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SPHERICAL REGRESSION FOR CONCENTRATED
FISHER-VON MISES DISTRIBUTIONS'

By Louis-PauL RIVEST

Université Laval

Spherical regression studies models which postulate that the unit vector
v is equal to an unknown rotation P of the unit vector u “plus” an
. experimental error. The case where the experimental errors follow a
Fisher-von Mises distribution with a large concentration parameter « is
considered in this work. Asymptotic (k — o) inferential procedures for P are
proposed when n, the sample size, is fixed. Diagnostic methods for spherical
regression are suggested. The key for their derivation is the fact that
spherical regression is “locally” identical to ordinary least square regression.
The results are presented in an arbitrary dimension. For the three-dimen-
sional case, asymptotic tests and confidence regions for the axis and the angle
of P are obtained. The data from a plate tectonic analysis of the Gulf of
Aden, presented by Cochran, illustrate the proposed methodology.

1. Introduction. In spherical regression, the dependent vector v, which
belongs to S, _,, the unit sphere in R*, is assumed to be equal to an unknown
rotation P of a fixed S,_,-vector u perturbed by an experimental error. If the
experimental error follows the Fisher—von Mises distribution, the density of v is
equal to

k*/2~ lexp(kv'Pu)
(1)

I/«z/z—l(")(2'77')k/2 ’

where k > 0 is the concentration parameter and I, , _, denotes a modified Bessel
function [Abramowitz and Stegun (1972)]. Its distribution is labelled F(Pu, k); v
is uniformly distributed and k = 0, if and only if u and v are independent. When
it is not, the assumption of independence cannot be written in terms of the
parameters indexing (1). If rotational dependence is in doubt, it should first be
ascertained with correlation measures [Jupp and Mardia (1980) and Rivest
(1988)].

Spherical regression was first considered by Chang (1986); see also Chang
(1987). He derived large sample inferential procedures for P, the maximum
likelihood estimate of P, based on observations {v;, u;}7;. Chang’s results only
assumed a rotationally symmetric error distribution. This work looks at spheri-
cal regression from a different angle: n is fixed and xk - co. Watson (1984) and
Rivest (1986) studied the distributions of directional statistics in this setting.

Received August 1986; revised June 1988.

'This work was supported by a Natural Sciences and Engineering Research Council of Canada
grant.

AMS 1980 subject classifications. Primary 62H15; secondary 62J05, 62P99.

Key words and phrases. Cook’s D statistic, diagnostic methods, directional data, Fisher—von
Mises distribution, linear models.

307

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIK@J:Y

I3

o 2

8

®

WWw.jstor.org



308 L.-P. RIVEST

Section 2 shows that, when k — o0, spherical regression is identical to ordi-
nary least squares. Section 3 adapts the least square tests to the spherical
context. It provides statistics to test hypotheses of the type H,: P € G, where G
is a closed subset of SO(k), the set of & X k rotations. Diagnostic statistics
based on residuals are proposed. Section 4 studies the special case £ = 3. A new
analysis of Chang’s (1986) example is presented in Section 5.

2. The small sample asymptotic distribution of P. The rotation P is the
one maximizing Lv;Pu;/n. MacKenzie (1357) and Stephens (1979) showed how
to calculate P. If

’

uv; .
E P = S diag(l,,...,1,)T"

is a singular value decomposition [S and T are SO(k) matrices and [, > [, >
- > |l,| are the singular values], then P = TS’. For large «, a good approxima-
tion to the maximum likelihood estimate of « is [Watson (1983), page 163]

R= k—;—l(l - R(SO(%))) ",

where R(SO(k)) = Lo/Pu,/n.

