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ON PROJECTION PURSUIT REGRESSION

By PETER HALL
Australian National University

We construct a tractable mathematical model for kernel-based projection
pursuit regression approximation. The model permits computation of explicit
formulae for bias and variance of estimators. It is shown that the bias of an
orientation estimate dominates error about the mean—indeed, the latter is
asymptotically negligible in comparison with bias. However, bias and error
about the mean are of the same order in the case of projection pursuit curve
estimates. Implications of our formulae for bias and variance are discussed.

1. Introduction. Difficulties which traditional estimators have coping with
high-dimensional problems may be described in terms of “data sparseness.” If a
given amount of data is distributed in space, then the distance between adjacent
data points increases with increasing dimension. Friedman and Stuetzle [5],
Section 1 and Huber [10], Section 1, give numerical examples of this behaviour.
Standard techniques of function estimation respond to data sparseness by giving
more emphasis than they should to “transitory” features, such as randomly
occurring clusters of data points. This behaviour is due largely to the fact that
variance of traditional estimators increases rapidly with increasing dimension.
Even though “optimal” rates of consistency (Stone [14, 15]) are achieved by
balancing variance against squared bias, the optimum in high dimensions occurs
with a high level of variance. For example, in a p-dimensional problem, assuming
r bounded derivatives, the optimal convergence rate in mean squared error terms
is n=27/@r*P) which is very poor if, say, r = 2 and p = 4. In principle, unwanted
transitory features could be suppressed by deliberately constructing a subopti-
mal estimator, with smaller variance and greater bias. An example would be a
kernel estimator with a relatively large window. Unfortunately, this modification
flattens out all features, wanted or not, so that much of the baby is thrown out
with the bathwater. In contrast, projection pursuit places emphasis on lower-
dimensional features, which it estimates accurately with relatively low variance.
It does not suffer from the “flattening” debility of low-variance, multivariate
kernel estimators.

Our aim in the present article is to construct a tractable mathematical model
describing projection pursuit regression, and to analyse this model so as to shed
light on the way in which an “estimated” projective approximation tracks a
“theoretical” projective approximation. The main results are as follows. We
provide explicit formulae for bias and error about the mean in orientation
estimates and curve estimates—see Theorems 4.2 and 4.4 in Section 4. These
results show that the estimate of orientation has most of its error in the form of
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bias—error about the mean is asymptotically negligible in comparison with bias.
We also prove that the common form of kernel-based projection pursuit regres-
sion does estimate projections with convergence rates identical to those encoun-
tered in one-dimensional problems, although a greater degree of smoothness (in
fact, an extra derivative) must be assumed to achieve this end. The extra
derivative appears in the formula for bias of the projective approximation, and is
needed to remedy difficulties which the estimator has orienting the projection in
the right direction. This problem could be alleviated by first constructing an
undersmoothed regression estimate, using that estimate to find the right orienta-
tion, and then reconstructing the regression estimate with the correct amount of
smoothing. We shall discuss this two-stage procedure at the end of Section 4.
Such two-stage estimators do improve the convergence rate of orientation
estimators, but do not alter the convergence rate of curve estimates. They
exacerbate the numerical problem of multiple minima of the orientation func-
tion.

We believe this is the first time that concise formulae have been given for
variance and bias of kernel-based projection pursuit estimators. There is nothing
unexpected about the variance formula, it being entirely analogous to its coun-
terpart for univariate kernel estimators. However, the bias formula is consider-
ably more complex than that for classical kernel estimators, due to bias in the
estimate of orientation. It contains a contribution from the extra derivative
discussed above.

The article is structured as follows. Qur mathematical model for projection
pursuit is described and justified in Section 2. Essential calculus for projective
approximation is developed in Section 3. Section 4 states our main results, from
which follow the conclusions discussed above. Proofs of theorems from Section 4
are given in Section 5.

Several generalizations of our arguments are possible. For example, there is no
need to take the smoothing parameter (window size) to be nonrandom, as we do.
Our results remain true for random windows which, when divided by our
nonrandom window, have limit infimum bounded away from 0 and limit supre-
mum bounded, with probability 1. And of course, one may use different windows
for different projective approximations. The only change necessary to proofs is
that the “continuity argument” [step (i) in Section 5] must be applied more
often.

