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PROJECTION-BASED APPROXIMATION AND A DUALITY
WITH KERNEL METHODS

By Davip L. DoNOHO! AND IAIN M. JOHNSTONE?

University of California, Berkeley and Stanford University

Projection pursuit regression and kernel regression are methods for
estimating a smooth function of several variables from noisy data obtained at
scattered sites. Methods based on local averaging can perform poorly in high
dimensions (curse of dimensionality). Intuition and examples have suggested
that projection based approaches can provide better fits. For what sorts of
regression functions is this true? When and by how much do projection
methods reduce the curse of dimensionality?

We make a start by focusing on the two-dimensional problem and study
the L? approximation error (bias) of the two procedures with respect to
Gaussian measure. Let RA stand for a certain PPR-type approximation and
KA for a particular kernel-type approximation. Building on a simple but
striking duality for polynomials, we show that RA behaves significantly
better than the minimax rate of approximation for radial functions, while KA
performs significantly better than the minimax rate for harmonic functions.
In fact, the rate improvements carry over to large classes, RA behaving very
well for functions with enough angular smoothness (oscillating slowly with
angle), while KA behaves very well for functions with enough Laplacian
smoothness, (oscillations averaging out locally). The rate improvements mat-
ter: They are equivalent to lowering the dimensionality of the problem. For
example, for functions with nice tail behavior, RA behaves as if the dimen-
sionality of the problem were 1.5 rather than its nominal value 2. Also, RA
and KA are complementary: For a given function, if one method offers a
dimensionality reduction, the other does not.

1. Introduction. The recent introduction of projection pursuit regression
(PPR) by Friedman and Stuetzle (1981) [see also Friedman (1985)] expands the
growing list of procedures for estimating a smooth function of several variables
from scattered, noisy data. Such a list includes kernel regression (KR) [e.g.,
Stone (1977) and Collomb (1981)], nearest neighbor regression, partitioned or
tree structured regression [Breiman, Friedman, Olshen and Stone (1984)], multi-
variate smoothing splines [e.g.,, Wahba and Wendelberger (1980)] and fitting of
multivariate polynomials and orthogonal series. .

PPR algorithms produce a fitted multivariate regression function f of the
form '

(1.1) (%) = ¥ &,(&ix),
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where x is a vector, {a;} are unit vectors and each a’x may be thought of as a
projection of x. The ith term g,(-) in the sum is constant along alx = ¢ and so is
often called a ridge function: The estimate at a given point can be thought of as
based on averages over certain (adaptively chosen) narrow strips {x: |alx — ¢;| <
¢}. This contrasts with kernel and other local averaging procedures, in which the
smoothing is done over small balls of the form {x: |x — x| < €'}. One of the aims
of this paper is to show that, in a certain setting, projection-based and local-
averaging based function estimates have complementary properties.

A second notable feature in Friedman and Stuetzle’s original discussion of
PPR is their suggestion that PPR may be immune, in a certain sense, to the
curse of dimensionality. The curse refers to the tendency for nonparametric
regression procedures to perform very badly in high dimensions when the sample
data are limited, due to the fact that high dimensional space is mostly empty.

Important questions are raised by the wide variety of available procedures.
For what sorts of regression functions might we prefer smoothing procedures
based on (nonlocal) projections to local averaging methods? Can one identify
when and by how much projection methods reduce the curse of dimensionality?
These general issues motivated the research reported here, even though the
formal results can be presented only in a regrettably restricted setting.

We begin with a concrete example of the contrasting properties of these two
averaging schemes. This can be simply stated in terms of a noiseless, approxima-
tion theory analog of the estimation problem. Translation of the results to an
estimation setting is briefly discussed in Section 9.

Let f(x, y) be a polynomial of degree m in two variables. Let RA (ridge
approximation) stand for the scheme of approximating f by a sum of n ridge
functions,

(12) fux,5) = ¥ g(xcosf, + ysinf,).

i=1
Let KA (kernel approximation) stand for the scheme of approximating f by the
convolution

f=f+K,
where K, denotes a kernel function of bandwidth o (more details are in Section
7.
Measure the approximation error incurred by these two schemes with respect
to the L*(®,) norm

0= 1= [(f - 1) do,

where @, is the standard Gaussian measure on R2, ®,(dx, dy) =
(27) exp{ —(x2 + y?)/2} dx dy. With respect to this measure, harmonic poly-
nomials (Af = (3%/9x% + 3%/3y?)f = 0) are more difficult to approximate by
RA then radial polynomials ( f(x, y) = h(x2 + y?)) of the same degree. (Figure 1

“displays radial and harmonic polynomials of degree 8.) Table 1 gives a compari-
son of the best attainable error by a ridge approximation to harmonic and radial
polynomials of degree 16. Evidently, many fewer terms are needed to get a good
approximation to the radial than to the harmonic polynomial.
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F1c. la. A radial polynomial of degree 8 (J,,) computed for r = (x% + y*)'/2 < 3.2. Reference
plane is z = Jy (3.2). (The remaining 0’s of 3/9rd,, occur at r > 3.2.)

Fic. 1b. A harmonic polynomial of degree 8 (Redy o) computed for r = (x% + y?)'/2 < 1. Refer-
ence plane is z = 0.
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TABLE 1
Relative error || f — f:,|| /|| f|| for best ridge function approximation f,, using n equally-spaced
directions §; = iw/n, i = 1,..., n, to harmonic and radial polynomials of degree 16 (Re 16,00 o8>
respectively). [ Notation defined below (1.2) and in Section 4, computed from (1.3) and (1.4).]

Relative error in RA approximation

Directions Harmonic radial
1 1.000 0.8036
2 0.9999 0.6072
3 0.9999 0.4109
4 0.9999 0.2206
5 0.9998 0.0801
6 0.9998 0.0183
7 0.9998 0.0025
8 0.9998 0.0002
9 0.9998 0.0

10 0.9998 0.0
11 0.9995 0.0
12 0.9989 0.0
13 0.9964 0.0
14 0.9835 0.0
15 0.8824 0.0
16 0.0 0.0

The situation is reversed for KA. Table 2 gives numbers corresponding to
those of Table 1 for smoothing with the Gaussian kernel ®, of bandwidth o.
Evidently, harmonics suffer no bias under this form of smoothing, whereas for
radials the error is substantial for large o.

The story is graphed in Figures 1a and 1b for the degree eight polynomials
shown in figures la and 1b. The radial polynomial can be exactly represented as
a sum of five ridge functions, but the approximation in terms of root mean-square
error (or root percent variance explained) is quite good already for two and three
directions. By contrast, for the harmonic polynomial of Figure 1c, approximation
is dismal even for seven directions, while exact representation must occur for this
degree 8 polynomial with eight directions. The situation is reversed for kernel
approximation: The harmonic is reproduced at all bandwidths because of the
mean value approximation and so is not shown. The radial polynomial is
flattened by smoothing, leading to relatively large root mean-square errors. Note
however that its qualitative shape is preserved: This point is discussed further in
Section 9.

This contrasting behavior of the two approximation methods holds for general
functions. To explain this, we use a complete system of orthogonal polynomials
{Jp} for the bivariate functions in L%®). For > k, Jy(r,0) =
Ype ROk L=k(r2 /9) where L is a degree k Laguerre polynomial [e.g., Szegd
(1939)] and v, = (—2)*k! The basis element </, has radial oscillation k£ A I and
angular oscillation & — [, for a total oscillation equal to its degree & + I. Here
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TABLE 2
Relative error || f — f:,ll/ll fll for kernel approximation f:, = [ *®,, using a Gaussian measure with
bandwidth o for harmonic and radial polynomials of degree 16 (Re ¢ ¢, <y g, respectively). Com-
puted from formula (7.0).

Relative error in kernel approximation

Bandwidth Harmonic Radial
0.05 0 0.0004
0.10 0 0.0064
0.15 0 0.0326
0.20 0 0.1044
0.25 0 0.2622
0.30 0 0.5715
0.35 0 1.1478
0.40 0 2.2070
0.45 0 4.1732
0.50 0 7.9059

radial oscillation refers to the number of 0’s of <J,, along a ray from the origin
and angular oscillation to (half) the number of 0’s encountered in circling about
the origin at fixed radius. As a result, the harmonic (respectively, radial)
polynomials correspond to basis elements oJ,, with no radial (angular) oscillation,
RAL=0(k—-1=0).

