-
tem, we define generic random variables X, Z, §; and T, such that the random
vector (X, Z,,8,,T) has the same distribution as (X}, Z;;, §;;, T;) for i=
1,2,...,nand j=1,2,...,m.

In Section 1 it is noted that the strong consistency and weak convergence
results for the Kaplan—-Meier estimator are valid under the assumption that the
lifelengths and the censoring random variables are independent. In our model,
for each j, X; is censored by T, and for a coherent structure these two random
variables are dependent. However, it is possible to redefine the censoring vari-
ables to circumvent this difficulty. This is best explained in terms of a simple
example. Consider the structure shown diagrammatically in Figure 1.

In the example T = X; A (X, V X;), where x A y = min(x, y) and x V y =
max(x, y). Consider now component 1. Clearly, X is censored by Y; = X, vV Xj,

® I
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which is independent of X,. Similarly, X, is censored by Y, = X;, and X; by

Y, =X,

’ A ceiltral result of this article, shown in the Appendix, is that this construc-
tion can always be made: In general, for each j = 1,..., m, there is a random
variable Y; such that
(2.1) (2,,8) = (X, Y, I(X; < Y)))
and A
(2.2) X; and Y; are independent.

Roughly speaking, Y; is the lifelength of the system if X, is replaced by oo.
Proposition A.l states that to determine whether or not component ;’s life-
length has been censored by time ¢, it is enough to know the history of the other
components (or of Y;) up to time . We will refer to Y; as the censoring variable
of X..

Inj order to describe the distribution of Y; we introduce some notation. For
Y= (Yp---» Y) €[0,1]", a €[0,1] and j = 1,..., m, let

(2.3) (a, 7) = (Fiseees Yjm1s @ Yjs1o e s Ym)-

Let F(t) = (F(t),..-, F (¢)) and recall that H, . is the distribution of Z,. In the
Appendix it is shown that '

(2.4) P(Y; > t) = hy(1;,F(2)),
where A, is the reliability function [see (1.4)]. Thus,
(2.5) H(t) = F(t)h,(1,,F(2)).

We now review some terminology from reliability theory [see, e.g., Barlow and
Proschan (1981)] to be used in the proofs of consistency and weak convergence of
F. For a coherent system of m components, the states of the components
correspond to a vector U = (U,,...,U,), where U, = I (component j is in a
functioning state). The structure function is defined by ¢(U) = I (system func-
tions when U describes the states of the components) for U € A,,, where
A,, = {0,1)™ It is well-known (and easy to see) that for p=(py,--+» Pm) €
[o,11m,

m
(26) h(p)= ¥ o) 11 -p)""
UeA,, J=1
where 0° = 1 by definition.

The Kaplan—Meier estimates F} given by (1.3) will be denoted FJ:‘ when we
want to emphasize the dependence on n; similarly for the estimate F of system -
life distribution. Also " will denote the vector (F7,..., EX).

The following lemma is needed in the proof of strong uniform consistency and
of weak convergence of F.

: LEmMMA 2.1. For any structure of m independent components, the corre-

sponding reliability function h, is twice continuously differentiable over [0,1]™,
and the first and second partial derivatives are bounded in absolute value by 1
uniformly over [0,1]™.
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Proor. Forp = (py,..., P, €[0,1]" and k = 1,2,..., m, we have by (2.6),

dh
(2.7) 'a—i = h¢(1k’ p) - h¢(0k’ p)'
P,
From (2.7) we have
a%h
2.8 y| =
28) ipi |,
and for [ + &,
a%h,
(2.9) ops 9P|, (ol 10 P) = hy(10,0 P}

- {h¢(0]¢: ]-l: p) - h¢(0k10b p)}’

in an obvious extension of the notation (2.3). By (2.6) A, is continuous over
[0,1]™ This fact together with (2.7), (2.8) and (2.9) imply that the first and
second partial derivatives are continuous on [0,1]™; hence, by Theorem 6.18 of
Apostol (1964), h, is twice continuously differentiable on [0,1]™. Equation (2.7)
implies that the first partials are bounded in absolute value by 1. Since each of
the two quantities inside the braces on the right-hand side of (2.9) is between 0
and 1, it follows that the second partials are also bounded in absolute value by 1.
The lemma follows since p is arbitrary. O

We now establish the strong uniform consistency of F and give the rate of
convergence.