In comimon with most investigations of projection pursuit, we confine our
attention to univariate projections. However our techniques may be employed to
study g¢-dimensional projections, for any ¢ less than the dimension p of the
target function.

The concept and philosophy of projection pursuit in general, and of projection
pursuit regression in particular, have been reviewed, consolidated and extended
by Huber [10]. The idea of projecting multidimensional data onto a lower-dimen-
" sional subspace so as to obtain accurate estimates of lower-dimensional features
goes back to Kruskal [11, 12], Switzer [18], Switzer and Wright [19] and
Friedman and Tukey [6]. See also Stone’s [17] work on dimension reduction.
Some theory for projection pursuit has been developed by Diaconis and
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Freedman [1], Donoho and Johnstone [3] and Fill and Johnstone [4]. See also
Diaconis and Shashahani [2].

For the sake of brevity and clarity we shall confine our attention to the first
stage of the projection pursuit algorithm, estimating the first projective approxi-
mation. Later projective approximations may be estimated similarly, with prop-
erties similar to those of the first.

By way of notation, we shall assume that the set of explanatory variables
{x4, 1 < k < n} is a random sample from a p-variate distribution with density
f. At each x, a univariate observation Y, is made, with the property that
E(Y,)x, = x) = G(x), where G is the target function. Let £ be the set of all
p-dimensional unit vectors, and let 6, 6,,0,,... be elements of Q. If H is a
p-variate function such as f or G, then the directional derivative of H in
direction 6 will be denoted by '

Hgy(x) = lim (H(x + uf) — H(x)}/u,

assuming that this limit exists. Higher-order derivatives will be written as
H ¢,y = (Hg,),) and so forth. The ith component of a vector x € R” will be
written as x®, so that the usual dot or scalar product is x - y = Xx®y®, In this
notation, the norm of x is ||x|| = (x - x)'/% The symbol ./ will denote a subset
of RP, usually convex, and I(- € /) will be the indicator function of 2:
I(x e &) =1 if x €, 0 otherwise. We shall reserve the symbol u for a real
number.

2. Projective approximation. Let G be a function from R? to R, let f be
a probability density on R? and let X be a p-variate random variable with
density f. For scalar u, put

(2.1) 8(u)=E{(G(X)0-X=u}, 6.

The first projective approximation to G within a region ./ C R, and relative to
f, is that function G(x) = gy (0, - x), where 6, minimizes

(2.2) S(8) = E[{G(x) — g,(6 - X)}’I(X e &)].

We assume that the minimum is attained uniquely, except for the sign change
60— —0. .

The first projective approximation may be estimated from data as follows.
Let {(Y,, x,), 1 <k <n} be a sequence of pairs of observations such that
E(Y,|x, = x) = G(x) for each &k, and {x,,...,x,} is a random sample from
the p-variate distribution with density f. Write f, for the density of 6 - x, which
might be called the “marginal density of X in direction 8.” A kernel estimate of
fs> excluding the kth sample value x,, is

foy(@) = {(n =1} " ¥ K{(u—-6-x;)n7"},

J*k

where A > 0 is window size and K is the kernel function. A kernel estimate of
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8¢, excluding x,, is

(2.3)  &yuy(u) = |{(n - 1)h} > Y;K{(u -6 xj)h—l}]/f:’(k)(u)‘
J*k
We estimate 0, as that value §, € @ which minimizes

n

(2.4) $(8) =n Z (Yo = Boguy(8 - %) Y I(x, € ).

An estimate of the first projective approximation to G within 7, is G1< k(%) =
85, k>(0 x). We shall assume that K is continuous, so that minima are achieved.

Our reason for restricting attention to estimation over the set .« is that the
estimator which we use to estimate G,, and which is also employed by practi-
tioners, has a density estimator in its denominator. That denominator takes
values close to 0 near the boundary of the support of f. It is common practice in
the theory of regression estimation to study estimators on sets bounded away
from those troublesome regions (e.g., [13], page 239ff.), and we very much regret
that we found such assumptions necessary in our work too. The variance of
kernel regression estimators can be excessively large towards the edges of the
support [see formula (2.10) below], and there is every likelihood that projection
pursuit estimators will also perform poorly in that region.

