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ASSESSING NORMALITY IN RANDOM EFFECTS MODELS

By NicHoLAs LANGE! AND LouISE Ryan?

Brown University and Harvard University

When one uses the unbalanced, mixed linear model y, = X;a + Z;B, + ¢;,
i=1,...,n to analyze data from longitudinal experiments with continuous
outcomes, it is customary to assume e, ~;4 A(0, 0%I;) independent of
B; ~iia 4(0,8), where 0? and the elements of an arbitrary A are unknown
variance and covariance components. In this paper, we describe a method for
checking model adequacy and, in particular, the distributional assumption on
the random effects B;. We generalize the weighted normal plot to accommo-
date dependent, nonidentically distributed observations subject to multiple
random effects for each individual unit under study. One can detect various
departures from the normality assumption by comparing the expected and
empirical cumulative distribution functions of standardized linear combina-
tions of estimated residuals for each of the individual units. Through applica-
tion of distributional results for a certain class of estimators to our context,
we adjust the estimated covariance of the empirical cumulative distribution
function to account for estimation of unknown parameters. Several examples
of our method demonstrate its usefulness in the analysis of longitudinal data.

1. Introduction and results. We develop an approach to the assessment of
distributional assumptions for a broad class of random effects models. These
models assume dependent and nonidentically distributed observations subject to
the presence of multiple random effects for each individual under study and are
used in a variety of statistical applications areas [see, for example, Harville
(1977), Laird and Ware (1982), Laird, Lange and Stram (1987) and Lange and
Laird (1989)]. Even though random effects models are widely used, methods for
assessing their goodness of fit are relatively undeveloped.

In ordinary linear regression, one can assess model adequacy through applica-
tions of classical goodness of fit procedures to estimated residuals obtained from
the fit of an assumed model to observed data. For example, when one fits a
normal linear regression model, one can examine g-q plots of estimated residuals
for evidence of model departure or outlying observations. Assessing goodness of
fit for random effects models is more complex, due to their error structures which
accommodate correlations between repeated measurements taken on the same
individual sampling unit over time or some other metameter. Our goodness of fit

procedure uses standardized empirical Bayes estimates of individual random .

effects (possibly vector-valued) that are linear functions of estimated residuals.
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The assumed linear patterns for the covariance matrices of the observations,
induced by the random effects assumption, allow these standardized empirical
Bayes estimates to be independent across individuals; hence classical goodness of
fit procedures can be modified to apply to random effects model criticism. Our
work applies and extends the ideas of Dempster and Ryan (1985), who, for a
simpler one-way random effects model, proposed a weighted normal plot that
increases the sensitivity of the classical normal plot to detect certain types of
model departure by using appropriately weighted empirical cumulative distribu-
tion functions (e.c.d.f.’s).

We establish context in Section 1.1 and describe our method in Section 1.2.
We motivate the use of standardized empirical Bayes estimators for assessing
model adequacy, define unweighted and weighted e.c.df.’s of these quantities
and show that when the parameters of the random effects model are known the
limiting distribution of these e.c.d.f’s is that of the Brownian bridge process,
with a modification in the weighted case. Accounting for the estimation of
unknown parameters requires adjustments to the covariance function of the
process, as described in other contexts by Pierce and Kopecky (1979), Loynes
(1980), Randles (1982, 1984) and Pierce (1982). Required regularity conditions are
essentially those that ensure the asymptotic normality of maximum-likelihood
(ML) estimates of unknown parameters. In Section 1.3, we use the limiting
distributions of the e.c.d.f.’s to assess the expected variability of the plots, with
covariance functions adjusted point-by-point for estimation of parameters. Sec-
tion 2 gives examples of applications of our method and Section 3 contains
derivations of results given in the foregoing sections.

1.1. Models and notation. There are several distinct approaches to modeling
the dependent error structures present in longitudinal data. One approach
assumes that the observations arise by sampling from a continuous-time stochas-
tic process [for example, see Singer and Cohen (1980)]. Alternatively, one may
use linear models with error structures that also accommodate dependencies
among repeated observations on the same sampling unit, yet in differing ways.
Such linear models can be classified according to the assumed pattern, or lack of
pattern, of the covariance matrices for the unit observations and fall into the
following general classes: (i) those that employ arbitrary covariance matrices
possessing no assumed pattern (the general linear model framework), (ii) those
that assume an autoregressive error structure (for example, the nonlinear pat-
terned covariance matrices of time-series models) and (iii) those that assume
linear patterned covariance matrices. This last category contains the random
effects models we discuss. Interested readers may refer to Singer (1985) for an
overview of research questions and analysis strategies for longitudinal data and
also to Ware (1985) for an overview of the linear model viewpoint.