Figures 2a and 2b portray the relative error in approximating a basis element
Ji: by RA and KA, respectively. A glance shows that (at least for the tuning
constants used to produce the figure) RA works well for those J,, with £ — [ and
k + I small and KA works well for those <J,, where k! is small. In short, if f isa
function whose J,; expansion

f~ ch,ka,z

is concentrated at low angular oscillation, then RA would appear to be well
suited to approximating f; whereas, if f ’s expansion concentrates at low radial
oscillation, one expects KA to do well.

This paper develops mathematical results to document this complementarity
of RA and KA. For simplicity, we start with polynomials. The results are then
stated for more general functions in terms of rates of convergence and smooth-
ness classes. Abstractly the situation is as in Figure 3, which depicts the space %,
of functions p-times differentiable in L%(®) quadratic mean. Let 6 be the angle
parameter in polar coordinates. The subspace 7, consists of angularly smooth
functions (those f € F, which are ¢ > p/2 times J/d0-differentiable in quadratic
mean). Its members in an appropriate sense have a oJ,, expansion concentrated
near basis elements with £ — [ = 0. The subspace %, consists of functions with
Laplacian smoothness (those f € %, which are r > p/2 times A-differentiable in
quadratic mean). Its members in an appropriate sense have a <J,;, expansion
concentrated near k A [ = 0. As forecasted by the heuristics above, PA can be
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Fic. 2a. RA approximation error. Contour plot of relative approximation error ||, — Jrpall/ Nl erells
where J,; is best approximation to oJ,; using ridge functions in n = 4 equally-spaced directions,
0, = wi/4. (Computed from Lemma 6.2.) Approximation is best for polynomials that are close to
radial (|k — l| small).
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Fic. 2b. KA approximation error. Contour plot of relative approximation error ||y, — Jill/|lJeilh
where Jy,; = Jy,; * ®, where ® denotes Gaussian measure on R? and the bandwidth ¢ = 0.2. [Com-
puted from (7.0).] Approximation is best for polynomials that are close to harmonic (k A I close
to 0).
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F16.3. The relation between function classes.

tuned to achieve a better rate of approximation uniformly over (spheres in) Ly,
than over %, while KA can be tuned to achieve a better rate over (spheres in)
&, than over all &#.

The rate improvements are significant: Over #,,, RA behaves in a certain

sense as if the dimensionality of the problem were 1.5 instead of 2; over Z,q KA
behaves as if the dimensionality were 1. Furthermore, these rate improvements
are essentially best possible, in an appropriate sense.

The notion of complementarity can also be expressed as follows. The typical
function in &/, does not belong to %, and vice versa: One cannot expect to get

a rate improvement over the minimax rate simultaneously for KA and RA.

Contents. The paper has 10 sections. Sections 2 and 3 develop tools for
discussing approximation to harmonic and radial functions; Sections 4-7 develop
the oJ;, basis, notions of smoothness classes, rate improvements, and complemen-
tarity and Sections 8-10 interpret the results, issuing various warnings and
suggestions for further work. The remainder of the introduction surveys the
contents of the technical sections, Sections 2-7: For an overview, the reader
might then proceed directly to Section 8.

The paper is based on L? approximation theory with respect to Gaussian
measure. The price of this trade of generality for tractability is paid in the
discussions of Sections 9 and 10.

Section 2 considers computations of best L% ®) approximations by sums of
ridge functions. For a fixed set of ridge directions, there is an explicit procedure
for computing such best approximations. By expanding each of the ridge func-
tions occurring in the best approximation in terms of Hermite polynomials, one
obtains a sequence of finite-dimensional least-squares problems for the best
approximation. When the set of directions is equally spaced, the eigenstructure
of these problems is especially simple, arising from circulant matrices.

Section 3 applies these results to compute the best approximation to both
radial and harmonic functions using equally spaced ridge directions. Discrete
Fourier analysis enters, and the formulas for L?(®) approximation error in these
cases involve certain binomial probabilities. In the following, @ = b [m] stands
for “a = b modulo m.”

PropoSITION 1.1. Let f be a polynomial of degree m orthogonal to all

polynomials of lower degree. Let fn denote the best L*(®) approximation to f
using sums of ridge functions in the n (< m) directions 0;=0,+jm/n, j=
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0,...,n— 1, as 6, varies in [0, 7/n). Let S,, denote the simple symmetric (+1)
random walk on the integers. If f is radial, then

(1.3) I fll2/11 112 = P(S,, = 0)/P(S, = 0[2n]).
If f is harmonic, then
(1.4) I FlI2/IF1I12 = P(S, = +m)/P(S, = +m[2n]).

Examination of these probabilities shows, as in Table 1, that while harmonics
are difficult to approximate using sums of ridge functions, radials are relatively
easy to approximate. Because of the link to binomial probabilities, simple
asymptotic analysis using the Gaussian limit and Hoeffding’s inequality yields
rates of approximation.

PROPOSITION 1.2. Let R, ,, f denote the best approximation to f by a sum of
n ridge polynomials (in equally spaced ridge directions) each of degree less than
or equal to m. Let N = nm + 1 denote the total complexity of R, ,.f. If f is
radial and has p Cartesian derivatives in L(®) quadratic mean, then n and
m(n) can be chosen so that

IR, mf = fII? = O(N"P/1%)

as n = . If f is harmonic and has p Cartesian derivatives in L*(®) quadratic
mean, then n and m can be chosen so that

IR, mf — 11> = O(N7P/2)
and there exist such f for which
liminf N*/?|R,, .. f = fII* > 0,

regardless of the choice of n, m.

Since N?/? is the minimax approximation rate for p-smooth functions, the
result says that RA can improve on the minimax rate for smooth functions
which are radial, but not for those which are harmonic. Propositions 1.1 and 1.2
are proved in Section 3.

To prepare for extension of these results to more general classes of functions,
Section 4 develops the properties of the ¢J,, basis for L?(®). It gives the
irreducible representations of the orthogonal group in L% ®). In this basis,
harmonic and radial functions play distinguished roles as extreme elements in
various senses. Differentiation operators such as ordinary partial derivatives, the
Laplacian and angular differentiation all have convenient multiplier representa-
tions in this basis, and so various Sobolev-type measures of smoothness are
expressible as moments of the coefficients of a function in this basis. In addition,
the projections of a function are simple to compute in terms of its expansion in
this basis. In this way, the basis helps solve a number of basic technical problems
arising in the study of RA.

This machinery allows one to define quantitative notions of smoothness.
Section 5 formalizes the Cartesian, angular and Laplacian smoothness classes #,,
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#/,, and %, mentioned earlier and establishes their complementarity proper-
ties.
The smoothness class 7, is the focus in Section 6, which contains our main

theorem for RA. In particular, if f € 27, , n and m(n) can be chosen so that

”Rn,mf - f” = O((N/logZ N)*p/l.S)’

In general, however, the rate RA can attain over .%, is no better than N~7/2,
Thus RA (when well tuned) converges at a faster rate on «/,, than on %,

Section 7 gives some KA counterparts to these results. Letting N = (0~2)¢
denote the complexity of f * ® , we have, if f is harmonic, from the mean value
property of harmonic functions:

10,5~ fl =0,
while if f is radial and has two derivatives in mean square
I, f = fll = O(N~%2).
o there is a kernel K (P so that
IEP > f = fll = O(N~P1),
while on %,, in general, one can expect no better than
|KSP f = fll = O(N~#7).

Together Sections 6 and 7 display the complementary roles of the subspaces %,
and «/,, for KA and RA.

Section 8 discusses interpretations of this work. From the viewpoint oif
minimax rates of convergence, one expects in the present setting to have a best
squared approximation error for p-smooth functions on the order N ~?/¢ where
d is the dimension of the independent variables. Therefore, when the rate is
actually r* > p/d for a function f which is p-smooth but not more than
p-smooth, one can speak of a rate improvement over the minimax rate and an
effective dimensionality d* < d. Denoting d*(# ,, P) the denominator in the
worst rate of convergence p/d* of the approximation error by method P over
the set ./ ,, we have

d*(#,,,RA) = 1.5,

Again, these facts generalize: If f € %,

pp?
d*(#,,RA) = d*(%,.,RA) = 2,
while .
d*(%,,, KA) =1,
d*(#,,KA) = d*(,,,KA) = 2.