Our only purpose in excluding the kth observation x, from the estimators
above is to remove extraneous bias terms when estimating 0 Once 0 has been
determined, we can put x, back. Define

f(u) = (nh)~? él"{‘” — 0 x)h),
@5 A= [(nh)-‘ £ k(-0 xk>h-1}] /f;<u>,

Gy(u) = [(nh)“ % YE{(u-8,- x,—)h“}]/fa,(u),

Jj=1

for real numbers u. We call él(u) “the” estimate of the first projective approxi-
mation to G within the region .« and relative to f.

As we remark in Section 4, it is relatively easy to show that 8,,G, are
consistent for 8,, G,, respectively. Our aim in this article is to describe the rate
of consistency.

We conclude this section by giving details of the kernel K and window h.
Recall that our kernel estimators are all one-dimensional, and so our choice of
kernel will be dictated by smoothness conditions on one-dimensional projections
~of f and G. Restrictions of this nature are virtually the same as conditions

imposed on directional derivatives. Therefore we assume:

the first r directional derivatives of f(x) and G(x) exist and

(26) are continuous uniformly in x € R” and in all directions.
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Define
(2.7) /= {x €RP: forsome y € o, ||x — y|| < ¢}.

So that we do not have to impose integrability conditions and to keep the
integrand in estimators such as £; bounded away from 0, we further suppose:

f vanishes outside a compact set, and is bounded away from 0

(2.8) on ¢ for some € > 0.

To ensure that the set {# - x: x €2/} is a proper interval, for each § € Q, we
assume that .« is a nonempty, open, p-dimensional convex set.

For fixed 6, estimators such as f,,(k), Bocrys f, and g, are classical one-dimen-
sional kernel estimators, based on the univariate sample {6 - x,,1 < & < n}, and
being of the type reviewed by Prakasa Rao [13], Chapter 4, Section 4.2. Under
conditions (2.6) and (2.8), fast rates of convergence may be obtained using an
rth-order kernel, just as in the case of kernel density estimators [13, page 42ff.].
Therefore we stipulate that K fulfill the condition:

(2.9) [®, WK(u)du=1for j=0,0forl<j<r—1; and K is
) Holder continuous and compactly supported.

Holder continuity means that for some s > 0 and C > 0, and all real u,v,
|K(u) — K(v)| < Clu — v|°. Compact support and Ho6lder continuity are needed
for the “continuity argument” in Section 5. The integrability condition in (2.9)

characterizes an rth-order kernel.
We now specify window size. Consider the model

Yk=G(xk)+8k, ].SkSn,

where the ¢,’s are independent and identically distributed with zero mean and
finite variance o2, and are stochastically independent of the x,’s. Assume
conditions (2.6), (2.8) and (2.9), and that ~ = h(n) — 0 and nh — . Then for
fixed 0 € Q, and assuming fy(u) > 0,

8o(u) = go(u) + (nh) Y E{(G(X) - gy(u))"8 - X = u} + o®

(2.10 x () (7))

+h"const(u, 8) + o(h"),

where Z(u) is asymptotically normal N(0,1). The rate of convergence of g,(u) to
8o(u) is maximized at O,(n~"/@"*D) by taking h ~ const. n~/@"*1, and this
will be our choice of window in Sections 3, 4 and 5. The case r = 2 is by far the
most common, and that is treated in detail for univariate kernel estimators by
Prakasa Rao [13], page 239ff.

]1/2

3. Calculus for projective approximation. Let 6,6, € Q, with 6, fixed
and @ converging to ,. To introduce Taylor expansions for quantities such as
S(8), let 8,, be either one of the two unit vectors in the same plane as both § and
0,, and perpendicular to 6,. Provided @ is in the same half of the §,, 6, plane as
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0y, which must very quickly become the case since 6 is converging to ,, we may
write

(3.1) 8= (1—°)"""6, + nop,

where —1 < 5 < 1. This representation is unique up to the transformation
(n,00) = (—m, —6y), and n =6 - §,, — 0 as § — §,.
Under mild regularity conditions, S(#) admits a Taylor expansion of the form

(8.2) S(8) = S(8p) + 1S:(8p5 b00) + 31°S5(85, 00) + 0(772)

as 0 — §,, for suitable functions S, and S,. The following theorem makes this
explicit.

THEOREM 3.1. Assume that the first two directional derivatives of f and G
exist and are bounded and continuous uniformly in x € R? and in all directions;
that </ is a nonempty, open, p-dimensional convex set whose boundary has two
continuous derivatives; and that f satisfies (2.8). Let 8,, 6,, be perpendicular unit
vectors, and define 0 = 0(0,,0,,) by (3.1). There exist uniformly continuous
functions S, and S, of 0, and 6, not depending on n, such that (3.2) holds
uniformly in 6,, 6y, as n — 0.