The general random effects model we study is

)y v, =X, 0 +Z; B + ¢,

t; X1 t;Xp pX1 t;Xr rx1 t; X1

for i =1,..., n, where ¢; is the number of occasions on which individual i is
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observed. The matrices X; and Z; are known, nonrandom between-individuals
and within-individual design matrices for the fixed effects o and random effects
B,, When the outcomes y, are measurements of a continuous random
variable, the unbalanced mixed linear model (1) usually assumes g, ~; 4
A°(0, 6%1,) and independent of B; ~;;4; A#(0, A), where 62 and the elements of A
are unknown variance and covariance components, with A arbitrary and I, the
t, X t; identity matrix. Note that the assumptions of model (1) imply the
familiar linear patterned covariance matrices associated with such models,

(2) cov(y,) =V, = o?l, + Z,AZT, fori=1,...,n.

The popularity of model (1) stems in part from the attractive and often
appropriate linear pattern (2) assumed for cov(y;). Also, the assumed random
effects B, have simple interpretations. For example, when the Z; consist of a
constant column and a column of the times of observation, the random effects
correspond to the random intercepts and random slopes specific to each individ-
ual.

1.1.1. Growth curve models. The general model (1) is a growth curve model
with random effects covariance structure when

(3) X;=2,9al, fori=1,...,n,

where a; is a vector of covariate values for each individual that does not change
from occasion to occasion and ® is the direct (Kronecker) product, defined such
that A ® B has (g, h)th block a,,B. [Laird, Lange and Stram (1987), pages
98-99, mention that the growth curve model can be written in a slightly more
general form.] Lange and Laird (1989) analyzed the balanced and complete case,
for which in addition to (3), Z;, = Z for all i, and showed that growth curve
model specification and parameter estimation involve some relatively simple
extensions of basic ideas from ordinary least-squares (OLS) regression and
analysis of variance. In Section 2, we give examples of the use of our method
with the general model (1) and of its growth curve form in analyses of three data
sets.

1.2. Assessing goodness of fit. 'The underdevelopment of goodness of fit
theory for random effects models is due in part to the richness of the class of
models to which they belong, in contrast to models that assume independent
errors of observation both within and between individuals. Assessing goodness of
fit for random effects models involves checking the adequacy of assumptions
concerning (i) the deterministic component X;a and (ii) the random component
Z B, + ¢, for each sampling unit. In this paper we focus on aspect (i) by
developing theory and methods for checking the assumed error structure. In
particular, we develop methods that are sensitive to the distributional assump-
tion on the random effects B;.

1.2.1. A simplified case. Consider first the following simplified version of
model (1) that assumes a common mean and a single random effect for each
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individual:
(4) yU=,U.+Bl+e”, j=1,...,ti,i=1,...,n,

where e;; ~;q A0, 02) and B; ~;q A0, 8). If the random effects B; were
observable, then classical approaches could be used to check their normality.
Even though the B; are not observable, one can “estimate” these unobservable
random variables through the use of empirical Bayes techniques. We propose to
examine estimates of the B; suitably standardized to have the standard normal
distribution under the assumed model (4). Specifically, we consider empirical
Bayes estimators ﬁi, i.e.,, the means of the posterior distributions of the B; given
the y;. We standardize each B; by its marginal (or sampling) standard deviation.
This standard deviation differs from the posterior standard deviation of g;, as
discussed for example by Harville (1977) and by Laird and Ware (1982) in the
context of making inferences on ;. In our context, the approach used here is
consistent with that advocated by Box [(1980), page 384] who argued that
“... sampling theory is needed for exploration and ultimate criticism of an
entertained model in the light of current data, while Bayes’ theory is needed for
estimation of parameters conditional on the adequacy of the entertained model.”

For the simple model (4), we show in Section 3 that standardized estimators of
the B; can be written as

.éi Yi—

® “TSD(A) e

where ¥, = (1/t,)X% ,y,; and assuming for the present that p, ¢” and & are
known. Thus, for the simple model, our approach reduces to calculating a
standardized average residual for each individual. When the model holds, the z;
are a random sample from a standard normal distribution. Let F,(x) denote the
e.c.d.f. of the z;, that is, let

Fx) = 5 Ll =2),

where I(x — z;) = 1if x > z; and 0 otherwise. Also, let ®(x) denote the cumula-
tive standard normal distribution. To check the normality assumption on the B,
one could compare F,(x) with ®(x), its expected value under the assumed model
(4), using a g-q plot, a p-p plot or other classical goodness of fit techniques.

