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ON A SECOND-ORDER ASYMPTOTIC PROPERTY OF THE
BAYESIAN BOOTSTRAP MEAN

By CHUNG-SING WENG
State University of New York at Buffalo

It is shown that the Bayesian bootstrap approximation to the posterior
distribution of the unknown mean (with respect to a Dirichlet process prior)
is more accurate than both the standard normal approximation and the
bootstrap approximation. It is also shown that the Bayesian bootstrap
approximation to the sampling distribution of the sample average is not as
accurate as the bootstrap approximation.

1. Introduction. Efron (1982), studying the small-sample similarities be-
tween the bootstrap distribution of Efron (1979) and the Dirichlet posterior
distribution when sampling from a multinomial population, suggested that the
bootstrap method can be used to approximate a posterior distribution. Efron’s
bootstrap has a Bayesian counterpart called the Bayesian bootstrap [Rubin
(1981)]. In a recent article, Lo (1987) showed that, for a variety of popular
functionals, the Bayesian bootstrap [Rubin (1981)] and the bootstrap [Efron
(1979)] are first-order asymptotically equivalent in the sense that, for almost all
sample sequences and subject to proper centerings and the nl/ 2.scaling, they
achieve the same limiting conditional distribution. This result indicates that the
uses of the Bayesian bootstrap and the bootstrap could be interchanged, at least
in the first-order asymptotic sense. An implication is that a frequentist can use
the Bayesian bootstrap to approximate the sampling distribution of a statistic.

The purpose of this paper is to point out that, in the case of a mean
functional, the Bayesian bootstrap and the bootstrap are different in the
second-order asymptotic sense. Our study shows that it is better to use the
Bayesian bootstrap to approximate a posterior distribution (with respect to
the Dirichlet process prior), and the frequentist bootstrap to approximate the
sampling distribution. Our theory relies on an important result of van Zwet
(1979) on the Edgeworth expansion for linear combinations of order statistics.

In Section 2, we develop two-term Edgeworth expansions for the conditional
distribution of the normalized Bayesian bootstrap mean given the sample and
for the posterlor distribution of the normalized mean functional based on a
Dirichlet process prior. The second term of these expansions turn out to be
identical, and they are both different from the Edgeworth expansion for the
bootstrap distribution of the sample average [Singh (1981)]. A consequence is
that the Bayesian bootstrap approximation to the posterior distribution of the
mean based on a Dirichlet process prior is more accurate than both the usual
normal approximation discussed in Lo (1987) and the bootstrap approximation
suggested by Efron (1982), page 82. Another consequence of the expansions is
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that the Bayesian bootstrap approximation to the sampling distribution of the
sample average is only as good as the standard normal approximation, yet not as
accurate as the one based on the bootstrap method [Singh (1981)].

2. The accuracy of the Bayesian bootstrap approximation to a poste-
rior distribution of the unknown mean. Suppose F is a random distribution
having a Dirichlet process prior with a finite shape measure a. Given F, let

= (Xl, X,,..., X,,) be an iid sample from F. Ferguson (1973) showed that
4{F|X} is a Dmchlet process with shape measure a + ¥ ;8 , where 4, is a point
mass probability at x. A Bayesian’s opinion of the unknown mean can then be
summarized by £{ [xF(dx)|X}. The description of £{ [xF(dx)|X} is difficult. One
way out is to use a large-sample approximation, and Lo (1987) has shown that
the posterior distribution of the appropnately normalized [xF(dx) has a stan-
dard normal distribution. An alternative way is to use the Bayesian bootstrap to
approximate £{ [xF(dx)|X}. Denote the order statistics of n — 1 iid uniform
(0,1) random variables by 0= IJO:n—l < Ul:n—l <. < Un—_l:n—l < Un:n—l = 1’

and let A;.,=U;.,_,—U;_,.,4, j=1,...,n, be the n one-spacings of the

U.pn-1’s. The U’s and the X’s are mdependent Define D, by

(2’1) Dn(y) ZAJ n X](y) —00 <y < oo.