Such results may be developed from expansions of Radon transforms, as we
now show. Let  be a p-dimensional sphere of radius ¢ centered at the origin,
and choose ¢ sufficiently large for 7 to contain the support of f. [Recall from
(2.8) that we assume f to have compact support.] Given § € Q and u € R, define
Ty = Ty(u) to be the (p — 1)-dimensional “surface” formed from the set of points
{x €7 0-x=u}. Let dyy(x) be an element of (p — 1)-dimensional content,
situated at x € I, and aligned so that its normal is parallel to §. Define the
Radon transform (e.g., Helgason [9], page 2)

(3.3) A(u,0) = fra(x)dy,,(x).

THEOREM 3.2. Assume that the first two directional derivatives of a exist
and are continuous uniformly in x € J and in all directions. Let 6,,0,, be
perpendicular unit vectors, and define 8 = 0(8,, 6,,) by (3.1). Then there exist
uniformly bounded, continuous functions A,, A, such that

sup|A(u, 0) — {A(u, 6,) + 14,(u, 6, 6y) + 30*A5(, 6y, 6) } |
=o(n?)

as 1 — 0, where the supremum is over u > 0 and 6,, 6,, € Q such that 6, L 6,

(3.4)

Smoothness of Radon transforms is discussed in Chapter 1 of Helgason [9].
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Let A, B denote versions of A in cases a = fG, a = f, respectively. Then
versions of A, are

Ayt b0, 00) = [ {(8 - 2)(1G) 0w (%)
— (g0 - ) (fG)a,)(x)} dvg (),

By(u, o, 0uo) = [ {(80 - %) fg,o(%)

(3.5)

(3.6)
~ (6o - x)f(oo)(x)} dYoo(x),
respectively. Put
gl(x, 007 000) = (000 ' x)géo(ao ) x) + (AI/B) - (ABI/B2),

where A, stands for A,(u,6,,0y) with u =6, -x and so forth. Noting that
go(u) = A(u, 0)/B(u, 0), and noting also definition (2.2) of S(6), we readily
deduce that S, in (2.2) is given by

$1(fo. o) = 2 [ {800 - %) = G(x)}&x(=, by, Buo) () di.

In similar but more complex fashion we may obtain a formula for S,.
Now we turn to estimated projective approximation, in which we minimize an
estimate S(8) [defined at (2.4)] of

S(6) = [ {6(x) - &(8 - x)}"/(x) d.
Our estimates of g, are functions g, ,, [defined at (2.3)], each of which is a ratio
of two random variables. The ratio of the means is
(3.7) go(ulh) = A(u, 8|h)/B(u, 0|R),

where

A(u,0|h) = h—lf K{(u~0-2)h")f(x)G(x) da,
(3.8) ®
B(u,0|h) = h‘lprK{(u — 0 x)h 1} f(x) dx.

As we shall show, 8(0) is given accurately to first and second order by
(3.9) S(81h) = [ {G(x) - &4(0 - 21k)}*(x) d,

up to terms which do not depend on 6. See Theorem 4.1 in the next section.
Therefore (a) there is no pressing need to incorporate an “error about the mean”
term to describe the difference between S(8) and S(6), and (b) the key to
second-order behaviour of 8 lies in a Taylor expansion of S(8|k). We develop this
expansion next.
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Let 0, 6, € Q, with 6, fixed and 6 converging to ,. Parametrize # in terms of
0, and 6y, L 6,, as at (3.1). Taylor-expand S(f|k) as we did S(8) at (3.2),
obtaining
S(81h) = S(Golh) + nS,(by, Opolh) + 31°S5( 65, B0l ) + 0("72)
as 1 — 0. Next, expand S, and S,, obtaining
S,(65, boolh) = Sy(65, 600) + A"S11(8p, b0) + 0(R7),
S3(6y, Bool) = Sy(6o, 8) + 0(1),
where S,, S, are exactly as in (3.2). Therefore,
S(61h) = S(65lh) + 1S1(6p, bo0) +‘Tlh'Su(0o, bo0)
+317Sy(60, 000) + o(n® + A*").