Thinking of d* as a performance index, RA appears to be designed (i.e.,
performs well) for functions in =/, , while KA appears to be designed for
functions in %,,. This suggests some broad analogies with Bayes and minimax
problems in simultaneous estimation.

Section 9 discusses difficulties with overly broad interpretations of Section 8
and its predecessors. Chief amongst these is sensitivity of L% ®) measures of
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smoothness to boundary behavior. This is brought on by noncompactness of the
support of ®. Furthermore, the approximation theory results have to be trans-
lated into results on estimation in the case of noisy data obtained at irregular
sites. If the measure on X is far from Gaussian (e.g., uniform on the unit disc), it
seems that interesting and different behavior occurs, requiring further study.
Section 10 closes the paper briefly by discussing the relation of these results to
tomography and other work and areas for further research.

An informal summary without proofs of the results in this paper appears in
Donoho and Johnstone (1986).

Finally, we collect some notation for later use. Let t, a,x,(k), etc., denote
vectors in R? or Z% we use multiindex notation t* = tfighs ... tha) Kkl=
Rkl o Ryl (k| =Ry + o+, (7)=m!/(Rlks! - ky!) and so on. The
Kronecker delta sets: 8} = 1if & = [, 0, otherwise, and 8F = 1if k, = [, for all 7,
0, otherwise. a + b[n] means a is congruent to b modulo n. For partial
derivatives of a bivariate function D}f = d'f(x, y)/dx", Dif = 37f(x, ¥)/dy’,
and for d-variate functions D¥f = D}D}: ... DFaf. The Laplacian of f is
Af =X%D?2f=1Y,0%/3x% Finally, C(a, B,..., f,...) denotes a constant whose
value depejnds only on the arguments «, 8,..., f,... .

2. Best approximation by sums of ridge functions. The best approxima-
tion error obtainable by the projection pursuit scheme is given by the function f,
of the form

n
(2.0) f(X) = ¥ &(aX),
i=1
minimizing || f — f,||%, where, as remarked in the introduction, || - || represents the

norm of L%(®,). In general, this is a difficult problem because it depends in a
highly nonlinear way on the directions §,. However, when the directions are
fixed, the problem reduces to a least-squares problem. Because we are working in
L?(®,), the solution has a convenient representation in terms of Hermite polyno-
mials: The Hermite expansion of each of the g, can be found by solving one
least-squares problem of rank d for each degree d in the expansion of g,. In the
special case where the directions are equally spaced, each of these least-squares
problems has a particularly convenient structure arising from the circulant
nature of its design matrix.

This section has three parts. The first reviews basic facts about Hermite
expansions and projections. The second describes the solution to the approxima-
tion problem just stated. The third specializes to the case where the directions
are equally spaced.

2.1. Hermite polynomial expansions. The Hermite polynomials of a single
Gaussian variable form a complete orthogonal set in L%R!, ®,) and we use the
definition

1
(2.1) H, = ¢—(—D)”’¢1, m >0,
1
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where D denotes differentiation and ¢,(x) = (27) /2%~ *"/2, They satisfy the
orthogonality relations

(2.2) (H,,H) = E[H,(X)H,(X)] = k!8};, k,1=0,

where 8F = 1, if k = [, and 0, otherwise.

Suppose now that ®, is standard Gaussian measure on R? with identity
covariance matrix and mean 0. Since the components of X = (X,,..., X,) ~ &,
are independent, a natural choice for a complete orthogonal basis for L% ®,) is

d
H, (x) = l:-[lHk,(xi)’ k = (ky,..., ky) € Z9.

The generating function for {H,} is
exp{ —1/2(1t|> — 2t - x)} = Y t*H,(x)/k!, teC? xeR",
k

and, because of independence, the obvious analog of (2.2) holds:
d
(2.3) EH, (X)H,(X) = 8Fk!= 8],
i=1

The space £, of polynomials in d variables of degree at most m is spanned
by the basis elements Hy(x) of degree |k| = L%k, < m. For m > 1, define P to
be the orthogonal complement (with respect to the inner product (f,g) =
Jfgd®,) of £, | in 2, and let 2§ be the space of constant functions. The
orthogonality relations (2.3) show that 2? consists of polynomials ¥, a, H, for
which a, # 0 only if |k| = m. Hence P2 is identical to the space of pure or
homogeneous Hermite polynomials of degree m (sometimes called Wick polyno-
mials in the statistical mechanics literature). An arbitrary function f € L% ®,)
has an L2-convergent Hermite expansion

f= chHk7 ¢y = EfH, /k!.

By grouping all terms of pure Hermite degree m into a degree m polynomial
fimy € 22, we may also write

f = Zf(m)'
m
Hence L*(®,) splits into the direct sum of orthogonal subspaces 2 and so also
(2.3') IFNZ = 20 Fomyll®
m

A well-known identity expresses a ridge polynomial of pure Hermite degree m
in terms of the basis elements H,(x) of pure degree m. We have

(2.4) H(a-x)= Y (’f:)quk(x)

flej=m

and its special cases

m
(25) H,(xcosf + ysinf)= ) (’Z)coskf)sin’"‘kOHk(x)Hm_k(y).
k=0
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The proofs can exploit either the generating functions or the definition (2.1) [e.g.,
McKean (1973), page 200].

A basic projection formula. 1If a single direction a is to be used in (2.0), then
the best ridge function approximation to f(x) € L%(®) in direction a is
E[ f(X)|a * X = a * x]. This connection between ridge approximation and condi-
tional expectation indicates the usefulness of the following formula that is quite
special to the Gaussian measure, but see also Davison and Grunbaum [(1981),
Section 4].

LEMMA 2.1. E[Hy(X)|aX] = o*H (aX), |o| = 1, k € Z¢.

Since H,(a +X) is a polynomial in £, the result says that conditional
expectation carries 20 into 20. It allows us to analyze the actions of projections
on each subspace separately. For the proof simply evaluate the conditional
expectation

(2.6) E[exp{ - 1(t)? — 2t + X) }|a - X]

of the generating function of {H,} and equate terms in the resulting series
expansion.

COROLLARY 2.2. Ford =2,
E[H,(X)H,(Y)Xcos 6 + Ysin6] = cos*§ sin’ 6H, , (X cos 6 + Ysin§).

2.2. Best approximation by sums of ridge functions. Let f(x) € L*(®,) and
consider the best ridge function approximation g(x) having the form (2.0) using
n directions {8, ..., 0,_,}. Quality of approximation is measured by mean-square
error with respect to standard Gaussian measure on R% Both f=Xf,, and
& = X&) have decompositions into sums of polynomials of pure Hermite degree
k [and each g, has the form g, (x) = Yriide; nHy(0; + x), with the constants
{ci »} to be determined]. From (2.3") we find

NF—gll>= X llfw — &nl*
k=0

so that the least-squares problem decomposes into a collection of simpler least-
squares problems, one for each degree k.

We may, therefore, focus on a fixed degree, m say, and will now also restrict
to d = 2 dimensions. We abuse notation a little by setting 0, = (cos §,,sin ;) and
x = (x, y). The problem is now to fit to f € #? a function g of the form

n—1
(2'7) g(xr y) = Z ciHm(xCOS 01' + ySiIl 0i)r

i=0
where the constants c; are to be determined by least-squares. Write &, = h,(x, y)
for H,(x cos 6, + ysin8,): Then least-squares solutions ¢; are obtained from the
normal equations

(2-8) Z<hi’ hj>6j = <hn f>,
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where (f, g) = [[§d®,. Let us compute (h; h;) = EH,(0,X)H,(0,X). Since
.,S”(X) is orthogonally invariant, we may equally well replace 6, and 8, by

= (1,0) and 6,_; = (cos(8, — 6,),sin(8; — 6,)), respectively. Thus primed, we
can apply the prOJectlon lemma via Corollary 2.2 to find

(h,, h;y = E{H,(8,_,+ X)EH,(X,6, ;- X)}
= cos"‘(0- - 0~)EH2(0j7, - X)
= m! cos™(§; - 6;).
Thus an 1mp0rtant role is played by the n X n information matrix I' = (I[[) =
(cos™(0; — 6))).