PROPOSITION 2.1. Let T > 0 be such that forj = 1,..., m, min(F(T), F(T))
> 0. Then:

(a) n4(Inn)"*? sup |F(t) - F(¢)|~>0 a.s.
0<t<T
If F,,...,F, are continuous we get the stronger result

(b) n'/%(Inln n)~ 2 sup, _, . 7|F(¢) — F(t)| is bounded a.s.

ProOOF. The convergence results for the individual F}’s given in Foldes,
Rejté and Winter (1980) and Féldes and Rejto (1981), respectively, together with
Lemma 2.1 yield parts (a) and (b), respectively. O

2.2. Proofs of Theorems 1 and 2. A review of the counting process and
martingale theory used below is given in the survey paper of Andersen and
Borgan (1985). 'I‘hroughout we adopt the convention that 0/0 = 0. The index n
defining a process is suppressed whenever possible.

To prove Theorem 1, we will show that for any T >0 satlsfymg
maxlS]Sm (T) < 1
F, - F, E,-F,

AR = (W, ..., W,*),
1 m

(2.10) n'/?
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where Wi*, ..., W.* are independent mean 0 Gaussian processes with covariance
given by

o_dF(u)
-

@11) Cov(Wy (1), W(8)) = | "0 F ()

forOStIStst.

(Now and henceforth, the symbol d signifies weak convergence in D™[0, T'].)

Theorem 1 is an easy consequence of (2.10) and Theorem 5.1 of Billingsley (1968).
We prove (2.10) by a general method introduced by Aalen (1978) and later

refined by Gill (1980). We define the stopped process F* on [0,00), j =

1,2,...,m, by

(2.12) Fx(t) = F(tA Z,

and show that

n\/2 FAI : Fl* o Fm: ) iy

F* E}X

) and F*(t) =1-F*(t)

(n)j

(2.13) ) > (W, ..., W*).

This is enough to prove (2.10), as it is easy to see that the difference between the
left-hand side of (2.10) and the left-hand side of (2.13) converges to 0 in
probability in D™[0, T'].

To show (2.13), we first establish that for each n,

A(t) - E(8)).
F*(¢)

(2.14) {n € [o, T]} j=1,...,m,
are orthogonal square integrable martingales with respect to an appropriate
family of o-fields. Weak convergence in (2.13) then follows from a multivariate
version of a martingale central limit theorem due to Rebolledo (1980). The
orthogonality allows a simple extension to the multidimensional case of the proof
of weak convergence given by Gill (1983) for the one-dimensional case.

To show that the processes in (2.14) are orthogonal martingales, we will need
to be careful about the families of o-fields that we use.

We define the following processes on [0, 0); these correspond to the situation
where we imagine that no censoring occurs:

(2.15) N(t) =I(X,;<t),
(2.16) Ni(t) = Z N;(2),
(2.17) V() = ZX” >t),
(2.18) Vvi(¢) = .E Vii(8),

(219) A0) - [ (o) ] dar(s),



ESTIMATING SYSTEM LIFE DISTRIBUTION 771

(2:20) A= [;E; ar(s) (- Ea,0)
(2.21) M, ;(t) = N,,(t) — A,;(¢),
(2.22) M(¢) = N(£) - A(2) (= =§ Mij(t)).

We further define the filtration
(2.23) &, = completionof o(N;;(s);1<i<n,1<j<m,s<t).

In Section 5 we will consider censoring schemes that are more complicated
than the ones involved in Theorem 1. Therefore, we wish to give a proof of the
fact that the processes in (2.14) are orthogonal martingales that can apply to
more general censoring mechanisms. Thus, corresponding to an arbitrary censor-
ing mechanism for component j of system i, let

(2.24) C;;(t) = I( X;; is under observation at time ¢).

In the present situation,
(2.25) Ci() = I(¥, = £),

where Y;; is defined by (A.2).
We define the following entities; these correspond to (2.15)-(2.23) for the case
of censoring:

(226) Ng(t) = [C,(s) aN,
(221 Ni(6) = LN,
@29 V() - OV, (0
(2.29) vcm—z 5,

(2.30) Ag(t) = f’ I;’( )

(2.31) Ac(t)—j“;((:)) (s) ( ZA(t))

(2.82) My(t) = Nj(2) — Aj(2),

@33) M50 = () - a(0) (- £t

(2.34) %, = completion of 6(N5(s);1<i<n,1<j<m,s<t).
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We further define
(2.35) Je(t) = I(Ve(t) > 0).