To study the distribution of P, a parametrization in terms of skew-symmetric
matrices is useful: If E(I, m) denotes, for I > m, a k X k matrix of 0’s except for
its (, m) and (m, I) components which are equal to 1 and — 1, respectively, and
{A,.};> . are real numbers, then

A= Y ARE(,m)

I>m
is a skew-symmetric matrix (it satisfies A = —A’) and
o AJ
P=expA =) —
J!
0

is a rotation. Let a = (Ay, Ayy,..., Ap, Ag, ..., App—1y)’ be the component
vector of A, and note that for any u; in S,_;,, Au, = U,a, where U, is a
k X k(k — 1)/2 matrix whose (I, m) column is E(l, m)u;. In differential geome-
try, the set of the £ X k skew-symmetric matrices is called the Lie algebra of the
Lie group SO(k) [Warner (1983), page 84].

Concentrated Fisher-von Mises random variables can be represented in terms
of normal variates [Watson (1983), page 157]: If ¢; = (&;5,..., &;4_1), i = 1,..., n
are independent random vectors distributed as N,_,(0, k~'I), then

lle:ll®

2

)

+0,(k7") u; + ui(,)(ei + op(x_1/2)),

where u; ., is a k X (k — 1) matrix whose columns form an orthogonal basis of
the vector space orthogonal to u; and =, means equality in distribution.

One can write P = Pexp A. The distribution of P is characterized by that of
d, the component vector of A.
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THEOREM. Assuming that n is fixed and that ¥ U,U, is nonsingular, as k
goes to oo, the following results hold:

@ Vi @ _)ll\ik(k—l)/2(0y CUU)™).

(i) 2nk(1 — R(SO(k))) -, X?k—l)(n—k/Z)'

(iii) & and R(SO(k)) are asymptotically independent.

PROOF. One can let, without losing generality, P = I. For A’s that are
O(k~1/%),
LojexpAu; Loy, N YovlAu; TolAu;

= +

R(a) - n n 2n

+0,(k71).

Using (2), and the equality Au; = U,a, the last expression is, up to 0,(k™ 1), equal
to

3)

Straightforward calculus shows that (3) is maximized by
a=(XUuzu) ™ LU,

Using a Taylor series expansion and the fact that R is maximum at a,

(64-a)y o
+*—2 WR(a)a

Yolu; XofUa a’ZU/Ua
+ .

n n n

R(4) - R(&) = (& - d)a—iR(a)

(a-ay

a=a =a,

(d - d):

2 da?
where a, belongs to the segment joining @ and 4. Since R(a) — R(d)is o (k1)
and 3%/9a® R(a) is 0,(1), & — d is o (k" 1/2).

The maximization of (3) can locally be viewed as a least squares problem.
Using (2), (3) can be rewritten as

1
1= —(Zlledl® - 2Xefuf Uia + @’ LU/ Ua).
Since UyU; = U/uyyuf U, if e=(e,&,...,¢e,) and if X denotes an

n(k — 1) X k(k — 1)/2 matrix whose rows (i — 1)(k — 1) + 1 to i(k— 1) are
equal to u/ U, then (3) is equal to

(4) 1-— %(a — Xa)'(e — Xa)

and @ is the value maximizing this expression. By standard least squares theory,
up to o,(k~1/?),

k%6 ~ Ny 1,2(0, (X'X)77),

k(y— Xa)(y - Xa) ~ X(Zk—l)(n—k/2);
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furthermore @ and (y — X@)(y — Xd) are independent. Since (d — @) is
0,(k~'/?) these results remain true if @ is replaced by d. O

As a function of the skew-symmetric matrix A, the asymptotic density of A
(or @) is proportional to

tr( A%Zu,u!)
2K )

exp (

Theorem 1 of Chang (1986) presents a similar expression for the large sample
density of A (or in Chang’s notation H,,) when « is fixed.