2.3. Equally spaced directions: The spectrum of T'™. When the directions
are equally spaced, we may take 0, = iw/n, for i = 0,1,..., n — 1. [Of course, 6’
and 7 + 8’ correspond to the same direction, so it suffices to pick 6, € [0, 7).]
Thus T;; = cos™((i — j)7/n).

Hence I;; = z(i — j) with 2(j) = cos™(jm/n) and 2(j + n) = (—1)"z(j). So
I' is a circulant matrix when m is even. To unify the treatment of the cases m
odd and m even, introduce the 2n X 2n matrix,

I'=(T,) = cos™ ((l—j) ) 0<i, j<2n-1.

f:( T (—1)”‘r)
(-1)"T r

and that T is a circulant for all values of m. Now observe that if (v, (=D™yHis
an eigenvector of I' with eigenvalue A, then y is an eigenvector of I' with
eigenvalue A /2.

Let A, = 27wk /2n denote the kth Fourier frequency associated with k € Z,, =
{0,1,. 2n — 1}. Being circulant, I' has eigenvalues given by the discrete
Fourier transform on Z,, of {2(j)},

Note that

2n—1

2(\,) = Y e wlos™(jm/n),
j=0

and has corresponding eigenvectors

(2.9) e = (0a(1))720" = (e7™);

see, e.g., Brillinger [(1981), page 73). Let us apply this to the eigenstructure of T.
Since ¥,(j + n) = (—1)*5,( ), we may write ¥, = (w,, (—1)#w,,). Therefore, w,

is an eigenvector of I for those k£ € {0,1,...,2n — 1} for which (—1)* = (- 1)™
For such k, :

Wi, = (w,()))}2 = (e7™)

are eigenvectors for I' corresponding to eigenvalues

n—1
G =2(\)/2 = ¥ e Mieos™(jm/n).

Jj=0
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It is helpful to think of {{™ in terms of a simple symmetric random walk on
Z,,, in particular the copy A of Z,, having elements {Ay, A|,..., A,,_;}. Let p
denote the probability distribution assigning mass ; to A, (of course, all
addition is now modulo 2n) and write p*™ for m fold convolution of p. Write
wV(j) = (2n) 1L le™w(A,) for the (inverse) Fourier transform of a func-
tion defined on A: The point is that cos j7/n = 2npY(j) and hence 2(j) =
cos™(jm/n) = 2n(p*™)"Y(J). By the inversion theorem, therefore,

5(7\k) = 2nP*m(7\k)~

In terms of independent, fair, +1 Bernoulli variables Uj,..., U, with sum S,,,
we have

2(\,) = 2nP(S,, = k[2n]).

Note that for m odd (even) p*™ (and S,,) is supported on odd (even) values of
Z,,, so that Z(A,) vanishes for all even (odd) values of &,

Return now to the spectrum of I': {{{™} are proportional to the probabilities
of those points & € Z,, with the same (odd /even) parity as m. Hence

rank ' = |supp S,,| = (m + 1) A n.

The proposition below summarizes the discussion.

PROPOSITION 2.3. The n X n matrix T™ = (cos™((i — j)m/n)) has eigenval-
ues {{™ = nP(S, =k [2n]), where k runs over the n integers in {0,1,...,
2n — 1} for which k= mmod2. Clearly {{™ = ¢ and the corresponding
eigenspace is spanned by the vectors w;, = (u,(j))'Zg = (cos A, j) and v, =
(v(JN}=g = (sin X, j). These spaces are two-dimensional unless k = 0 or n, in
which case v, degenerates to 0.

3. Best ridge function approximation of radial and harmonic functions.
This section applies the tools just developed to the analysis of radial and
harmonic functions. These two classes of functions, as suggested in the introduc-
tion, represent extreme cases for approximation by sums of ridge functions. The
section has two parts. The first describes best approximation to radial and
harmonic polynomials, while the second develops asymptotic tools to discuss
approximation to general radial and harmonic functions. Then follows the result
discussed in the introduction, namely that the effective dimensionality of radials
is only 1.5 for RA, while for harmonics it is the same as the nominal value 2.

Although the section title refers to best approximations, we actually compute
only best equispaced approximations. In fact, we believe these to be best
approximations for radials and harmonics in £, but we do not prove this here.
(However Davison and Grunbaum [(1981), Section 9] contains a counterexample
in a related but different setting.) The motivation for studying harmonic and
radial functions only becomes clear in Section 4. We will make a few forward
references to results there.

3.1. Approximation of polynomials. Consider first radial functions f(x) =
g(|x]) and use n directions equally spaced about the circle: Without essential
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loss, we shall take 6, = iw/n, i = 0,1,..., n — 1. These directions remain fixed
through the rest of this section. In view of the discussion of Section 2.2, we will
first study the case where f(x, y) € 2°. Note that for f to be a radial polyno-
mial, m must be even. We need to fit to f(x, y) a ridge sum of the form

R n—1
(31) fn = Z éL'hi?

i=0

where h;(x, y) = H,(x cos §; + ysin8,) and {¢é} are best in a least-squares sense.
The normal equations (2.8) become (in the notation of Section 2)

Té = c,l,

where c,, = (f, h;)/m! does not depend on i because f is radial. But 1 is an
eigenvector of I' corresponding to the eigenvalue {, = nP(S,, = 0 [2n]) (Proposi-
tion 2.3), so that we may take ¢, =c,, /¢, (The solution is not unique if
m<n-—1)

The total variance explained by the best n term approximation is, therefore,
2

IFl12 = c Vi¢i

n—1
L A
i1=0

= m!eZl'T™1/¢8 = m!c2 /P(S, = 0[2n]),

again because I'™1 = {1

What is the percentage of || f||? explained by fn? Any polynomial in 2?2 can
be represented using m + 1 directions: 20 is an (m + 1)-dimensional space,
and (2.9) shows that I' is nonsingular, confirming that the family {4 o
is in this case linearly independent. In particular our radial function f =
frns1» and we have the first part of Proposition 1.1:

Ill* _ P(S,=0)
171> P(S,=0[2n])

[ l[(72) 2l ") + o an) =]

where we have used the binomial formula for P(S,, = ).

Conversely, fixing the number of directions, one can obtain information from
(3.2) about how much the fit deteriorates as the degree m increases. This was
done numerically for various values of n and m in Tables 1, 2 and Figure 1b in
the Introduction. Asymptotics appear later in the section.

Now let us turn to harmonic polynomials and consider their approximation by
ridge functions in equally spaced directions 6, = 6, + jm/n, j=0,1,...,n — 1.
Again, we first consider an arbitrary harmonic f belonging to #2: Write it as
f = Re(az™), where a = sge'™® € C. The quality of approximation of f may
depend on §,, but we will set 6, = 0 as this is equivalent to replacing ¢, by
@0 = bo.

A best approximation fn = ¢-h =Y¢h; is again given by a solution of the
normal equations (2.8). To compute (4;, f ), we borrow from Corollary 4.2 the

(3.2)
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identity E[Z™(6, - X] = ei'"ome(Oj + X) and calculate
E[Z™h;] = e™EH?(6; - X)
imf,

=m!e'™ = mlw(j),
n—1

where w = (w(j))}Z, is an eigenvector of '™ associated with the eigenvalue
¢ =¢™nP(S,, = —m [2n]) in Proposition 2.3 [cf. also (2.9)]. Thus a solution of
the normal equations is given by

é = —Re(aw).

§

The total variance explained by the best fit using n directions is
I £I12 =1¢ - h|j? = méTe

m!

(3.2) I

Re(aw)|?

_ m! o 1072, m#0[n],
P(S,=-m[2n]) © | (Rea)’, m=0[n],

sincew=u+iv,ulv, [u?+|vi2=nand [u>- v =nl{m=0 [n]). It
can be seen that the orientation 6, of the equally spaced directions affects the
quality of approximation of fn only when m is an integer multiple of n—in these
cases best approximation occurs if 6, = ¢,. Henceforth, we shall assume that
6, = @,, so that Re a in (3.2') can be replaced by |a|%. Formula (3.2') can then be
rewritten in an unified way by noting that #(S,, = —m [2r]) = P(S,=m
[2n]) because of symmetry, and that —m = +m [2n] only when m = 0[n]. We
obtain

| £l2 = m!la2/2(8, = +m [2n]).