The following proposition [Theorem 3.1 of Aalen and Johansen (1978) and
(3.2.12) of Gill (1980)] is fundamental in establishing that the processes in (2.14)
are orthogonal martingales.

PROPOSITION 2.2. Suppose F,,..., F,, are continuous and t > 0 is such that
max, _ ;. Fi(t) < 1. Then for each j and for all n,

OB _ e 2 Fy(s -)
0

(1) Vi(s) Fi(s)

Our plan is to show that Mi(¢), j=1,..., m, are orthogonal martingales
with respect to either {%#; t € [0,T]} or {# t € [0,T]}. Then we will use
Proposition 2.2 to obtain the same conclusion for the processes in (2.14).

The following general lemma, which is well-known [see, e.g., Andersen,
Borgan, Gill and Keiding (1982)], is an essential part of our proof that the
processes in (2.14) are orthogonal martingales.

(2.36) n'/? dM;(s).

LEMMA 2.2. Let M;(t), C,/(t) and M;(t) be defined by (2.21), (2.24) and
(2.32), respectively. Let T satisfy F(T) <1 for each j, and let {Z,; t € [0, T}
be a filtration such that

(1) C;;(-) is opredictable;
(i) {(M;(t), #,); t € [0,T])} is a square integrable martingale.

Then
{(ij(t), #,); t € [0, T]} is a square integrable martingale .

Proor. From (2.32), (2.26), (2.30), (2.28), (2.21) and (2.19) it follows that

(2.37) M(t) = fotcij(s) dM,(s).

Since the integrand in (2.37) is #/;-predictable and M,; is square integrable on
[0, T'] (in fact uniformly bounded), the Stieltjes integral in (2.37) is a stochastic
integral and is a square integrable martingale [see Aalen (1978), page 703 for a
discussion]. O

Let us see how Lemma 2.2 applies to the present situation, where C,;(¢) =
I(Y;; > t), with Y, defined by (A.2). Part (ii) of Proposition A.1 (in the Ap-
pendix) asserts that this censoring process is %,-predictable, where %, is defined
by (2.23). Now it is well-known that if

F: 9 = completion of 6( N,;(s); s < t),
then (M, (¢), #*7) is a (bounded) martingale (on [0, T']); see, for example,
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Davis (1983), pages 136-137. Since X,;, i = 1,...,n, j=1,..., m, are indepen-
dent, this implies that (M, ;(¢), %) is a martingale on [0, T']. Lemma 2.2 there-
fore asserts that {(M; J(t), .93' 2); t €[0,T]} is a martingale. It is easy to check
that M(t) € #° with %,° defined by (2.34). Using the fact that #,° C &, it is
easy to see that {(ij(t), Z”); t € [0, T']} is also a martingale. Since the sum of
martingales is a martingale, this gives that

{((M(2), #); t € [0,T]) and {(M5(2), #°); ¢t < [0,T])

(2.38)
are square integrable martingales,
with .
t) ifj, =g,
(2.99) (M, MEY(8) = ( ) i =)

if j; # J,,

the orthogonality in (2.39) resulting from the fact that the counting processes
N{(t),..., Ni(t) have no common Jump points with probability 1 [see, e.g.,
Theorem 2 3.1 of Gill (1980)].

Let us now apply Proposition 2.2. It is easy to see that for each j, the
left-continuous processes J(s), Iv_’j(s — ) and V/(s) are adapted to either {#} or
{#,°}. Therefore, the integrand on the right-hand side of (2.36) is predictable
with respect to either {#,} or {%,°}. Since this integrand is also bounded and
since the square integrable martingale M5 is of bounded variation, the integral in
(2.36) is a square integrable martingale, with covariation process

F’}I_F}l* 1/2 Iﬁjz_ J:
<”/ TR >(t)
(240 Ji(s)F, > (s)E(s -)
s I5(s)E (s — o
=n [ (s) V() sy | XM M)

Equations (2.39) imply that this quantity is 0 if j, # j,, and that for each
.]_1 ’m’tE[OT]’
i

< nl/2

@4 b| VR | W

o
)
S
~~
v,
~
=
—~
»
|
~

Il
S

o~

[ 5(s)(Fi(s )’
o Vi(s)(E(s))’

dF(s).