If 6, gives a (local) minimum of S [not of S(-|A)] then S(6,, 6,) =0 and
Sy(0y, 6yp) > 0 for all 8y, L ,. The value of n which gives a turning point of the
sum of the third and fourth terms on the right-hand side of (3.10) is of course

Mo = —h’S11(0y, 050) /S2( 8o, o) -

If n is asymptotic to 7,, and if 8, gives a regular minimum of S, then (3.10)
reduces to

S(81n) = S(85|k) — 2h¥S11(85, 800)*Se(o, b0) "+ + 0(B?").

The second term (a negative number) on the right-hand side of this expansion is
minimized by choosing 6y, so as to maximize S,,(6,, 0y0)2/S(8y, 0y0)- Thus, we
are led to the following theorem. (The regularity conditions will be discussed
shortly.) ‘

(3.10)

THEOREM 3.3. Letr > 2. Assume that the first r + 1 directional derivatives
of f and G exist and are continuous uniformly in x € R? and in all directions;
that o is a nonempty, open, p-dimensional convex set whose boundary has two
continuous derivatives; that f satisfies (2.8); and that K satisfies (2.9). Let 6,
give a local minimum of S(0) [defined at (2.2)], and suppose the minimum is
achieved in a regular fashion, in the sense that Sy(6,,0) > 0 for all 6 L 6,. Let
0y uniquely maximize S,,(0,, 0)%/Sy(6,, 8) over 8 L 6. Then the value 6,(h) of 0
which minimizes S(8|h) [defined at (3.9)] over 0 € Q, satisfies

(8.11) 6o(h) = 6, — hraoo{su(ao: 000)/S2( o, 000)} +o(h")

as h — 0.

Theorem 3.3 may be proved via tedious but straightforward calculus. The

. function S,;(8,, 6,,) is extremely complex, but it is easy to see that S,, explicitly

involves (r + 1)st derivatives of f and G. Indeed, S,,(6,, 0,|k) involves first

derivatives of f and G, and r derivatives of the integrand of this quantity (so,
r + 1 derivatives in all) are needed to get the term of order A™ in (3.11).
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4. Properties of projection pursuit estimators. Let S(8) and S(6|k) be
the quantities defined at (2.4) and (3.9), respectively. Given 8, € @, and ¢ > 0,
put

0, = {6 € Q: 1|6 — 6| < (rh)™"*n¢}.

Recall from Section 2.2 that we have agreed to take h ~ const n=/@"+D ag
n — oo. In this circumstance, (nh)~'/2 ~ const. A" as n — co. When interpret-
ing results in the present section it will be helpful to remember that the
one-dimensional counterparts of our estimators, whose properties projection
pursuit regression is emulating, converge to their limits at rate (nh)~/2 (equiv-
alently, A"). Quantities which are o{(nh)~'/2} or o(h"), are negligible in com-

parison.
We assume that the Y,’s are related to the x,’s via the model
(4.1) Yk = G(xk) + €, 1 < k < n,

where the {¢,} and {x,} samples are stochastically independent, the x,’s are
independent and identically distributed (i.i.d.) with density f, and the ¢,’s are
iid. with zero mean, variance ¢2> 0 and all moments finite. More general
models may be treated using similar methods—for example, the distribution of
¢, given x, may be permitted to depend on x 2

It is straightforward to prove that .§(0) is uniformly consistent for S(0),
which means that if 6,, ] minimize S(6), S(0), respectively, then § — 6,. From
this it follows easily that G — G,. Our task is to describe the rate of consis-
tency, and for that we ﬁrst show that for any given 4, € Q, $(0) is close to
S(6|h) uniformly in 6 values near to 6,. Notice that for this result we need only
r derivatives of f and G; (r + 1)st den'vatives are not required until later in our

argument.

THEOREM 4.1. Letr > 2, and let 8, be any element of §. Assume conditions
(2.6) and (2.8) on f and G, condition (2.9) on K, and that o/ is a nonempty,
open, p-dimensional convex set whose boundary has two continuous derivatives.
Then there exists a random variable T, not depending on 0 (but depending on
0,), such that for any e < 1/{2(2r + 1)},

(4.2) nhsup |S(8) — S(6|h) - T,| - 0
6B,
almost surely.