As in the radial case, f can always be represented using n = m + 1 directions,
so that f=f, ., and
(3.3) 15> (S, = £m[2m + 2])

' > 2(8,=+m2n])
which is equivalent to (1.4) and completes the proof of Proposition 1.1. This
expression contrasts markedly with (3.2), involving (equivalence classes of) the
extremes of the support of £(S,,) as opposed to (equivalence classes of) the
mode of £(S,,). Again, we can explicitly study behavior as a function of degree
m and number of directions n.

3.2. Some asymptotics. It is already evident from (3.2) and Figure 1b that a
relatively small number of directions suffice to approximate well a relatively high
degree radial polynomial. To see how high the degree can get, it is helpful to
derive some central limit type bounds for the binomial probabilities involved.

LemMma 3.1. If |v| < m /2, then
(3.4) e(n,m,v) = P(S, #»S,, = v[2n]) < CiVme 2n(n-1"D/m,
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ProoF. Assume without loss of generality that » > 0. Then clearly
e(n,m,v) <2P(S, <v—2n)/P(S,, =»)

< 2exp{—2(2n — »)’/4m} /P(S,, = »)

by Hoeffding’s inequality [Hoeffding (1963), Theorem 2, and Pollard (1984), page
191]. Since for v < m /2, P(S,, = v) > com™ /2 exp{ —v%/2m}, as may be checked
from Stirling’s formula; this gives the result directly. O

From (3.2), if f is a radial polynomial of pure Hermite degree m, then by
substituting » = 0 in (3.4), we find that the percentage of unexplained variance
using n directions is

(3.5) If = FIPAFI2 < Cme2m/m,

which is vanishingly small for large n if m(n) < (2 — ¢)n?/log n. Thus for a
homogeneous radial polynomial f of degree m, an excellent approximation is
possible using N ~ y/mlogm coefficients as opposed to the m + 1 coefficients
that occur if f is simply written out in terms of the basis H,(x)H,,_.(¥).

To extend these ideas to general radial functions in L%(®,), consider the
expansion

(3.6) f(r) ~ X vR(r),

S even
>0

where R (r) are orthogonal radial polynomials of degree s and norm 1. [In the
notation of Section 4, R(r) =T, ; o(7)/IIT; 2 .l As is well known in
classical Fourier series, conditions on the rate of decay of the coefficients in (3.6)
correspond to smoothness conditions on f. Here is a version of these results
adapted for our later use (and proved in Section 5); P, denotes projection onto
polynomials of degree at most m.

LEMMA 3.2. If m > p, then
p p )
mlf = BufI* < B, X (% JIDiDp 12,
i=1

Let #, denote the class of functions f having p derivatives in L*(®,). An
approximation P, f using a bivariate polynomial of degree m involves N =
(m + 1)(m + 2)/2 = O(m?) coefficients and leaves an error of order m™? =
O(N~7/%), In the language of the Introduction, we have a rate of approximation
and effective dimensionality

(3.7) r*(#,,PA) =p/2, d*(%,PA)=2,

where PA stands for polynomial approximation.

Suppose now that f is radial. Let us compute by contrast to (3.7) the
approximation error of a degree m ridge function approximation to f using n
(equally spaced) directions: We denote this by R, ,, f. This involves N = mn + 1
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coefficients. Denote by R s, » the best n (equispaced) direction approximation to
R_: We have from (3.5)

If = RumflI®= 2 ¥R, = R, I*+ X ¥R,
s even s>m
s<m
<C Y y¥se /s + CymP
s<m

< C|| fIIVme 2" /™ + CymP.
If we now set m = m(n) = n?/8 log n, we find for sufficiently large § and N,
1 log” n

- +
I f mflI?<C nzs_l‘ﬂog—n 2P
< C(N/log N) "'

where C depends on f and 6.

Ignoring log N terms, for the subspace %, of radial functions within %, this
leads to the improved rate and dimensionality results claimed in the Introduc-
tion,

r*(#,,RA) =p/15, d*(%,,RA) =15.

The asymptotic woes of equispaced ridge approximation for harmonic func-
tions are readily derived from (3.3). Suppose that m > n: Then clearly there
exist integers 4+ with |j| < m — 2 for which j = m or —m[2n]. Therefore, we
must have for / harmonic in 22,

P(S, = +m[2n]) = P(|S,|=morm — 2),
and hence,
P(|S,| = m) 1
P(S,|=morm—2) m+1"

(3.8) I FI2AF N2 <

Thus even if only one less direction is used than is needed to perfectly represent

f as a ridge sum, the percentage of variation explained is still negligible.
Consider now a general harmonic function f, decomposed into polynomials f,

of pure Hermite degree k: f = ¥, f,. The best degree m equispaced ridge ap-

prox1mat10n to f using n directions 6, + jm/n, j=0,. -1,is R, ,.f =

. fk - For any choice of §,, fk . fk for k < n,and by adjustmg b, as in the
dlscussmn before (3.3), we can ensure that f = f,. Therefore, on using (3.8) for
n < k < m, we find

1= RumfIP=" X W fx=Foul® +1f = PufII?
(39) k='r;+1
> P f—PflI2+f—-P,fl>
— 1B f = Puf I+ 11 = Puf

Thus, for example, if N = m2/2 coefficients are used to approximate f using a
polynomial of degree less than or equal to m, then the approximation error is
Wf—P, f||2 whereas if n < m, equally spaced ridge directions are taken, and
the best ridge approximation of degree m?/2n is used, the approximation error
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is, by (3.9), at least

n 9 9 n
i1 Pmeanf — BufIF If = Przjon FII° =

n+1

”f - Pm.ofHZ‘

So, in a very strong sense, equispaced ridge approximation for harmonic func-
tions does no better than the use of bivariate polynomials, whose rate of
approximation is p/2 and whose effective dimensionality is 2 in general [cf.
(3.7)]. This completes the proof of Proposition 1.2.

4. A basis for L>(®,). The results of the last section raise several questions.
Are radials and harmonics extreme cases for ridge approximation? Does the good
performance of RA carry over to broader classes of functions than just radials?

This section describes an orthogonal basis for L% ®,) which is orthogonally
equivariant, just as is the problem of approximating by sums of ridge functions.
It exhibits harmonics and radials as special elements, behaves conveniently with
respect to projection, and it gives a convenient representation for various
differentiation operators. These properties are the building blocks for our main
results in later sections.

We will write the two coordinates (x, y) in complex form z = x + iy = re”
and use the commuting differentiation operators D,, D, defined by

oL oL, .
== -i— = —|— +i—]|.
2 2\ ox lay’ 2 2\ dx lay

Dz=Dz=1, Djz=Dz=0.

Note that

The basis consists of (complex) polynomials defined for integers, &, [ > 0 by
(4.1) (2, 2) = e”/z(—2D2)k(—2D§)le‘zz/2,
which have generating function
sk ¢l

(4.2) G(s,t) =Y, Tl FJk’l(z’ Z) = exp{sz + tz — 2st}.

kv 1 . .
The second equality may be seen by the following formal calculation, which
relies on the commutativity of the operators (to apply the product law for

exponentials) and the properties of the univariate Hermite polynomial generat-
ing function,

. —2sD)* _ (-2tD.)"
(s, 1) = ezzﬂz( ) Z( ) R
= k! =~ 1!

— ezE/Ze—2sDz—2tDZe—zz/2

2.2 _ s (202

=e(x +y )/2e uD, wDye (x“+y%)/2 ( =S+t,0=t—8)
— e—u2/2+uxe—(iv)2/2+ivy
= e—(23t—s§—tz)
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The usual argument [based on computing the product generating function
G(s, t)G(s’, t') in two ways, using the independence and Gaussianity and equat-
ing coefficients] yields the orthogonality relations

(4.3) EJ, (2, 2)d,,(2,2) = 8k8LR1112F+L,
Generating function methods further yield the identities
Jkl(zy 2) = Jlk(z7 E)y

(4.4) D,dy, = le,l—v
D.dJ,, = ka—1,1~
The J,,, k < [, are orthogonal polynomials in z and z of degree k& + I. Since
(4.5) (—2D,)e /2 =ze %%/2,  (—2D,)e /% = ze”%*/2,
it is clear that
Jop = 2k = rketkt, Jpo = zk = phe— k6,

Thus J,, and J,, are holomorphic and antiholomorphic, respectively. In partic-
ular, the real and imaginary parts are harmonic. The usefulness of the {J,,} in
Gaussian projection computations comes partly from their representation as a
product of a circular harmonic and a radial polynomial,

sz(z’ 2) = Sl—k(a)Tk,l(r)

kAL
(4.6) = pill—k)8 ﬁ (k)( l‘)j!(_2)l'rl+k2j.
VALY

[To see this, use (4.5) repeatedly in the definition (4.1) of J,;, together with
Leibniz’s formula for computing D*( fg).] Thus o, 1 1s a real radial polynomial
of degree 2k. The orthogonality relations (4.3) show that T}, , is related to the
Laguerre polynomials, L$(?), e.g., Szeg6 (1939), by

(4.7) Ty, k+o(r) = vareLi(r%/2), a>0,
where vy, = (—2)*k! This yields the alternative representations
Ju(2,2) = v2°Li|2?/2)  (a=1-£k=0)
= yietraLg(r/2),
which are occasionally more revealing than (4.6) or (4.7).