It
S
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The proof of the weak convergence result for each individual n'/ 2(15} -
F*) /17}* is now the same as the proof of Theorem 1.1 in Gill (1983), which uses
Theorem V.1 of Rebolledo (1980). The joint weak convergence in (2.13) follows
from the orthogonality result in (2.39) and (2.40), and a simple multivariate
extension of Rebolledo’s (1980) Theorem V.1.

We now prove Theorem 2. The uniform bound for the first two partial
derivatives of h, given by Lemma 2.1 together with Taylor’stheorem imply that
for each t € [0, T'],

w/A () = Fe) = X L) - B(0)
(2.42) e m ’
< — Z—:1 Zl(oil:p |F(t) F(t)l)( suETlﬁ}z(t) ——F}Z(t)l).

The right-hand side of (2.42) converges to 0 a.s. by the results of Féldes and
Rejto (1981). We use the fact that convergence in sup norm implies convergence
in the Skorohod topology to conclude that the process

n'/? -0 as.in D[0,T].

A0) = F(0) - 5 L(0(£(0) - E(2)

Thus, the proof follows by showing that
m
' ¥ I(0)(E(2) - F(2)) -
J=1

which is a consequence of Theorem 5.1 of Billingsley (1968) and Theorem 1.
To construct confidence intervals for F(t), we define the following functions
and processes on [0, c0):

G,(t) = (E(1)) fF(sF)l(;zs)
o (E®) 0 avgs)
KR TARY 10

2 8i))

(n—i+1)(n-1i)

i Z(,)jS t

where

Z:: I(Z,;>t).
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Also define
(2.43) I(t) =—2

J N
J u;=Fy(t), j=1,..., m

The quantity éj(t)/n is called Greenwood’s estimator of the variance of I'Qj(t).

LEmMMA 2.3. Suppose F,,..., F, are continuous and T > 0 is such that
max, _ ; ,F(T) < 1. Then L7 I 2(t)G (t) is a strongly consistent estimator of

T LHHG(L).

We note that in view of (1.8), Theorem 2 and Lemma 2.3 enable the formation
of asymptotic confidence intervals for F(¢), t € [0,T]. -

ProOF. Part (a) of the proposition in Section 2 of Hall and Wellner (1980),
together with the convergence results of Féldes and Rejto (1981), imply that
G,(¢) is a strongly consistent estimator of Gj(t) Lemma 2.1 implies that the
partlal derivatives of h, are continuous. Thus, it follows from Proposition 2.2
that I, () is a strongly con51stent estimator of I,(¢). The proof follows. O

It will often be more appropriate to consider a parametric formulation of the
model, that is, F(t) = F(t; 0;), where 6, € ©;C R?, j=1, ...,m. Let 0 =
( 01, 4,) be the maximum hkehhood estlmate of = (6,,...,0,). It would be
of mterest to develop an asymptotic theory for 6. Some results along this
direction are obtained in Doss, Freitag and Proschan (1987), following the
approach laid out in Borgan (1984) for parametric counting process models.

3. Estimation of the reliability importance of components. The quan-
tity I;(¢) defined by (1.7) is called the reliability importance of component J at
time t Its natural estimate is I (¢) given by (2.42). Let ¢,..., ¢, be small
numbers. Note that

m
hy(Fy(t) +&,..., B (t) + &) — B (Fi(2),..., F,(2) = ¥ &1(¢).
J=1
Thus, the reliability importance of components may be used to evaluate the
effect of an improvement in component reliability on system reliability, and can
therefore be very useful in system analysis in determining those components on
which additional research can be most profitably expended. For details, see pages
26-28 of Barlow and Proschan (1981), and the review by Natvig (1987).

PrOPOSITION 3.1. Suppose F,,..., F,, are continuous and T > 0 is such that
F(T)<1, j=12,...,m. Then :

vn(f,-1,....1,-1,) > 4(Y,....Y,),

where (Y,,...,Y,,) is a vector of mean 0 Gaussian processes whose covariance
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structure is given by

m d%h
COV(Y}I(tl)’ 12(t2)) E 9. du.
k= u=F(t) 2T Tk

U=F(tz))
(3.1) ¢ dF(u)
XF,(t,)F,(t _—
k( l) k( 2)](; Hk(u)Fk(u)
for0<t <t,<Tandj,jo=1,....,m

As before, the covariance terms in (3.1) can be estimated consistently, enabling
the construction of confidence intervals for I(t).

a%h

8u , duy

The proof of Proposition 3.1 is similar to that of Theorem 2 and is omitted.