3. Hypothesis testing. Let G be a g-dimensional closed subset of SO(k).
Let PG be the G-rotation maximizing Yv/Pu;/n and R(G) = Zv PGu, /n. To
test Hy: P € G versus H,: P ¢ G, the theorem applies in most cases. Under H,),
B, is in an infinitesimal neighborhood of P. If this neighborhood can be
parametrized by V(G, P), a g-dimensional vectorial subspace of R**~1/2 then

B, = P(I+Ag) + o,(k7/2),

where 4, € V(G, P) and, as in the theorem,

1
N ~ Xa)'(y — Xa) + o, (x71).
R(G) =1 2naer‘r)(glp)(y a)(y— Xa) + o,(x7")

Classical least squares theory suggests use of

(k= 1)(n — k/2) R(SO(k)) - R(G)
k(k—1)/2—-g 1- R(SO(k))

as a test statistic; its null distribution is F ;1) 15— g k—1yn—1 /2

G is locally parametrizable by a vectorial subspace of R**~1/2 if it is a closed
submanifold [see Warner (1983), page 22]. Most, if not all, subsets G of SO(k)
that are of statistical interest satisfy this requirement.

When « is large, the likelihood ratio statistic for H,, under model (1), is
approximately equal to (5). One can also test H, with a Wald statistic which
avoids the computation of PG Examples will be given in Section 4.

The analogy with linear regression allows for local power calculations. Let A,
be an O(k~1/%), k X k skew-symmetric matrix with component vector a,. Under
H,: P= PexpA, for some P, in G, it can be shown that the limiting distribu-
tion of (5) is Fy4_1)/2— g (k-1)n—1/2(8%), Where 8%, the noncentrality parameter,
is equal to

(5) Fobs =

52 = xaQ, (@ (X'X)7'Q,) '@\ a,

where @ | is a basis of the orthogonal complement of V(G, P,). The key to the
proof of this result is the fact that, under H,, (2) holds for the distribution of

P(v, with ¢, distributed as N,_(u{.,Ua,, I/x).
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3.1. Residual analysis. As in linear regression, residuals r; can be defined as
the estimates of the errors ¢;. In geometrical terms, r, is the R"Z Lvector of the
coordinates of the projection of P’u in the vector space orthogonal to u,. For a
given basis u,., of that vector space, r; = u}. )P’ The joint dlstrlbutlon of
{r;i=1,...,n} is the same as that of the residuals of the linear model defined
in the theorem.

Two diagnostics from linear regression can be useful in spherical regression.
To test whether datum i is an outlier, a test statistic based on 7, is given by
[Cook and Weisberg (1982), page 30]

2 (n—1-k/2)r,2 ',
" 2n(1 - R(SO(k))) — r2; '’

where =, is the covariance matrix of «'/?r,. Its null distribution is the
Fy_ 1 (k—1)n—1-k2) distribuiton. A measure of the leverage of datum i is the
multiple Cook’s D statistic [Cook and Weisberg (1982), page 136]

_(r 1 (27 -2)n
D= (-I;, B 2n) (1 - R(SO(R)))

4. Further results for S,-regression. Most applications of spherical re-
gression will be to S,-data. This section studies the special case & = 3. It takes
advantage of the mathematical properties of R3 to get some further results.

First the parametrization used so far is modified as follows: If A isa 3 X 3
skew-symmetric matrix, redefine its component vector as a = (A, —Aj;, Ag)
and U, by

0 —Uiz U
U=| us 0 U
—Up Uy 0

Now Au; = —U,a and U is itself skew-symmetric, its component vector is u;.

Note that for any v in R?, U,v is the exterior or cross product of u; by v.
Writing u;.) = (4;,), ¥;) and changing the sign of u,,, if necessary, we can

assume that u;, u,,, 4, form a right-hand rule oriented orthonormal basis.

Then the skew-symmetric matrix U; can be written in terms of u;.,, defined in
(2), as

0 -1
(6) U = ui(-)(l 0) Uiy
With this parametrization, the two lines of X, the design matrix of (4), for

observation i, can be written as u;. = (u;), —u;;)) and X'X = n(I — S), where

S =Xu,u!/n.
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If Ais a3 X 3 skew-symmetric matrix, then

sin [|a|| 1 — cos|a]l
expA = cos||a|ll + A+ 5
llall llall
is a rotation of angle ||a|| about a. Thus the natural parametrization of SO(3) is
(w, 8), where w, the axis of the rotation, is an S,-vector and 0 is its angle. Let
(i, 0) denote P the maximum likelihood estimate of P.