If one is interested specifically in checking the normality assumption on the
random effects, a comparison of F,(x) and ®(x) would not be as sensitive as it
could be in detecting departures from the assumed model. The estimated random
effects B, each possess differing variances consisting of two components ¢2/¢; and
8. A goodness of fit procedure for assessing the normality assumption should
highlight the contributions of individuals whose component § is large relative to
02/t,. To achieve this, Dempster and Ryan (1985) proposed a weighted normal
plot that compares a weighted e.c.df. F*(x) to ®(x) using weights that are
functions of the variance components ¢% and 8§ [Dempster and Ryan (1985), page

2
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845, (4) and (5)]. The importance of accounting for the differing variances of the
estimated random effects was perhaps first pointed out by J. W. Tukey, although
he noted that the general problem has a long history. Tukey (1974) explored a
procedure he called faceless reflation, and stated [Tukey (1974), page 125] that
his proposed method “... comes at a stage that is still too early for very formal
probability models...at a stage where trying out approaches can be of consider-
able help in guiding later model building.”

1.2.2. An extension to more complex cases. Extension of the results of
Dempster and Ryan (1985) to apply to models for longitudinal data requires
accounting for fixed-effects covariates and multiple random effects for each
individual. One simple and useful generalization of (5) would be to obtain a
“centered” y; for each individual, standardized under the assumptions of model
(1), that is, one could use .

_ lT(Yi - xi“)
(17va)*

A normal plot of the standardized j; given at (6) could provide a broad
assessment of the adequacy of model (1). In fact, as a general check, one could
examine any suitably standardized linear combination of each individual’s esti-
mated residuals. However, if one is interested in the normality assumption for a
particular random effect, a more natural generalization of (5) is to use standard-
ized empirical Bayes estimators of the B,.

For the general model (1), with vectors of covariates and vectors of random
effects for each individual, Laird and Ware (1982) showed that an empirical
Bayes estimator of B; is

fori=1,...,n.

(6) ’ 2

ﬁi = E[Bily;]
= AZV (y; - X;0),
assuming o known, and the marginal (or sampling) covariance of ﬁi is given by
(7 cov(p;) = AZTV;'Z;A.

We continue to assume, until Section 1.3.1, that all parameters are known.
Toward producing normal plots, there are several approaches to obtaining
standardized versions of the éi. The approach taken in this paper is to examine a
g-q plot of some linear combination
ra
(8) ;= c b 7, fori=1,...,n.
[c cov( ﬁi)c]

Goodness of fit is then assessed by comparing the e.c.d.f. F(x) of the z; defined
_ in (8) with its expected value under model (1). Through appropriate choices of

the vector ¢, the plot can be made sensitive to different types of model
departures. In practice, the random effects often have direct interpretations and
there is an advantage to treating components of the B, vectors separately. For
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example, if the model assumes two random effects for each individual, for
random intercept and for random slope, one could produce two marginal g-q
plots by setting ¢, = (1,0)T and ¢, = (0,1). However, the use of such linear
combinations, which simply select components of the B;, does not account
for possible nonzero correlations between these components. In practice, we
have found it useful in such cases to produce a set of plots ranging from one mar-
ginal to the other by letting ¢, = (1 — u, u)” for some moderate number of
values 0 < u < 1. Extensions of such an approach to r > 3 are obvious, yet may
yield too many plots to examine. Use of a method such as projection pursuit
[Friedman and Stuetzle (1981) and Huber (1985)] may be helpful in such cases.
In Section 2.3, we give an example for r = 2 of the use of marginal projections,
projections in-between the two marginals and also of projection pursuit.

1.2.3. Generalized weighted normal plots. The argument of Dempster and
Ryan (1985) applies when the aim is to assess the normality of the random
effects in model (1): The normal plot should be weighted to reflect the differing
sampling variances of the estimated random effects. Laird and. Ware [(1982),
(4.1)—(4.6)] gave expressions for obtaining estimates of the variance and covari-
ance components of model (1) using an expectation-maximization (EM) algo-
rithm [Dempster, Laird and Rubin (1977)]. These equations provide a heuristic
justification for the choice of weights which we now describe. For estimating A,
one equates the following unconditional and conditional expectations at each E

step,
©) E[ > B,«B?IA} - E[ > BiB,-TIA,yi].
i=1

i=1

Reexpressing (9), we have

(10)

where cov( éi) is the marginal covariance given at (7). The latter equality in (10)
is obtained by using a conditional variance argument and by noting that
cov( C’»ilyi) is independent of y; and hence equals E[cov(B;|y;)] [Dempster, Rubin
and Tsutakawa (1981), page 342].

Consider now the linear combination z; of the estimated random effects
defined at (8). Pre- and postmultiplying (10) by ¢’ and e, respectively, implies
setting

i w2}
L o
where
(1) w, = T cov(B;)e

= cTAZtTVi_lzi Ac,
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the marginal variance of cTﬁi. Thus, the MLE of A can be thought of as that
value A which sets the weighted variance of the z; equal to unity for some fixed
c. This relation suggests that to assess the normality of a particular set of B;, a
weighted plot of z; versus ® “![ F,*(z,)] should be used, with

E?=1wiI(-’C - zi)
12 * =
(12 Br(x) = S

Note that when the longitudinal data are balanced and complete, Z, = Z and
V, =V for all i. The variances and covariances of the random effects, and
therefore the weights, are identical for all individuals in such cases, and thus the
unweighted and weighted plots are also identical.