4. Efficiency of F vs. the naive estimator Fem?, Define the asymptotic
relative efficiency of F vs. Fo™ [see (1. 1)] at time ¢ to be the ratio of the

asymptotic variance of Fe™(¢) to that of F(t),

(4.1) ARE(t) = F(t)F(t)/ZI2(t)F2(t)fH( )(:zu)

We assume implicitly that F,..., F,, are continuous. In (4.1) we assume that ¢ is
such that the denominator is not 0. The condition F(¢) € (0,1) for all j is
suﬂicient (but not necessary) to ensure this. Let 7, = sup{¢; F(t) < 1}, and let

= max; 7;. Thus, 7 € (0, «0]. It is difficult to study ARE() since this quantity
depends on the system as well as on F,..., F,, and on ¢. We shall consider in
some detail the cases of series and parallel systems, since these are often
considered extreme cases in coherent structure theory. Indeed, in our situation
series systems give rise to maximum possible censoring, while parallel systems
give minimum possible censoring (i.e., no censoring at all). Thus, a study of these
special cases will give insight on the behavior of ARE(-).

For series systems,

(4.2) F = P,
The validity of (4.2) for a series system of two components is well-known [cf. the
argument leading to (2.6) of Efron (1981)] and the extension to general series
systems presents no difficulty. Thus, there is no added advantage gained by
considering the component failure times when estimating the life distribution of
a series system.

We now consider parallel systems. The reliability function is
m

(4.3) R(PyyeesPm) =1 - Fll(l—pj), 0<py<1
j2

and since there is no censoring, H, (u) = F}(u). Thus, from (1.8) the asymptotic
“ variance of F(¢) is

(4.4) ANarF(t) = ¥ (nF,f(t))F(t)F(t)

Jj=1
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This formula can also be obtained directly since the absence of censoring makes
Theorems 1 and 2 trivial. The restriction of ¢ to the interval [0, T'] where T
satisfies F(T') < 1 for all j is superfluous. From (4.4) we see that

F(t)/F(t)

(4.5) ARE(t) = o p s

ProOPOSITION 4.1. For parallel systems,
(4.6) (i) ARE(?) > 1

for all t such that F(t) > 0 and t < 7; the inequality is strict if there are at least
two values of j such that F(t) < 1 (i.e., at time t, we do e/fectwely have a system
of at least 2 components).

(ii) Lim, ,,ARE(¢) = 1.
(iii) Assume that F(t) > 0 forallt > 0 and all j. Then
lim ARE(¢) = oo.

t—>0

Proor. Let f(x)=e*— 1. Since f is convex and satisfies f(0) =0, it is
(strictly) superadditive on [0, c0). Hence

m F}(t) m
2O
(4.7) < f(—logjl'jlﬁ}(t))
B 1
- TIRLE()
This shows that
= F}(t) 1- ;'n=1F}(t)
(48) LE@ = TTLE@

which proves (4.5) and hence (i).
Since f'(0) = 1 # 0,
’f‘ 1f(xj) lim 7!=1(xjf,(0))

A T =,
Z;f;lxj) Xyyeoey Xy >0 (Z;{lej)f'(())

which proves (ii).

Part (iii) is a special case of Proposition 4.2 below, which states that the
efficiency of the naive estimator F™(¢) can be arbitrarily low for systems where
all the components are inessential: ¢(0;,1) =1 for all j; that is, failure of any
particular component does not necessarily cause system failure. Examples of
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such systems include k& out of m systems for £ < m — 1. We will assume that
Fi(t) > 0 for all ¢ and all j; this is to avoid problems involving division by 0.

ProPosITION 4.2. If all components are inessential, then
lim ARE(¢) = .

t—0
ProOOF. It is more convenient to work with (ARE(#))~!. From (4.1) we have

m T FR(8)J§ [ by () /H, (E(w)]
F(t)F(t)
Let &€ > 0, and let & > 0 be such that if ¢ € (0, §), then H(t)> 1 — ¢ for all j.