REMARK. It turns out that related forms of the J,, basis have also been
exploited by workers in tomography, plasma physics and holography. Deans
(1983) (Sections 3.8 and 7.7) has some development and references.

Differentiation. As is already apparent from (4.4), the {J,,} basis affords a
convenient representation for various differentiation operations discussed in the
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next section. The formulas, collected below, are simple consequences of (4.4) and
(4.6):

D,y =kdy_, + Uy 1y, D,y = ildy g — ikdy_y s

(4’7') Ady = 4D,D;J,, = 4kUk—1,l—1’

Dy, = =i(l - k)Jy.

3
30

Expansions. For k>0, 1> 0and % + I < m, the J,,(z, z) form a basis for
the space of polynomials in z and Z (equivalently x and y) of degree at most m.
[This follows from the orthogonality relations (4.3).] Consequently {.J,;, &,

[ > 0} form a complete orthogonal basis and any (complex-valued) function
f € L% ®,) may be written

= X cudu
k,1>20
where c¢,; and J,, € C.

Our primary interest lies in real-valued functions, so we add the restriction
¢, = Cp;, which implies that ¢, J),= c,,J,, and hence guarantees that f is real.
Then the real and imaginary parts J; + iJp, of {J,;, k+1=m, k <1} form a
basis for 29, the space of (real-valued) polynomials of pure Hermite degree m
defined in 2. With these conventions,

(a) f isradial iff ¢,, = 0 for & # [;
(b) f is harmonic iff ¢,, = 0 whenever both k& # 0, [ # 0;
(¢) f is polynomial of degree at most m iff ¢,, = 0 for & + [ > m.

A projection formula for J,,. 'The following projection formula is fundamen-
tal. It shows that the angular part of oJ,,; is preserved under projection onto a
line, while the radial part maps onto the Hermite polynomial of matching
degree. Let 0 = (cos §,sinf) and X = (X, Y).

LEMMA 4.1. E(J, (2, 2)|0 X =t) = e““"PH, ,(¢).

A short proof can be given using the generating function (4.2): G(s, t) =
exp{sz + tz — 2st} = exp{B * x — |B|?}, where B = (s + ¢, i(t — s)) € C2 For
real vectors 8 € R, Z(B - X|6X) = N(6B)(6X),|8|> — (68)?) and hence

E(G(s, )8+ X) = E(ePX-15%/2)9 . X)
- e(e-e>(0~X>—(0~B>2/2

—z LIS

The above identities extend to B € 02 by analytlc continuation. Finally, since
0B =se ?+ te? the result follows by expanding the powers, rearranging and
equating coefficients.
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COROLLARY 4.2. E[Z™0+X = t] = e'™H,(t).

Illustration: Best approximation by a single ridge polynomial. The role of
harmonic functions as worst cases for projection pursuit approximation appears
in simple form already at the initial stage of fitting the first ridge function. For a
square integrable function f € L%*(®,) the best ridge function approximation in
direction 8 = (cos 8,sin @) is P,f(x) = E({(X)|8 + X = 0 + x). The best direction
is then found by maximizing S(f,8) = || B, f||*> = E[ P,f(X)]%. The percentage
variationn explained by the first ridge function is, therefore, A(f) =
max, S(f,8)/||f||% A virtue of the basis {¢J,,} is that A(J) and A(J};) can be
readily calculated from Proposition 4.1:

A(Jkol) = A(Jklz) = mglx COSz[(l - k)l)]E[H,f”]/E[JkOJV

(48) _ (k + l)' {21—121, b+ l,
BT \9-*1 k=1

The worst cases amongst the basis functions of a given degree £ + [ = m are,
therefore, the harmonic polynomials J%, = Re(z™) and J,., = Im(2™).

This calculation can be extended to show that harmonic polynomials of degree
m are worst, first amongst all polynomials of pure Hermite degree m, and then
amongst all polynomials of degree at most m.

5. Smoothness classes for L?(®,). Because the differentiation operators
have such simple representations in the <J,; basis, it is easy to define and to study
Sobolev-type measures of smoothness in L%(®,). This section describes three
such measures: ordinary (or Cartesian) smoothness, angular smoothness and
Laplacian smoothness. These can all be expressed as simple quadratic forms in
the coefficients of a function’s <J,, expansion. Moreover, relations between these
are easily derived. Cartesian smoothness implies a certain amount of angular or
Laplacian smoothness. However, the reverse implications do not hold. Moreover,
for a given amount of Cartesian smoothness, the angular and Laplacian smooth-
ness are complementary. Also, radials have the most angular, and least Laplacian,
smoothness for a given Cartesian smoothness, while harmonics have the most
Laplacian, and least angular smoothness. It is the notions of angular and
Laplacian smoothness that are crucial for generalizing the results of Section 3.

Three notions of smoothness. Our definitions of smoothness are of the
traditional Sobolev-type. Let D* denote the partial derivative operator with
index k = (ky,..., k,). (d > 2 occurs in Section 7.) Say that f has p (local)
weak derivatives if for every multiindex k of order |k| = &, + - -+ +k, = p there
is a locally integrable function D¥*f such that [ D*f = (—1)?/f D¥¢ for all test
functions ¢.

The function f € L%(®,) will be said to have Cartesian smoothness of order p
if it has p weak derivatives, and these derivatives are all in L*(®,). It will be
said to have angular smoothness of order g if it has ¢ weak derivatives and
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Dg#f € LY ®,). Finally, it will be said to have Laplacian smoothness of order r if
it has 2r weak derivatives, and A'f € L%(®,).

Moment representation of smoothness conditions. These definitions are
equivalent to simpler moment conditions on the expansion of a function in the
Jy; basis. Of the proofs we present only the computational aspects that relate to
Gaussian measure, as everything else involves standard arguments [as in, for
example, Gilbarg and Trudinger (1977), Chapter 7). Let f € L*®,) have the
expansion Xc;,J,;. Because

IF12 = Xlerl®ll il
one can think of |c,)|%||J,,||?> as representing the distribution of energy in f
among the different modes of oscillation J,;,. Let p,,(f) denote the probability

distribution on the upper half of the positive integer quadrant {(&,7) € Z2:0 <
k, 1} defined by

2 2
P & [epl*llJpll

and let E denote expectation with respect to this distribution. (Of course, when
f is real, the distribution is symmetric about the line £ = [.)

PROPOSITION 5.1. () f has p ordinary L*(®,) derivatives if E(K + L)?P < co.
(b) f has q angular L*®,) derivatives iff E|K — L|*? < co.
(c) f has r Laplacians in L*(®,) iff E[(KL)|K A L >r] < c.

Thus the measures of smoothness correspond to conditions on the distribution
of a function’s energy. As k + [ represents the sum of the radial and angular
oscillation of the basis element oJ,;, Cartesian smoothness requires small energy
at terms of high total oscillation. In order for a function to have angular
smoothness, its energy should concentrate at low values of & — [: low angular
oscillation.

Proor. (a) Using the multiplier representation (4.4), we have [if a + 8 =p
and (I),=Il-1)---(I—a+1) for [ > a and 0, otherwise] that DZ"‘DEBf =
Yep (D) o(R)pgdy_p 1o Hence

IDSDEFII* = Elewl* (D)o R)a(k — B)I(I = a)12hFrize

=277 Z|th|2(l)la(k)ﬁ||<]kt||2-
Applying the hypergeometric sampling identity, we get
D
(5.1)  (B)uDzDr=of 12 = 272 TiewlP(t + &)l il
a=0

From this, we see that f has p Cartesian derivatives in L*(®,) if E[(K + L),] <
00. Since

p? (k1)
= >
(P)p ~ (k+1),
this condition is equivalent to E(K + L)? < co.