A reviewer has suggested an alternative to the empirical Bayes approach
taken in this paper. Consider the following “fixed effects” estimates of the B,
given by

Ei= (ZLTZZ)_IZzT(yz_ Xia)’ fori = 1""7"’)
whose sampling variation under the assumed model (1) is
(13) cov(B,) = o%(2TZ,) " + A.

One could use (13) to obtain standardized quantities, as in (8), to construct a
normal plot. In such a context, it would be natural to use the inverse variances of
the ﬁi, with some fixed ¢, as the w; in a weighted normal plot, in contrast to our
use of direct variances as weights. It is of interest to note that despite their
different motivations, these two approaches yield identical results for the simple
case described in Section 1.2.1.

1.3. Distributional properties. We now derive distributional properties of
the unweighted and weighted e.c.d.f.’s defined in the preceding section. Assuming
that all parameters are known, it has been shown [see Ross (1983), pages 187-189
and Dempster and Ryan (1985)] that under the assumed model the mean and
covariance functions of the unweighted and weighted e.c.d.f.’s F,(x) and F*(x)
are identical to those of the Brownian bridge process, with an adjustment for the
covariance function in the weighted case. That is,

(14) E[F(x)] = E[FX(x)] = ®(x)
and, for x < vy,
(15) cov[F(x), E(y)] = ®(x)[1 — @(y)]/n.

For the weighted e.c.d.f., Dempster and Ryan (1985) showed that
)
(16) ol Br(w), EX) = (1+ 5 Joovl Fi(x), B9,

where m and v are the mean and variance of the weights w;. The factor v/m? is
the square of their sample coefficient of variation. Although the weighted plot is
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more variable than its unweighted counterpart under the assumed model, the
weighted plot is more sensitive to certain departures from the modeling assump-
tions.

1.3.1. Adjustments for estimated parameters. Model and data criticism re-
quires acknowledging that in practice F,(x) or F,*(x) are estimated by some
F'n(x) or F’n*(x), with the unknown parameters replaced by estimates. Under
such replacements, the formulas for the mean and covariance functions given at
(14)-(16) are incorrect. Dempster and Ryan [(1985), page 849 bottom] adjusted
for the estimation of 8 assuming u = 0 and ¢2 known in the context of a simple,
one-way comparisons model (4). It was found in such cases that adjustments for
parameter estimation reduce the unadjusted naive variance by about 30% for
|x| = 1.5, and that adjusted and unadjusted variances are equal when x = 0 and
are also equal when x = + 0. In Section 2.2 we report analogous behavior of
more general adjustments for model (1).

Adjustments for estimated parameters in other contexts have been considered
previously by Pierce and Kopecky (1979) for the simple linear regression prob-
lem, and more generally by Loynes (1980), Randles (1982, 1984) and Pierce
(1982). We demonstrate that similar results apply here. We do not, however,
establish weak convergence of ¥ (x) or of ﬁn*(x) uniformly in x, as was done for
example by Loynes (1980) in a different context, but instead derive limiting
distributions at fixed values of x. .

We first consider the distribution of the unweighted e.c.d.f. F,(x). Let the row
vector

b, = [&f, é,f,uvecT(An)]

denote an efficient estimate of unknown parameters in model (1). (The “upper
vector” operator uvec strings out the upper-triangular part of A into a column
vector.) In the following, we assume that én is the MLE of 0; we discuss the use
of restricted maximum-likelihood (REML) estimates [Patterson and Thompson
(1971)] of 02 and A in Section 1.3.2. Pierce (1982) showed how to derive the
limiting distribution of certain types of statistics when efficient estimates have
been substituted for unknown parameters. To apply Pierce’s result here, we
require two conditions.

ConDITION 1. The e.c.d.f. and the parameter estimator are jointly asymptot-
ically normal, with

[F(x) — @(x)] T Woo Wo
(8, - 0) }_’3’[1‘]”‘/(0’ [W(ﬁ Wu])°

CONDITION 2. One can find some column vector a(x) such that
| T, = /[ F(z) - @(x)]
= n'2[Fy(x) — ®(x)] + n/%(8, — 0)a(x) + o,(1).

(17) n'/?

(18)
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Under conditions (17) and (18), one can use Pierce’s result to show
(19) nl/zlﬁn(x) - (I)(x)]
[Woo - aT(x)Wlla(x)]l/2

Essentially, (19) implies that to find the limiting distribution of F'n(x), one
simply substitutes estimated parameters, treating them as known, and then
makes an appropriate adjustment to the variance of the process.