PROPOSITION. Let P be the rotation (w, §) where 6 #+ 0. If A is skew-sym-
metric with O(x~'/?) components, then Pexp A is, up to o(k~/?), the rotation
(w,, 6,), where 6, =0 + w'a,

1+ cosé )
1 T anf -
w,=w+ -w., sin 6 w/a
2 1+ cos@
1 —
sin 6

and w,., is a 3 X 2 matrix containing a basis of the vector space orthogonal to w

such that w, w,, and wy, form a right-hand rule oriented orthonormal basis and
W,y and w,, denote the first and the second column of w.,.

Conversely if 0, and w, satisfies 6, — a and w, — w are O(x~'/?), then, up to
o(k~ %), (w,, 8,) is the rotation Pexp A, where the component vector of A is
equal to

_ sin 6 1—cosb) ,
a= (0"_0)w+w()(cosﬂ— 1 sinﬂ )w(A)wa.

PROOF. One can write w, = w + dw where dw is an O(k~/?) vector orthog-
onal to w. It satisfies
™) (P+ PA)(w + dw) = w + dw
< (I - P)dw = PAw + o(x~'?).
One can express I — P as

1—cosé sin 6 ,
w(,)( —sinf 1 —cosﬁ)w(‘)'
The only solution of (7) which is orthogonal to w is

sin 6 .
dw=lw 1 — cosf W -
270 ) sin @ (S
1 — cosf

Note that tr(P) = 1 + 2cos §. Thus, using (6) one can write
tr(PexpA) = tr P + tr(sin dWA) + o(k~/2)
=trP — 2w'asinf + o(x?),
=1+ 2cos(f + wa) + o(k"?).
The converse is proved in a similar way. O
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4.1. Inference on the axis. To test that the axis of P is w is testing
H,: PeG,+ {cosfl + sinfW + (1 — cosf)ww': 6 € (0,26)}.
Chang (1986) derived a formula for the maximum R(w), on G,, of Yv/Pu;,/n.

3\ R(SO(3)) — R(w)
Fove = (" - 5) 1 - R(SO(3))

has an F, ,,_; asymptotic null distribution.
By the proposition

cosf, + 1
R W, sin 6, 1 .
wowt 5o 1 + cos 6, O
! sin 6,

where ¢, is the true angle. Hence, under H,,

sinf, 1-cosf,| w(I-8) ",
xl/z( w/ i ~ N, |0,

cosf, — 1 sin 6, n

and the Wald statistic,

2n — 3 s 4 ) -
" sin 6 cosf — 1 -1 1
w'w,. o . w/'(I-8) w,.
4 ()(1—c0s0 sin 0 )( 81 ) ())

(8) .
% sirA10 1—c0s0)w,w l—R SO(3
(cos()—l sin 0 ) / ( ()))

follows a F, ,,_; distribution. It can be used to construct a confidence region for
w.

4.2. Inference on the angle. Let Gy = {cos6I + sin W + (1 — cos 6)ww’,
w € S,} be the two-dimensional closed set of rotations of angle 6. Here

Yoju;, | XoUw You!

R(0) = max cos § —sind + (1 — cos)w’ w
Yolu ' Youl + uv! . XoUw
= cosd Ly max(l — cos 0w’ — %y, W™ sin 6 .
n

This maximization problem is studied by Forsythe and Golub (1965) and
Bingham and Mardia (1978). To test H,: P € G, the test statistic is

Tz(so(3)) - R(6)
- R(S0(3))

It has an F, ,,_, distribution. The proposition provides a simple way to derive
the Wald statistic. Under H,, § = 6 + wja, where w, is the true axis. Thus,

Fops = (2n—3)
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under H,,

o = 0 — 0/\/2(1 —213(—82(3))) w'(1-8) ™'

follows a t,,, 5 distribution. A confidence interval for # can be constructed using
this statistic. To construct confidence region for both # and w, one proceeds as in
Section 4 of Chang (1986) with x?2 critical values replaced by F'’s.