Then, we also have F(t) >1-¢and F(t) > 1 — ¢ forall j.
Consider the expression

(ARE(#)) ™ =

At < TRTOED)
F(t)
It is easy to see that for ¢ € (0, §), ’
A(t)(1 - ¢)® < (ARE(2)) "< A(8)(1 —¢)°
Thus, we will work with the simpler expression A(%). Let
Ao - Lo

We will show that for each j, A () — 0 as ¢ - 0. We now consider A (¢), and to
ease the notation, assume without loss of generality that j = 1. Using (2.7) and
(2.6), we have

a®={ T (60.0)- o000} R

UeA,,_,
(4.9) + ({ . § (1 -1, U)¥(U; t)IT‘l(t)}
£ (- s00)uwior)),
UeA,_,
where
(4.10) WUs£) = TIEO ()

In (4.9) and (4.10), U is in A,,_, and the vector (a, &) isin A, for « = 0 or 1.
Let = (U< A,,_;; o(1,U) =1 and ¢(0,U) = 0}. Then, clearly, the numera-
tor of (4.9) ranges only over U € ¥. Since deleting the sum inside the first set of
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braces in the denominator of (4.9) increases the ratio (4.9), we obtain that
{(Zyeet(U; )}’

Luea, (- 00,U)¥(U;t)

Note that if U € €, then ¢(0, U) = 0; therefore, from (4.11) we have

{(Zyeev(U; )}

Z:U €¥ ‘I/(Uy t )
Let U € €, and consider now (U, t). Note that since component 1 is an
inessential component, the condition ¢(0, U) = 0 implies that there exists a
J € {2,..., m} such that U; = 0. Therefore, y(U; ¢) < e. This fact, together with
(4.12) implies that A,(¢) is bounded above by ¢ times the cardinality of €. Since
¢ was arbitrary, this completes the proof. O

(4.11) Al(e) <

(4.12) A(t) <

Let us consider the implications of Proposition 4.2. Suppose that the life
testing experiment is carried out over limited time span. If the system is made
highly reliable through a great deal of redundancy, then even though we will see
many component failures, we will see very few actual system failures over the
time span of the experiment. Thus, information from component failures be-
comes important. In this case the cost of designing and running an experiment
which permits continuous monitoring of component failures may be far out-
weighed by the greater accuracy gained by using the estimator F.

Since, as was mentioned earlier, series and parallel systems are considered
extreme cases in reliability theory, we are led to conjecture that for arbitrary
coherent systems:

(i) Let I c (0, ) be the set of all ¢ such that the denominator of (4.1) is
nonzero. Then ARE(¢) > 1 for all ¢ € I, with equality for all ¢ € I only for series
systems.

(i) Lim, ., /ARE(¢) = 1.
(iii) ARE(-) is monotonically decreasing.

The estimator ¥ may be thought of as the nonparametric maximum likeli-
hood estimator (NPMLE) of F. Informally, this is because of the well-known
result that the Kaplan—Meier estimate is the NPMLE of a distribution function
when the data are right-censored. Thus for each j, F; is the NPMLE of F; an
extension of this is that F] X --- XF, is the NPMLE of F; X --- XF,, (the X
denotes the product measure). The invariance principle for maximum likelihood

estimates implies that h¢(17'1, cees Fm) is the NPMLE of h¢(1—7'1, cee, Fm). (03
course, this by itself does not in any way imply any asymptotic optimality result.

5. Related observational schemes. In Theorem 1 we assumed that the
component lifelengths are censored by system lifelength. The fact that the
censoring process C;(¢) = I(Y;; > t) is predictable was key to the development
of our results. It is therefore clear that our treatment can be used to approach
other problems which involve predictable censoring of X; .
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Examples of predictable censoring include experiment termination after a
prespecified time, censoring by independent outside causes of the lifelengths of
certain components, experiment termination after a prespecified number of
observed failures of component j, etc. An especially interesting class of examples
is given by systems in which the failure of a subsystem prevents further
monitoring of any of the components comprising the subsystem. For component
J in system i, let T\ denote the lifelength of the subsystem whose failure would
prevent further monitoring of component j. Then X;; is censored by T; A T/.
The proof that for each j the censoring process is % predictable is only
notationally different from the proof of part (ii) of Proposition A.1. The pro-
cesses corresponding to (2.14) are still orthogonal martingales with respect to
{%,). The weak convergence result is the same except for the calculation of the
I_Ij’s. Formulas for I-_IJ can be readily obtained by using the concept of a modular
decomposition of a coherent system [see pages 16-17 of Barlow and Proschan
(1981)]. These formulas are, however, notationally rather messy since in general
a component may be a member of several subsystems and one therefore has to -
specify for each j the subsystem whose failure would prevent further monitoring
of component j. It should be kept in mind that precise formulas for the
asymptotic distribution are not necessary for the construction of confidence
intervals: these are obtained through Greenwood’s formula (cf. Lemma 2.3).