From (15) we see that for a single point x, Wy, = ®(x)[1 — ®(x)], the
unadjusted naive asymptotic variance at x. The matrix W, in (19) can be
obtained from expressions given by Searle [(1956), page 740] and by Harville
[(1977), page 326 middle]. Under ML estimation, a consistent estimate of W, is

-1
)
g h

for g, h=1,...,r* where r* =1+ r(r + 1)/2 is the number of variance and
covariance components in the model. The matrix V is the block-diagonal matrix
of the V, defined previously at (2), i.e., V = diag(V,,..., V,). The matrix X is the
matrix of the X, stacked below one another, i.e., X = (XT: ... : X7)T, The large
square brackets in (20) denote an r* X r* matrix with [-], , as its g, A& element.

Miller (1977) gave results which establish condition (17) in our case; see our
Section 3.2. Randles (1982, 1984) provided a method to demonstrate that condi-
tion (18) holds, and also to derive the following expression for a’(x); see also our
Section 3.2. Letting y = [;, 5, Y;] denote a mathematical variable serving in the
role of the unknown parameter 8 = [a7, 02, uvec’(A)], we find

_)_?Z""'-/V‘(O,l).

(20) n - diag| [XTV-1X] ',

L N )
2 Y 99,7 98,

(1) (x) = L o)

’
v=0

where V¥ is the gradient operator, and

(22) pi(x,v) = ®[(xs,(v) = m (1)) (B (¥)Vi(O)pil)) 7],

(23) pl(v) = eTA()Z] V7 Y (v),
(24) m(v) = pF(v)X;(e — ¥F)
and

(25) si(v) = [PI)Vi(e(v)],

where A(y;) is a matrix such that uvecT( A(Y3)) =v; and Vi(v) = 71, +
Z, A(v;)ZT. Note that the covariance matrices V, in (22) are evaluated at 0, as in
(2), and not at y as in (25). By use of the rules for matrix differentiation given in
Section 3.3, we determine that

X X
PP 5

b

2w

(26) Vuu‘i(x’ Y)|y=0 (x) \/_ XTpv 2w
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where ¢(x) = d®(x)/dx, the w; are as defined in (11), p;, = p,(0), v; is a
1 X (r* — 1) row vector whose kth component is

Vi = P?ZkaZ»T i
and D, is the r X r matrix of 0’s and 1’s defined by

‘9A(Y3)
3Y3k

Pierce [(1982), page 476 middle] provided a natural relation between a(x) and
the asymptotic covariance matrix in (17), namely a(x) = — W,,W;;', noting also
that W, is often difficult to compute directly; hence our Section 3.3.

Consider now the limiting distribution of the weighted e.c.d.f. defined at (12).
By an approach similar to the preceding argument for the unweighted case, one
can demonstrate that

n2[Ex(x) — ®(x)]

k , fork=1,...,r* = 1.

(27) [Wog _ a*T(x)Wua*(x)]l/2 g Z* ~ #(0,1),
where

W = (1 * %)Mx)[l - ®(x)]
and

i=1

a*T(x) = [i w,]_ élwivp'i(x’Y)

v=0

Thus, when efficient estimates have replaced unknown parameters,
n'/2[F*(x) — ®(x)] has also a limiting normal distribution with mean zero and
variance equal to the variance of n'/?[F*(x) — ®(x)], minus an adjustment
which involves a weighted analog to a’(x) defined at (21).

1.3.2. Restricted maximum-likelihood estimation. Our approach has thus far
dealt with the derivation of the limiting distributions of unweighted and weighted
e.c.d.f’s, accounting for the substitution of MLE’s for the unknown parameters
of the model. In practice, however, REML estimators for the variance and
covariance components are often preferred to MLE’s, as the latter ignore degrees
of freedom lost through estimation of fixed effects and are thus biased down-
ward. REML estimates are obtained through maximization of a likelihood based
upon “error contrasts” rather than the full observed data likelihood. Harville
[(1974); (1977), pages 324—325] described justifications for the REML approach
from both Bayesian and sampling theory viewpoints. Furthermore, Harville
(1977) claimed through a sufficiency argument that this approach loses no
information and thus REML estimates are efficient in the same sense as are ML
estimators. Hence, the results of the previous section also apply when REML
estimates of the variance and covariance components have been substituted for
unknown parameters.
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2. Applications of results. In this section we apply our method to three
data sets. There is no natural ordering of the repeated measures taken on the
sampling units in the first two examples, whereas the third example contains a
time metameter and is longitudinal in nature. The 62 and A used in all of our
examples to obtain in the B are the REML estimates, computed by the methods
and software described by Laird, Lange and Stram (1987). Computations and
graphics in our examples were obtained through use of the new release of the S
system running on a Sun 3 /160 workstation. The projection pursuit example was
obtained from a version of ISP running on an IBM/AT. Figures 1-3 display
generalized weighted normal plots of the z; defined at (8) and include bands that
are +1 SD, adjusted point-by-point for estimation of parameters. The bands on
the plots are not to be interpreted as “confidence bands”; they have been
included only as aid for assessing the expected variability of the plots. Bickel and
Doksum [(1977), pages 381-383] have provided general guidelines for the inter-
pretation of g-q plots.