1, k+1>p,
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(b) From (4.7"), one finds

(5.2) IDFF N2 = I cr, DiTill® = L1k — U chil* | Tpill
(c) Since A = 4D,D;, Ad,, = 4klJ,_, , ,, and so
Nf=4" ) cri(R) (1) s, 1ors
k,l>r
(5.3) IAF12 =42 ¥ lepl®(R) (1) H(k = r)i(L = r)t2krrir
k,l>r

=47 lepl®(R) (1) Il
Thus f has r L? Laplacians if E[(K),(L),] < co. Because
r¥r (k1)
> >
(r).(r), — (k).(1),

for k, I > r, this last condition is equivalent to E[(KL)|K A L >r] < ».0O

1

Relations between smoothness measures. It is now easy to establish certain
relations between the different smoothness measures. To begin with,
Cartesian smoothness implies a certain amount of angular smoothness. Since
E(K + L)? > E|K — L|* if p > 2q, a function f with p Cartesian derivatives
has at least ¢ = p/2 angular derivatives. However, if f is harmonic, so that
the energy in its expansion concentrates on the axes £ =0 and /=0, then
E|K — L|*9 = E(K + L)?%. Thus, harmonic functions can attain this lower
bound on angular smoothness for a given Cartesian smoothness: g = p/2.
In other words, for harmonic functions, if ¢ = p/2, then E|K — L|?? < oo iff
E(K + L)P < o0. Of course, radial functions have the most angular smoothness
for a given Cartesian smoothness (¢ > p and g = o« if f is C®).

Cartesian smoothness also implies a certain degree of Laplacian smoothness.
Since (k + 1)? > (kl)"if p > 2r, a function with p Cartesian derivatives L*(®,)
must have at least r = p/2 Laplacians. If f is radial so that its energy
concentrates on the diagonal & = [, then E(K + L)?" = 2¥’E(KL)". Thus radial
functions can attain the least Laplacian smoothness for a given Cartesian
smoothness: r = p/2. Of course, a harmonic function has the most Laplacian
smoothness for a given Cartesian smoothness: A f = 0, so A¥f = 0 for each & > 1.
(Thus r > p/2 and r = oo if f is C*.)

These results illustrate the extreme nature of harmonics and radials, but they
also suggest the complementary roles of angular and Laplacian smoothness.
Formally, we have

PrOPOSITION 5.2. If f € L% ®,) has exactly p ordinary derivatives in L?
then f cannot have both more than p/2 angular derivatives in L? and more than
p/2 Laplacians in L*(®,).

PRrROOF. The assumption states that for the probability measure { p,;} corre-
sponding to f,

sup{r: E(K + L) < o} =p.
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Now from the convexity of the function x — x? (for ¢ > 1), we have
E(K + L) =E{(K - L)* + 4KL)’
<297 'E{|K — L|*? + 49(KL)"}.

Thus if E(K + L)?7 = oo, then at most one of the terms on the right side can be
finite. It is possible that E(KL)? = co, but E[(KL)Y K A L > q] < oo. In this
case, for some r < ¢ we must have either E[LYK =r] = o or E[K9L =r] =
00. This however forces E|K — L|? and hence E|K — L|%9 to diverge. O

Smoothness classes and approximation rates. Consider now the smoothness
classes mentioned in the Introduction. The first is the class of %, of functions
with Cartesian smoothness p. The second is the class «/,, of functions with
Cartesian smoothness p and angular smoothness g. The third is the class %, of
functions with Cartesian smoothness p and Laplacian smoothness r. These are
linear subspaces of L%*(®,). Proposition 5.2 shows that Gy =y ps2=%p 2
and that for ¢ A r > p/2,

.
Mpq m"g’ppr < Fatgnr:

Figure 3 in the Introduction gave a schematic of the relations between the
subspaces in geometric terms.

The importance of smoothness classes comes in characterizing rates of conver-
gence of approximation procedures. For example, a function f € %, can be
approximated by polynomials of degree m with a squared error of order m™>.
This was asserted in Lemma 3.2; the proof is simple, using (5.1):

p
(m) Z Ickllz(k + l)P”Jkl”2
P R+il>m

m?P i p
< ——22 ¥ (D)IDr=ef | < C(p, ).

(m)l’ a=0 @

As a second example, if ||DJf || < oo, then f can be approximated by functions
with angular frequency less than or equal to p at a rate u~29. This fact will be
used in Section 6. Let f = Yc,;J,, and define the operator @, f = Lik-i=vcy .
Write f = f(r, 8) = £,e”°h (r) and note that

mP||f = P, f|* <

2

IDFf(r, )11 =| X (iv) e”’h,(r)
= Y v*e”’h,(r)|
and hence
2
o0 o0
(5.4) YR f| = X le”h,(r)I* < un?Dif(r,0)]>
ptl ] >p

The next two sections will show that «/,, and %, have similar significance
for the rate of approximation by RA and KA. Functions in &7, can be very well
approximated by RA when g > p/2; those in .%,, by KA when r > p/2.
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6. Ridge function approximation and angular smoothness. This section
uses the notion of angular smoothness to extend the results of Section 3. The
basic result is as follows. Let R, ,, f denote the best ridge approximation to f
using polynomials of degree m in the equally spaced directions 6, = jm/n,
j=0,...,n— 1. As before, P, f is the best L* ®,) approximation to f by a
bivariate polynomial of degree m. Ja?p , denotes a weakly compact subset of <7,
of functions satisfying || f || < B,, £=0(:)||Df_kD;f I> < B, IDff || < B,.

THEOREM 6.1. If p/2 < q <p, there is a sequence m(n)= O(n~29/P)
[O(n?%/log n) if ¢ = p] such that the best equispaced ridge approximation

N—P/dD, ifp/2<q<p,
(N/log?N) ™" ifq=p,

where N = m(n)n is the total complexity of approximation, and d(q) =1 +
(p/2q9) € (15,2] for q € [p/2, p).

(61) Sl:lp”f - }en,m(n)f”2 <C

g

The theorem says that if f has p ordinary derivatives and angular smooth-
ness beyond the amount p/2 guaranteed by section 5, then approximation by a
sum of ridge functions leads to an improvement N~?/#4® gver the (usual) N »/2
rate of approximation. Indeed, if p = g, we have d = 1.5 rather than the usual 2
(up to logarithm terms). On the other hand, other methods of approximation are
not able to take advantage of increased angular smoothness. For ordinary
bivariate polynomial approximation of complexity N, we have

(6.2) sup||f — Ppxf > < CN7P/2.
Hpq

Indeed, one has this behavior at any radial function f € ,Jp - Results of Section
7 will show that KA is unable to take advantage of enhanced angular smooth-
ness.

It is possible to show that when p = g, the attained dimensionality 1.5 is the
best possible, at least for approximations based on projections onto linear
subspaces of L?(®,). This follows from the theory of n-widths [e.g., Pinkus
(1985)] applied to &7,,. So not only does RA take advantage of angular smooth-
ness, it does so in a nearly optimal fashion. In this sense, RA is a natural
procedure to use for approximating functions in Jz?p -

The intuition behind the proof has already been indicated in the Introduction.
Those basis elements J,, that can be well approximated by sums of ridge
functions are those where k£ + [ is small or |k — /| is small. Membership of f in
the angular smoothness class Ja?p , forces the expansion of f to concentrate at
just such basis elements. Thus, the proof breaks the approximation error into
two parts: one due to high angular and radial frequencies and the other at low
frequencies. Membership in pr , brovides an a priori bound on the high
frequency terms; the low frequency terms are studied directly. The basic tool is
Lemma 6.2, which gives the form of the best approximation to a single J,; using
n equispaced ridge functions. This tool can be used, for example, to compute the
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data for Figure 2a in the Introduction. The lemma shows that the best approxi-
mation to J,, can be expressed as a sum of J;, , all of the same degree,
k" +I' = k + l. As an equispaced sum of n ridge functions must have an angular
wavenumber n, the . , which enter in this representation are all the aliased
terms k' — I'" =k — I [n]. Armed with that lemma, the proof proceeds fairly
directly. Let b, = (7)27™.