Consider now Meilijson’s (1981) model. Let D, be the set of components that
are found dead at the autopsy of system i. The data is then {(T}, D,); i =
1,..., n}. The censoring of X;; by 7; is now quite complex: there is not only
both right-censoring (/ ¢ D,) and left-censoring (j € D;), but if j € D; we do
not know if X;; < T; or if X;; = T, (component ;j caused system death). The
distributions F,..., F,, are not necessarily identifiable from the distribution of
(T., D,). For example, for parallel systems, D, is always {1,..., m}; it is clear
that F,..., F, cannot be identified from [T7., F}, the distribution of T;. Meilijson
gave conditions on the system and on F,,..., F,, for identifiability. The problem
of estimating F from the data is very interesting, but does not seem amenable to
our approach.

APPENDIX

Random censorship. In Section 2 we assumed the existence of a censoring
random variable Y; that satisfies (2.1), (2.2) and (2.4). Here we define Y, formally
prove that it satisfies (2.1), (2.2) and (2.4), and prove that censoring is %;-predict-
able, where %, is defined by (2.23). Define the binary function ¢, by

(A1) ¢j(uy,.. i) = o(L, 8,00, 8,),  u=0,1,k=12,...,m,

‘where ¢ is the structure function. [See the paragraph preceding (2.6).] The
censoring random variable Y;; is defined as

(A.2) Y;; = sup{t; ¢;(I(X, > t),..., [(X,, > t)) = 1}.
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ProrosiTION A.l. (i) For each j, Y;
satisfying (2.1), (2.2) and (2.4).
(i) The censoring process defined by C;(t) = I(Y;; > t) is Fpredictable.

j» Yo 5..., are i.i.d. random variables

ProoF OF (i). It follows from (A.2) that Y;; is a function of the vector
@, I(X;, > t),..., I(X,, > t)). Thus it follows that Y;;,Y,,,..., are i.i.d. and
that Y;; satisfies (2.2).

We proceed to prove (2.4). The structure function ¢ is increasing in its
arguments [see Definition 2.1, page 6 of Barlow and Proschan (1981)] and hence

a fortiori ¢; is increasing in its arguments. Thus

J?

(A.3) (Y, >t} = {¢;(I(Xy > t),..., [(X;,, > £)) = 1}
and so )
(A4) P(Y;; > t) = P(¢,(I(X;y > t),..., [(X;, > £)) = 1).

It is easy to see that the right-hand side of (A.3) is equal to A (1, F(t)) and so Y, ;
satisfies (2.4). To prove that Y;; satisfies (2.1), we consider two cases: §;; = 1 and
8,; = 0. We first prove (2.1) for the case @i ;= 1. Since ¢ is increasing in its
arguments,

sup{t; o(I(X; > t),..., I(X,,, > t)) = 1}
<sup(t; ¢;(I(X;, > t),..., I(X,,, > t)) = 1}.

It is clear that the left-hand side of (A.5) equals T; and the right-hand side of
(A.5) equals Y;;. Hence

(A5)

(A.6) T,< Y;.
Since §;; = 1,
(A.7) X, <T.

It is immediate from (A.6) and (A.7) that X;; < Y;;, which implies that (2.1)
holds for this case. We now prove that (2.1) is satisfied if §;; = 0. Since §,; = 0, it
follows that X;;> T; = Z;;. Hence 0 = ¢(I(X;, > Z;),..., I(X,,, > Z;;)). Thus
it follows from (A.2) that

(A.8) ) Y., <Z;.

It is easy to see that (A.6) holds for this case. Thus Y;; = Z,;, which implies that
(2.1) is satisfied for this case. O

PROOF OF (ii). From (A.3) we see that (Y;; > ¢t} € #,, and this implies that
{Y;; = t} € %, The left-continuity of C;; now gives the #predictability. O
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