In the calculation of the statistics presented in this section, one can take .,
as the last two columns of (e; + w)(e, + w)' /(1 + e{w) — I, where e, = (1,0, 0)’;
u, ., can be defined in an analogous way. When % = 3, the calculations of ¢? and
D, defined in Section 3, are simplified by noting that

1-8)7"
Ei = uit(I_ (—)——')u{*.
n

5. Numerical example. Chang (1986) undertook to fit model (1) to Cochran
(1981) data which are presented in Chang’s paper. He calculated P as a rotation
of 2.38° about the axis 25.31°N and 24.29°E and & = 1.78 X 10°.

To study the fit of the model, the spatial residual plot of Figure 1 is useful.
Each datum is represented by an arrow starting at the predicted value (Pu;) and
pointing toward the observed value (v;). The length of the arrow is proportional
to ||r]. Up to a multiplicative constant the arrow joins the estimated mean
direction of a Fisher random vector to its realization, if the model fits well. The
longitude-latitude coordinate system was used to match Figure 8 of Cochran
(1981); also, since all the latitudes were less than 20°, it did not bring in
significant distortions (which is not true for large latitudes). Each observation is
labelled by its case number.

The graph actually contains nine arrows and two points corresponding to
observations 4 and 10 that have very small residuals. Observations 3 and 11 have
the largest residuals and, as shown in Table 1, are the most influential.

The ¢? have to be compared with critical values from an F distribution with 2
and 17 degrees of freedom. Observations 3 and 11 are significant at the 0.025 and
0.05 levels, respectively. Even if observation 3 has the largest residual, observa-
tion 11 has the largest Cook’s statistic. This is so because the latter is located on
the boundary on the design space, and has therefore more leverage than the
former. It is tempting to declare observations 3 and 11 outliers; however the
removal of these two points does not clean up the data completely, since
observation 10 then has a #? of 2.13 and a D, equal to 0.73.

If the model fits well, {r;} estimates a sample from Ny(0, I/k). Therefore
{ll7l|?*} is approximately an exponential sample. This was checked with a @-Q
plot. It did not display any strong departure from the exponential model. The
conclusion of this study is a cautious acceptance of the proposed model.

Chang (1986) tested

H{": wis 26.5°N, 21.5°E.
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TABLE 1
Influence statistics for the example

Case 1 2 3 4 5 6 7 8 9 10 11
t,2 0.57 0.38 4.90 0.00 0.14 0.48 1.05 0.90 1.11 0.04 3.87
D, 0.09 0.04 0.31 0.00 0.01 0.04 0.08 0.10 0.12 0.01 0.63

The likelihood ratio statistic for H, is F,,, = 1.25 while the Wald statistic is
F,,, = 1.46. Both have 2 and 19 degrees of freedom; they are not significant at
the 0.05 level. This agrees with the conclusion that Chang reached using a large
sample test. The large discrepancy between the two F statistics is caused by the
small angle of I:‘.AIndeed, for small 6 (8) can be factorized as 62 times a term
independent of 4. Thus a Wald statistic of 1.25 would have obtained with
§ = 2.20° which is in the range of possible values for the unknown rotation angle.

Chang (1986) considered also H{?: § = 2.04°. The Wald statistic is ¢,,, = 2.24
with 19 degrees of freedom which is significant at the 0.05 level. Thus the angle
of the rotation is significantly larger than 2.04°, which is similar to the conclu-
sion reached by Chang (1986).

To check the stability of the result it is interesting to redo the analysis
without observations 3 and 11. The angle of rotation becomes 2.62° while the
axis is 24.27°N and 27.48°E. The likelihood ratio statistic for H{*’ becomes
F,. = 849 with 2 and 15 degrees of freedom which is highly significant. Thus,
using this data set, it is not possible to reach an unambiguous conclusion
concerning H{.
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