2.1. Example: Boston housing data. Harrison and Rubinfeld (1978) re-
ported on a study of housing prices in the Boston Standard Metropolitan
Statistical Area and their study provides our first example of a generalized
weighted normal plot. For a description of these data, see also Belsley, Kuh and
Welsch [(1980), pages 229-261], who used an OLS regression model (r = 0, no
random effects) and also a robust regression model in their analysis. We fit an
unbalanced random effects model to the Boston data in order to investigate how
our plot performs in this case. Following Belsley, Kuh and Welsch (1980), we fit
p = 14 fixed effects. It seems natural to assume that housing prices would be
clustered according to the towns represented in the Boston sample. Thus, we
treat fown as the sampling unit, census tracts within towns as the repeated
measures and assume a single random intercept (r = 1) for each of the n = 92
towns. Figure 1 shows a generalized weighted normal plot of the z; defined at (8)
for the Boston data, with adjusted +1 SD bands. The weights w; vary according
to the differing numbers of census tracts per town (from 1 for Cohasset to 30 for
Cambridge), as well as according to the two variance components in the model.

observed

-4 -2 0 2 4 6
expected

FiG.1. Generalized weighted normal plot with adjusted +1 SD bands for the Boston housing data.
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The ratio of max{w,} to min{w;,} is only about 5/3. The sample estimate of the
coefficient of variation of the weights is (v/m?)/2 = 7/50, and it is this low
value that accounts for the similarity in shape of the weighted plot to its
unweighted counterpart (not shown). We notice familiar indications of heavy
tails, as the plot is concave for z; < 0 and convex for z; > 0. It is not surprising
that Figure 1 exhibits a violation of the normality assumption for the B;. The z;
are linear combinations of Studentized residuals from an OLS fit and a classical
normal probability plot of such residuals also exhibits “ very substantial depar-
tures from normality” [Belsley, Kuh and Welsch (1980), Exhibit 4.24, page 233].
We include this example to show the results of fitting a random effects model to
these data and also to show how the departure from the normality assumption
can be assessed by our method.

.

2.2. Example: A teratology experiment. Hartsfield (1986) examined the ef-
fects of a common treatment for epilepsy (phenytoin) on the weights of labora-
tory mice at birth. Fifty-four female mice were divided into three groups, one
group receiving the drug, and weights were recorded for 401 of their offspring, in
litter sizes varying between 1 and 10. A random effects model was fit to these

observed
o
T

expected

1.0
0.9+
0.8
0.7

r(x)

0.6

0.5

(b)
0.4 11 1 1 1
-3-2-1 0 1 2 3

X

Fic. 2. (a) Generalized weighted normal plot with adjusted +1 SD bands for the teratology data.
(b) The effect of adjustment for estimated parameters in the teratology data: A plot of r(x) =
(W5 — a*T(x)Wy,a*(x))/ Wos 12



636 N.LANGE AND L. RYAN

data with p = 4 fixed covariates (group indicators for the mothers and a gender
indicator for the offspring). To allow for correlation within the litters (so-called
“litter effects”), the model included a single random intercept term (r = 1).
Figure 2(a) is a generalized weighted normal plot for these data, with adjusted
bands. The normality assumption for the distribution of random effects seems a
reasonable one. As in the Boston housing data example, the sample estimate of
the coefficient of variation of the weights is small, with (v/m?)/2 = 1/10.

We use this example to demonstrate the importance of adjusting the variance
of F,*(x) for estimation of parameters. Figure 2(b) shows a plot of x versus

Wy — a*T(x)W,a*(x) ]
W

r(x) =

for the teratology data and shows that the reduction in variance can be quite
substantial, reducing the width of the naive +1 SD bands by up to about 50%
near the center of the plot. The asymmetry of Figure 2(b) about x = 0 is due to
the influence of fixed-effects covariates.