Now assume an extra continuous derivative of f and G, bringing the total to
r + 1. Choose 8, (= 8,) to be the value of § minimizing S(@). Take 6, to be that
unit vector perpendicular to 6,, which maximizes S;(6p, 0p0)2/S2(0os 00)- The
following result is immediate from (4.2) and the argument just prior to Theorem
3.3.

THEOREM 4.2. Assume all the conditions and adopt the notation of Theorem
3.3. Let O be a value of 8 which minimizes S(8) over 0-values satisfying
16 — 85l < (nh)~Y2n*, for any fixed ¢ < 1/{2@2r + 1)}. Then 8 admits the
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expansion given for 6(h) in (3.11),
By = 65— 1 006{S11(80> 800) /S2(8p5 80) } + 0(R")

almost surely as n — . Also, if &, is the event that 8 is a turning point of
S(0), then P(liminf &, ) =

[Since we assume that the kernel K is Holder continuous, then S(0) is a
continuous function of 4, and so 0 is well- defined.]

Notice that by Theorem 4.2, 10 — 6| = O(h") = O{(nh)~'/2} almost surely,
and so 8 is well inside the cone 0,. We shall show in Theorems 4.3 and 4.4 below
that for this definition of 8, our estimator gg(a x) converges to the “target”
projection g, (8, - x) at rate (nh)~'/%. [Recall that gy(u) was defined at (2.5).] It
is easy to see (by considering the bias term) that if we were to choose our
orientation estimator outside the cone, then the rate of convergence would be no
better than O{(nh)~'/2n®}. Therefore our restriction to the cone ©, does not
exclude any minima of interest, and is made without loss of generality. However,
our argument gives us no information about possible difficulties which multiple
minima might cause. That matter is perhaps best explored by simulation.

Let 6y(h) denote the value of ¢ which minimizes S(|k). We know from
Theorems 3.3 and 4.2 that § — 6,(k) = o{(nk)~'/?} almost surely, and so it
stands to reason that the projective approximation based on 8 should have
performance very similar to that of its counterpart based on 6y(%2). The next
theorem makes this clear.

THEOREM 4.3. Assume the conditions of Theorem 3.3, and define 8 as in
Theorem 4.2. Then

(k)" up [ 20(8 - %) = o, Bo(k) - x}[ = 0
X E
almost surely.

Therefore the kernel estimator with orientation estimated at 8, is asymptoti-
cally equivalent to the kernel estimator with nonrandom orientation 8y(4). To
describe asymptotic properties of the latter estimator, let A, B, A, and B, be as
defined just before and in (3.5) and (3.6), and put

B = —S1(6o, 800)S2(8o, 00) ~*{ Ax(B - x, By, 600) B(8y - x, ) "
—A(8y - x, 800)B,(6, - x, 8, 60) B8y - x, 6,) "%},
By = — (800 * x)S11(8p, 800)S2(6o5 000)—13(50(00 - x)

and B; = B(6, - x), where 8,(= 6,) minimizes S(6), and
B@) = (<1 () [ oK (o) do o u)

<[ (D) U drf9) = () [ (Do) 1) A ().
Ty (

0
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(The operator D, denotes directional differentiation in direction 6.) Recall that
the “errors” ¢, in model (4.1) have variance o2. Define

w(x) = [E{(G(X) - g3,(8 - 1))y X = 6y x) + 02| (8- )"
X f_oo K?%(v) dv.

THEOREM 4.4. Assume the conditions of Theorem 3.3, and define 0 as in
Theorem 4.2. Then for each x € «,

(nh)'*(83(8y - %) ~ &80~ %) | = 1(x)Z + (nh)'* (B, + By + Bs) + 0,(1)
as n - o, where Z is asymptotically normal N(0,1).

Terms B, and B, derive from the bias of the orientation estimate, 0. Thus,
they contain derivatives of f and G of order r + 1. On the other hand, B, is the
usual expression for bias of a univariate nonparametric regression estimator; see
Prakasa Rao [13], page 239ff. Therefore 8; contains only derivatives of order r or
less.

The procedures described in Theorems 4.1-4.4 all use nonrandom bandwidths.
Our arguments could be extended to encompass random, data-driven band-
widths; the only change required to our proofs would be more frequent use of the
“continuity argument,” described early in the proof of Theorem 4.1 in Section 5.