[For any finite measure y on the line, we denote y(— o0, y] by y(y).] Given X,
the Bayesian bootstrap mean is [yD,(dy) = LXA;., with conditional mean
L, =ZXX;/n and conditional variance o?/(n + 1) where o =X(X; - p,)/n.
< denotes Yi:1<j<n) Denote the conditional distribution function of the
normalized Bayesian bootstrap mean by F*(-|X), i.e.,

(2.2) F*(xX) = P{(n + )" (L XA, — 1) /0, < %X}

The Bayesian bootstrap method suggests the use of Z{LX;A ;. X} to approx1-
mate £{ fo(dx)[X} The validity of this approximation has also been given in
Lo (1987) in the first-order sense. The accuracy of these two approximations can
be measured based on second-order Edgeworth expansions for £{ [xF(dx)|X}
and £{YXA;. X}, which will be given in the following Theorem 2.1.

Next, we define a “posterior Dirichlet process” D,, as follows: Let Z,,..., Z,
be iid standard exponential random variables and S,=2Z, + - +Z Let
{n(y); —o0 <y < o} be a gamma process with finite shape measure a. That is,
p(y) is an independent increment process and for each y, u(y) is a gamma
(a(y),1) random variable. Assume that {X;}, {Z;} and {u(y)} are independent.
Define D,, by

(23) D) = () + T2/ (W) 48}, -0 <y <.

Given X, p(y) + X;Z;8x,(y) is 2 gamma process with shape measure a + ¥ ,8x;
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and hence D,,|X is a Dirichlet process with shape measure a + X8y, [Note
that the D,, here have the same posterior distribution as the D,, in Lo (1987).]
The mean functional of the “posterior” Dirichlet process is

Ca)  [oDuld) = | [(a@) + TZX|/[n(e0) + 8],
the posterior mean of which (given X) is

bon = | [ra(@) + ZX,|/a(0) + 1)
and the posterior variance

ol = [/y2a(dy) " ZXf]/{[a(oo) +n+1)[a(e0) + ]}

[ frutan) + £X] A{laten) + 4 1) + 1),

Let ®(x) and ¢(x) be the standard normal distribution function and density,
respectively. Denote the “true” distribution function of the sample by F; and let
o = JxFy(dx), of = [(x — po)2Fy(dx) > 0, uP = [(x — po)’F(dx). Denote the
posterior distribution of the normalized mean functional given the sample X by
F(-|X), ie.,

(25) PR = B [0l ) = b f0un < 51X).

THEOREM 2.1. (i) If [|x|*Fy(dx) < o, then uniformly in x,

F*(x[X) = ®(x) — {u/(3n/%5)}(x* — Do(x) + o(n?) a.s.[F,].

(i) If [|x|*Fy(dx) < 0 and [|x|’(dx) < oo, then uniformly in x,

Fe(x[X) = 0(x) — {19/(3%3)} (=2 — Do(x) + o(n""?) a.s. [F].

PrOOF. Our proof relies heavily on Edgeworth expansions for linear func-
tions of uniform order statistics obtained by van Zwet (1979).

Statement (i) is in fact a direct consequence: Invoking Theorem 1 (or more
directly Corollary 2) in van Zwet (1979), we have

sup |[F*(xX) — @(x) + {pD/(3n" %) } (% — 1)¢(x)|

(2.6) *eR : 4
= O{E(Xj - V‘n) /(n2a,f)> as. [F],

where p® = 3¥( X, - u,)?/n. Furthermore,
E (8= (0f) < (a1, = /(7))

X(ZIX; = pal?/(n¥%2))
=o(n"V?) as.[F].
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The last equality follows from
max [|X; — p,l/(n%,)] >0 as.[F]

1<j<n

and
YIX; — pf2/(n%2) = O(n"'72) as.[R],

which are consequences of the assumptions that ¥, has a positive variance and a
finite third moment. These assumptions also ensure that we can replace p and
o, by p®) and o, respectively, without affecting the order of the remainder term
o(n~'2) in expansion (2.6).