2.3. Example: AIDS data. Incomplete serial measurements of immune
function (T-helper cell counts) were obtained by the San Francisco Men’s Health
Study over a period of about three years for n = 425 patients infected with the
AIDS virus (HIV). In this preliminary analysis, we fit a growth curve model with
no between-individuals covariates (X; = Z; for all i) and with random intercept
and random slope effects (r = 2). Figure 3(a) shows a bivariate scatterplot of
estimated random intercept effects versus estimated random slope effects. The
line at about —5° consists of points for the 59 individuals who were measured on
only one occasion and is thus somewhat of an artifact of the incomplete sample.
Figures 3(b) and (c) display generalized weighted normal plots of the estimated
random intercept and slope effects, respectively, standardized by the estimated
variances of these marginal projections. Figure 3(b) exhibits an overall convex
shape indicative of a distribution for the random intercept effects with a right
tail heavier than the normal, whereas Figure 3(c) indicates that the normality
assumption for the random slopes is adequate. In addition, a set of nine plots
(not shown), ranging between the two marginals by letting ¢, = (1 — u, u)T for
u=20:1/8:1, indicated that the overall convexity of the weighted normal plot
for intercepts is persistent, up until the final, marginal plot of the slope effects.

To examine further the apparent nonnormality of the random intercept
effects, we used projection pursuit to reveal the most interesting, i.e., nonnormal,
projections of the 425 X 2 matrix of estimated random effects. We chose a
projection index which is an asymptotic equivalent of a x? test for normality
[cf. Huber (1985), pages 445—446], using 20 bins of equal expected occupancy. We
selected the projection &é = (0.985, 0.167)T that corresponded to a large value of

. this projection index, which is a rotation of about 10°, and display the resulting
generalized weighted normal plot in Figure 3(d). (We ignored a projection nearly
orthogonal to the line in the scatterplot with a slightly larger index value which
revealed an expectedly peaked distribution, but not nonnormality.) Note that
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Fi1c. 3. (a) A bivariate scatterplot of estimated random intercept and slope effects for the AIDS
data. Generalized weighted normal plot for the AIDS data: (b) intercept projection ¢ = (1,0)7;
(¢) slope projection ¢ = (0,1); (d) projection pursuit & = (0.99, 0.17)T.

the use of projection pursuit results in a data-dependent choice of ¢ and thus
invalidates our distributional results; hence the é and the absence of adjusted
bands in Figure 3(d). It is also of interest to note that the rotation chosen by
projection pursuit is very close to the ¢ = (1,0)T marginal intercept projection,
as could perhaps be expected since r is so small.

3. Derivations.

3.1. The standardized empirical Bayes estimator in the simple case. For a
simple, one-way random effects model (4), the covariance matrices V; of the
observations each possess an assumed compound symmetric pattern, that is,

Vi = Gzli + 8J,:,

where J; is a t; X t; matrix of 1’s. By Schur’s binomial inverse theorem [cf. Rao
(1973), page 33] we rewrite V,"! as

Assuming all parameters known, we have

gi= [_S_}i i (yij_ )

o2/t,+ 8 |¢, i



638 N. LANGE AND L. RYAN

and

N 82
val(f) = 5

which together yield (5).

3.2. Adjustments for estimated parameters. Condition (17) requires the joint
asymptotic normality of n'/?[F(x) — ®(x)] and n'/*(§, — 8). The asymptotic
normality of n’/2[ F(x) — ®(x)] has been well established [for example, see Ross
(1983), page 188]. For our class of mixed linear models, the consistency and
asymptotic normality of n'/%(§, — 0) has been established by Miller (1977).
When we rewrite (1) in Miller’s form, as follows, it is a straightforward procedure
to check that the conditions required to apply his main result [Miller (1977),
Assumptions 2.1-2.6, 3.1-3.5 and Theorem 3.1, pages 748-752] are satisfied by
the sequence of models defined by (1) as the number of individual units n — co,
yet as ¢, < oo for all i. We also assume that the number of fixed effects p
remains constant, so that rank(X) is clearly bounded as n — oo.

Stack the y;, X; and the ¢; below one another, and the Z; in a block-diagonal
matrix, to rewrite (1) as

y =X a + Z B + ¢ ,
Nx1 NXp px1 N Xnr nrx1 NXx1

where N = Y7 ¢, Z = diag(Z,,...,Z,) and B = (BT,..., BT)T, and rewrite Z as

ZB = Z Ukbk,

k=1

where
U, =12J,, b, =J/B and J, =1, j,,

Nxn nx1 nrXxn rx1
with j, a column of 0’s, except for a 1 in its kth slot, £ = 1,..., r. Making these
replacements, we may reexpress our model (1) in Miller’s form as