The procedure studied above is a good approximation to techniques actually
used in practice [5, 8]. One variant of it is a two-stage algorithm [7], which may
be described as follows. Recall that throughout our work we have taken A ~
const n~ @7+, since this size of window is optimal in univariate problems. As
we have shown, this gives orientation estimates with error O(n~"/"*D) which
is typical of nonparametric problems. However, it is possible for orientation
estimates to achieve convergence rates of Op(n'l/ %), under nonparametric as-
sumptions. For example, using a nonnegative kernel (r = 2) and a window size
between n~'/% and n~'/* (instead of n~1/%), it is possible to estimate orientation
with error Op(n‘l/ %) under the assumption that second derivatives of f and G
satisfy a Lipschitz condition of order ; + ¢ for some & > 0. Of course, this
window is suboptimal as far as estimation of ridge functions goes, and so we
should use a second stage to estimate ridges. Go back and reconstruct the
estimator gé(o x), using the new orientation estimate 8 but the old window
size h (~ const. n~'/®"*D) In view of the exceptional accuracy of our new 8, the
new estimator go(o x) does not include a bias contribution from the error
between 8 and 0, (= 6,). In fact, Theorem 4.4 holds in the form

(nh)"*{80(8 - x) — £(8y- %) | = 1(x)Z + (nh)*1Bs + 0,(1).
Using undersmoothed kernel estimates of ridge functions to estimate orienta-
tlon with n~1/2 accuracy is analogous to estimating a distribution function with
~1/2 gccuracy by integrating an undersmoothed density estimate. It is well-
known that the latter is possible. For values of r > 3, the two-stage method does
yield one-dimensional convergence rates of the projective approximation, under
the assumption of only r derivatives.
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A reasonable practical objection to the two-stage algorithm is that the first
stage magnifies numerical difficulties in finding the global minimum of $(6). The
functional S usually has a multitude of local minima, and these become more
pronounced and even more numerous when the amount of smoothing is reduced.
Note too that the two-stage procedure does not actually improve the rate of
convergence of the estimated projective approximation.

5. Outline of proofs for Section 4. The following notation will be used
throughout. Summation over 1 < k < n such that x, € &/ will be denoted by
Y';; X will be a p-variate random variable with density f; fy(u|h) will be the
expected value of the estimator fy(u) [identical to the function B(u, 0|h) defined
at (3.8)]; g¢(u|h) will be the function defined at (3.7); and O, will be the set
(6 € Q: |10 — 6,)| < (rh)~?n¢}, for arbitrary but-fixed 6, € 8.

PRroOF OF THEOREM 4.1. The key to this proof is the “continuity argument”;
see Stone [16] for an example of its use elsewhere. The argument runs as follows.
Suppose that a certain stochastic process Z,(y), y € S C R? and g > 1, may be
shown to have the properties

forall e, A > 0, supP{|Z,(y)| > e} = O(n™"),

y€S
for each A, > 0 there exist C, A, > 0 such that
E{ sup |1Z. () - Zn(y2)|} < Cn™h.
N HEL st In—nll<n”e
Then if % is a bounded set,
(5.1) forall &, A > 0, P{ sup |Z,(y)| > s} = 0(nM).
ye¥

In view of the Borel-Cantelli lemma, result (5.1) implies

sup |Z,(y)|— 0
yES

almost surely.
To illustrate use of this argument, we employ it to prove the following lemma.

Define .\
() = [((n = DB T 6K (w0287 /ﬁ<k>(u)-
lek
Let sup* denote supremum over § € ©, x €/ and 1 < k < n.

LEMMA 5.1. Under the stated conditions, and for each ¢ > 0 and A > 0,
P(sup*| fyquy(8 - x) = fo(0 - )| > (rh) 7/*nf) = O(n™),

P{sup*|Zoquy(8 - ¥) — £(8 - )| > (nh)™*nf} = O(n ).
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These results continue to hold if 8¢(,(-), fo(-) and g4(-) are replaced by gy \(+),
fo(-|1h) and gy(- |h).