A proof of statement (ii) can be obtained by modifying the arguments in
van Zwet’s proof of his Theorem 1 [van Zwet (1979)]. Since the random vector

(8.5 0= ., n} has the same distribution as {Z,/S; j = 1,..., n}, we have
Z{XXA;. n|X} AXX;Z;/8,X}. It follows that (2.2) can be expressed as
(2.7) F*(xX) = P(n + 1) (L X,2,/S, = 1) /0, < %X}

Furthermore, (2.4) and (2.5) imply

09 F(x[X) = P{[(fyu(dy) + ZXij)/(u(oo) +8,) - uan]/oan}
< x|X}.

Notice that the structure of the mean functional of the “posterior” Dirichlet
process ([yp(dy) + £X;Z;)/(pu(o0) + S,) in (2.8) is quite similar to that of the
Bayesian bootstrap mean ¥X;Z./S, in (2.7). The differences are linear terms in
the numerator and the denominator, both generated by a gamma process p
which is independent of {Z; j=1,...,n} and X. Taking into account a
three-term Taylor’s expansion for the characteristic function of [(y — 1)u(dy),
one can modify the method of proof of Theorem 1 in van Zwet (1979) to prove
(ii). Details will not be given here, and can be obtained from the author. O

REMARK 2.1. Note that the almost surely remainder term o(n~'/2) in the
conclusions of Theorem 2.1 depends on the sample X. The same remark applies
to the almost surely remainder terms that follow.

REMARK 2.2. The posterior distribution (2.5) is normalized by the posterior

mean and the posterior standard deviation, which is natural. Other choices of
scaling are also possible. Define

FAaiR) = B{| [3D(0) = pos /00 < 1),
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where c, is a statistic. Theorem 2.1(ii) remains valid as long as c,/o,,
1 + o(n"'?) as. [F,).

The following corollary states the accuracy of the Bayesian bootstrap approxi-
mation to the posterior distribution of the mean and the inaccuracy of the usual
normal approximation.

COROLLARY 2.1. [|x|*Fy(dx) < oo and [|x|?a(dx) < oo imply that a.s. [ F,],
lim sup Vn|F%(x|X) — F*(x|X)| = 0,

n—>0 yeR

lim sup Vn|F(x|X) - ®(x)| = (27) " uf|/[30§].

n—o xeR

(2.9)

The above corollary is the Bayesian analogue of the well known frequentist
result that, for a nonlattice F;, the bootstrap method provides a better approxi-
mation to the sampling distribution of the sample average [Singh (1981), Theo-
rem 1(D)]. Note that Corollary 2.1 applies also to a lattice F,. On the other hand,
Theorem 2.1(ii) and Singh’s result imply that, for a nonlattice F,, the bootstrap
approximation to the posterior distribution of the mean functional is only as
good as the standard normal approximation.

REMARK 2.3. Theorem 2.1(i) and a two-term Edgeworth expansion for the
sampling distribution of the sample mean [Feller (1971), page 539] imply that, in
approximating the sampling distribution of the sample mean when sampling
from a nonlattice F,, the Bayesian bootstrap approximation is as accurate as the
standard normal approximation and is inferior to the bootstrap approximation of
it [Singh (1981), Theorem 1(D)].

However, a slight modification of the Bayesian bootstrap results in a modified
Bayesian bootstrap such that, given the sample, a two-term Edgeworth expan-
sion for the distribution of the modified Bayesian bootstrap mean is identical to
the two-term expansion for the sampling distribution of the sample mean. The
idea is to use n “four-spacings” {D;., = Uy;.4p—1 — Uyj-1):an-1» J = 1,..., 1}
instead of n “one-spacings” {4;.,=U;.,., —U_,.,-1, J=1,...,n} in our
definition of the Bayesian bootstrap in (2.1). The first-order asymptotics remain
unchanged for this modified Bayesian bootstrap. Furthermore, van Zwet’s (1979)
method of proof goes through with practically no changes to yield the desired
two-term expansion. Yet we must point out that, in addition to being four times
more expensive to implement, the choice of four-spacings depends on the func-
tional of interest and is not universal.
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