(28) y=Xa+ Y Ub,+e.
k=1
Suitable regularity conditions on the metameter measurements may be applied
to write the U, of (28) as sums of matrices whose elements are either 0 or 1,
with exactly one 1 in each row and at least one 1 in each column, to comply
with Assumption 2.6 of Miller (1977). The joint asymptotic normality of
n'/ 2[F(.x) ®(x)] and n'/%(f, — 0) may then be established by expressing
(0 — 0) in terms of efficient scores and applying a multivariate central limit
theorem. Miller [(1977), page 757] has given conditions under which 6 is an
asymptotically efficient estimator for 0.
We use Theorem A.9 of Randles (1984) in order to verify that condition (18)
holds in our context and to derive expression (21) for a’(x). Randles’ proof
exploits the fact that the e.c.d.f. is a U-statistic, with the indicator I(x — z;)
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serving as its kernel function. His general result concerns the limiting distribu-
tion of a U-statistic when estimated parameters replace unknown quantities. The
conditions necessary for Randles’ theorem to apply are satisfied in our case so
long as the X; and the Z; are bounded, with the Z; also bounded away from 0. In
our context, Randles’ theorem implies that

n1/2[ﬁn(x) - (I)(x)] - n1/2[Fn(x) - (I)(x)]

n
—-n'/? Z VI"'i(x’ Y) (én - O)T “p 0,
i=1 vy=0

where Vp,(x, Y)|,-¢ is the gradient vector of
pilx,v) = Eo[I(x - Zi(Y))]
evaluated at 0. The scalar z,(y) represents a standardized estimator of the

unobserved random effect B; viewed as a function of a mathematical variable vy,
that is,

ay) = pr(v)(y; — XT)
i Si(Y) ’

with pY(y) and s;(v) as defined at (23) and (25). When model (1) holds, z;(v) has
a normal distribution with mean
m,(Y)
Eylz; = —",
o[ (Y)] si(v)

where m(y) is as defined at (24), and with variance

_ p(v)Vi(®)pi(v)
Varo[zi(Y)] - 3;‘2(7) .

Note that when y = 8, z; ~ A#7(0,1). It follows that

xs;(v) — m,(v) ]

(x,v) =Pr{z <xp=0 2
pi(x,y) {zi(y) < =) [(p?(Y)V,-(O)pi(Y)) !

which is expression (22).
For the weighted case, one can apply the approach given by Randles (1982) to
show that
n1/2[ﬁ'n*(x) — n¥(x,0) - E*(x) + (IJ(x)] -,0,
where
i awpi(x,v)
*(x, A
k(=) Liw;

and "p,(x,v) is as defined previously. Given this result, it is straightforward to
establish that

n'2[Ex(x) — ®(x)] — n'/2[F¥(x) — ®(x)] — n2(6, — 8)a*(x) -, 0.
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3.3. Vector and matrix derivatives. For convenience, we include the follow-
ing list of algebraic rules for matrix differentiation [all of which can be found, for
example, in Rogers (1980), Chapters 6 and 7]. Application of these rules and
evaluation of

wpi(x,v) = [3p:/9v1, /3%, Ipi/3vs]
at y = 0 yields expression (26). We list general versions of such rules, which in
essence retain the array structure of element-by-element derivatives and are
required when analyzing more complex versions of random effects models than
those used in the preceding examples.

RULE 1. For constant matrices A and B and any conformable matrix X, ,,
3(AX)/dX = vec(AT)vec™(1,),
d(XB)/3X = vec(I,, )vecT(B)

and
d(AXB)/9dX = vec(AT )vecT(B).

RULE 2. For a column vector x and a symmetric, constant matrix A,
d(xTAx)/dxT = 2x7A.

We have the following “chain rule” for matrices.

RULE 3. For w a scalar function of a matrix Y which is a function of a
matrix X,
dw/dX = (dw/3Y) % 3Y/dX.

The operator % is the “star product” [cf. Rogers (1980), page 26] defined for

X and the partitioned matrix Y,, ,,, as

mXn
m n
X*xY = Z Z xinij’
i=1j=1
each Y;; being of dimension p X g. We have the following special cases of the
“star product”:

RULE 4. When X and Y are of the same dimension (p=qg=1),
X* Y = trace(X7Y).

RULE 5.
Y * vec(X)vec”(ZT) = XYZ.

- 4, Conclusions. We have motivated the use of generalized weighted normal
plots as a simple graphical analysis method for assessing goodness of fit for a
class of models for longitudinal data. Our approach involves plotting standard-
ized empirical Bayes estimators of unobservable random effects. We have not
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proposed any formal goodness of fit test, but instead have proposed pointwise
bands of +1 SD, adjusted for estimation of parameters, as a guide to the
expected variability of the plots given the model and sample size.

Our results show the importance of adjustments for estimation of unknown
parameters when assessing the expected variability of the plots. In the examples
considered, we have found the reduction in the width of naive bands to be as
large as 50% near the center of the plot. We have also stressed the theoretical
importance of using a generalized weighted normal plot that accommodates the
differing variances of estimated random effects. Although the empirical differ-
ence between weighted and unweighted plots can often be small, we advise the
use of a weighted plot whenever possible. We also recommend the use of our
approach to justify nonnormal or nonparametric models, the need for transfor-
mations and /or robust estimation techniques for longitudinal data problems.
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