Proor. Using the continuity argument, it suffices to show that
SUP*P{lic)(k)(e -x) = (0 - x|B)| > (nh)_lﬂne} =0(n™),

where f0<k denotes ﬁ,<k>, €q¢ry OF dAO(k); lg(-|h) denotes fy(-|h), ey(-|h) or O
(respectiveiy); and

Coquy(u) = {(n - DA}~ EkG(xz)K{(u - 6-x)h7'},

‘ioaz)(u) = {(n-1)h}"" stzK{(u —0-x)h7)
1+ *
and ey(ulh) = f,(u|h)gy(ulh). The proofs proceed very easily by Bernstein’s
inequality in the case of f and e, and by Rosenthal’s inequality [8, page 23] in
the case of d. O
Next we introduce a decomposition of .§(0):

8(6) = 83(0) — 28,(6) + n7} ;{eg +26,G(x,)},
where
.§m(0) =n"! §,{G(xk) — Bocry(0 - xk)}29
.§[2](0) =n"! Zkl'ekéo<k>(0 X))
Expand .§m as
'§[1](0) = §[3](0) - 2§[4](0) +n7t é:lG(xk)2,
where
§[3](0) =n"! %l{éo@)(a : xk)}2,
é[4](‘5’) =n"! %lG(xk)gKk)(o “Xg);

and expand §[4] as
Sig(8) = 815(6) + S1(6),
where

§[5](0) =n"! zk:G(xk){f?o(k)(o X)) - §o<k>(0 : xk)}’

g[ﬁl(e) =n! §,G(xk)g0(k)(0 " Xp)-
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$m(8) = n~? %’{go(a AN

'§[s](9) =n"1) G(x,)g(0 - x,h).
k
By repeated application of the continuity argument, and use of Lemma 5.1, it

may be shown that there exist random variables T, ..., T,, not depending on
such that, under the stated conditions,

nh sup |§[2](0) - Tnll -0,
e,
nhsup |Si(0) — Tp | — 0,
0€0,
90,
nh sup |Sig(8) — Siy(8) — Tpu| ~ 0
00,

almost surely. It follows that

(5.2) nhos:gclﬁ(ﬂ) - {§m(0) - 2§[8](0)} - Tn5| -0

almost surely, where T, does not depend on §. Further algebra shows that
(5.3) nhosggelsAm(ﬁ) - 285(0) — S(61h) — T,5| » 0

almost surely, where T, does not depend on . Theorem 4.1 follows from (5.2)
and (5.3). O

PRrROOF OF THEOREM 4.3. Define

A(u,0) = (k)™ ¥ G(x)K{(u=0- )1,

k=1
B(u,0) = (nh)™* é}x{(u Co-x)h) =AW,
D(u, 0) = (nh)™" kélekK{(u —0-x,)h""},

A(u, 8)h) = E{A(u, 0)} and B(u,8|h) = E{B(u, 0)}. The argument leading to
Lemma 5.1 may be employed to show that for each £ > 0,

sup {|A(8-x,0) —A(0-x,6|h) + |B(0-x,0)
0eQ, xex

~B(6-x,0/h) + |D(8 - x,0)|)
= O{(nh)™"*n}
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almost surely. Hence
8o(u) = {A(u,0) + D(u,8)}/B(u,0)
= {A(u,0|h)/B(u,8lh)} + {A(u,8) — A(u, 0|h) + D(u, 8)} /B(u, 6|h)
—{B(u,0) — B(u,0k)}A(u, 6|h)/B(u, 6|h)* + o{(nh)~'?}

almost surely, uniformly in real numbers. u of the form 6 - x for § € Q and
x €.

Let C denote either A or B. Using the fact that 8§, and 6,(4) may both be
expressed as 6, + const A8, + o(h"), it may be shown that

C(@ . x, 90|h) — C{6,(h) - x,8,(h)R} = o{(nh)_l/z}

uniformly in x € &/. Therefore Theorem 4.3 will be proved if we show that, with
F denoting any one of A — A, B — B, D, we have

st;g/lF(oo - x,8,) — F{8y(h) - x,6,(h)}| = o{ (nh)™"/?}

almost surely. This may be accomplished via the continuity argument, discussed
early in the proof of Theorem 4.1. O

ProOF OoF THEOREM 44. It is readily shown that for any nonrandom
0 = 6(n) converging to 6, [such as 8 = 0(h)], 84(0 - x) — g4(0 - x|h) has the
same asymptotic distribution as gy (6, - x) — g4 (0, - x|h), this being normal
N{0,(nh)~'r%(x)} and being derivable via classical arguments associated with
univariate nonparametric regression [13], page 239ff. It remains only to deter-
mine the asymptotic bias, and that may be accomplished after some tedious
algebra. O
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