LEmMa 62. R, ,J. =X 0B, ., Where

P(szm—Qr) A e ) B
B, = P(SmEm—2r0[2n])_[b ]’ if r=r,[n],

mry

0, otherwise,
and the percentage residual variance

IR = Jppm = rll?

n,m rollm ro ”2 — P(Sm +m — 2r0|Sm =m-—r, [2n])
6.2’ r" o
( ) bmr
=1- °
[bmro]

REMARK 1. For nonnegative integers a and & set r,=m/2 — a and n =
m/2 + k in (6.2") to find that the percentage of variance explained using n
directions is

P(S, = 2a|S,, = 2a [m + 2k]),

which equals 1 if and only if £ > a. An interesting consequence is that a degree
m basis polynomial o, 5_, , /2., Of angular oscillation « € {0,1,..., m/2} can
be exactly represented using m /2 + a + 1 (or more) equally spaced directions,
but no fewer. Thus a radial polynomial requires m /2 + 1 directions and a
harmonic m + 1 and the remaining basis polynomials interpolate between these
extremes.

REMARK 2. Let J; = (o m—ry + Im—ry, r,)/2 denote Re(J, ,_, ). The
analog of (6.2') for a real bas1s polynomial, namely,

IR

2
n,m ro m— roll
2
—rll

PVE (Jrg m-— "0) - “

C (S, = £(m— 20, = & (m — 21 [20])

involves a slight subtlety in that its derivation from (6.2) splits into two cases.
In the second of these, the real polynomial J? is approximated twice as

well (for given n) as its complex counterpart. If m - r(:o # ry[n], then the lattices
m — 1y + nZ and r, + nZ are disjoint, so that R, ,J, and R, . J,

are orthogonal. If on the other hand m — 2r, =0 [n] then the lattices commgleO
and R, ,.J, =R, .J In the following calculation, the factor {2} is

n,m“%ry, m—ry n,m%m—ry, ro*



PROJECTION-BASED APPROXIMATION 87

present only in the case m — 2r, = 0 [n]:
R (g + T )

PVEn((']rg,m*ro) - ”J _ + J _m¥r0|,|;0
IR, (g iy I
=2 Iy, mrg I

2P(S,, = m — 2r,)
2P(S, = m - 2r, [2n])/{(2)

P(Sm = i(m - 27‘0))
P(S, = £(m—-2r) [2n])’

Proposition 1.1 is an immediate corollary (set r, = m /2 and 0, respectively).

ProOF OF LEMMA 6.2. (1) The linear span (over C) of the ridge functions
H ( 01.‘ - ) for the equally-spaced directions 0;=jm/n, j=0,1,...,n — 1,is equal
to the space of functions L v,b,,.dJ, ,_, having periodic coefficients y, with
period n.

To see this, consider a ridge sum g = ¥§ 'c,H,(8/-) and express it in the
{;, m—,} basis: The coefficients v,(£)b,,, are found from {g, J, ,,_ >/l _,II%
and so from Proposition 4.1,

1 nl -
- —_ t
Yr(g) - m! chHm(er)"]r,m~r
o
n—1 )
— Z cje~t(m~2r)01.
j=0
From this the periodicity of v, is clear, and since the map from {c,,...,c,_,} to
{Yor-++»Yn_1} is a twisting followed by a discrete Fourier transform, it is

invertible; so our two spaces must be one and the same.
(2) Given an mth degree polynomial f, to find the best ridge sum approxima-
tion g of the form above, we must minimize

If—&l®= X0%1v.(f) = v(&)2J, m_,I?

over g. If f=d, ., _,, then v(f)=28//b,, and the task is to find the
n-periodic (complex-valued) function y minimizing

RSS = m! L 1Y, = 87 /by |-

The solution ¥ must have the form
) 0, ifr#rln],
= {c, ifr=rln],
and RSS reduces to the quadratic
RSS/m!= b, |c = 1/bp, |2+ 1c/*([ b, ]| = Bur, )-
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Minimization shows that ¢, = 1/[b,
for B, = ¥,b,, and RSS/|J, I%. 0

0 m—ry

r,] and leads to the claimed expressions

PROOF OF THEOREM 6.1. Let f € A, and define
n

QY= X cudu Q.f = 2 Qf, Q~”f=(I—Q”)f.

[l—k|=» y=0

Thus, @, is projection on the space of functions of angular degree at most p. We
have

1Rp mf = fI* < 21R, n@uf = QuFI + 2R, n@,f — @, fI*
Since R, ,, is a projection, the second term is bounded by
(6.3) 201Q, f11* < 2B,p~%,

where we have used (5.4). Now write £, = P,,Q, f for the projection of @, f onto
polynomials of degree at most m. We have, again since R, ,, is a projection,

“Rn,mef - Q;Lfllz =< 2“Rn,mfmu - fm,:.”2 + 2”(1 - Pm)Q;LfIIZ

Since P,, and @, commute and ||@,|| < 1, we may apply Lemma 3.2 to find that
the second term above is bounded by twice

(6.4) IQuIIf — P fII* < Bym™P.

Equations (6.3) and (6.4) establish that terms in the </,, expansion of R, . f — f
are small outside the shaded region in Figure 4.
To attack fm#, note that R </ contains only frequencies which differ

n,m%%ry, m—r
from those of ¢/, ,_, by integer ;)nultiples of 2n. If pu < n, there is then no

To

overlap in frequencies when R, , — I is applied to the terms in

mp = Z CriJrs-
ll—k|<p
l+k<m

FiG. 4. Hatched area: Set of J,, basis elements on which quality of ridge approximation (by R, ,,)
is studied.
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Hence from Lemma 6.2 and then Lemma 3.1,
”Rn,mfmp, - fm,L”2 = Z|Ckz|2||Rn,kaz - sz||2
= Ylepl®P(Spi # L= KIS, = L= k[2n]) |17
<C X Wkt le T ImE D, 2 )"

[l—kl<p
|+l <m

< Cfme 2 m/m f |12

Let now m(n) = n?/8logn and p = ne, for ¢ < 5. On collecting terms we

have

pl-280-0)

Vo logn ’

-2p
Roonf = 1175 Bne) ™+ B i €18y

So for & large enough,

n
R = 117 < €| o
ogn

log? N ’

where C = C(B,, B,, B;) and N = nm(n) is the number of coefficients used. For
the case g € [ p/2, p), the better bound given in the theorem is obtained by
going through the above paragraph with m(n) = n?%/?. 0

—2(qAp) N —qAp/1.5
) S ,( )

7. Kernel smoothing and Laplacian smoothness. This section presents
results on KA to complement those on RA. There are two basic ideas. First, that
the roles played by harmonics and radials for RA are reversed for KA. Harmon-
ics are well approximated by kernel procedures; indeed, because of the mean-value
property of harmonics, convolution with an isotropic kernel leaves a harmonic
unchanged. On the other hand, radials are a sort of worst case for the kernel
method. The following formula gives the relative squared error for smoothing o/,
with a Gaussian kernel of bandwith o:

5 % @y = Tpall” k”(l)(k)o”
[EAk AT

(7.0)

j=1

This formula provides useful insight. Notice that if [ = 0, so that 2 A [ = 0, the
sum is empty: There is no error at harmonics. On the other hand, for a given
(even) degree m = k + [, the sum will be largest at £ = [ = m /2: Radials are a
worst case amongst all degree m polynomials for smoothing with a Gaussian
kernel. The formula was used in preparing the contour plot Figure 2b.

The second main idea is that via smoothness classes, one can generalize results
for radials and harmonics. For kernel smoothing, the key notion is Laplacian
smoothness. For an appropriately chosen kernel y, Laplacian smoothness beyond
that guaranteed by ordinary Cartesian smoothness will provide a better rate of
approximation than that provided by ordinary Cartesian smoothness.
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The results obtained are thus in direct analogy to those for RA. In fact the
theory below is developed for more general classes of isotropic kernels, which for
technical convenience are assumed to have compact support.

Let y/(|x|) be a radial (isotropic) kernel on R? with the properties:

(i) Y=0, if|x|>1,
(7.1) (i) Sty ax =1,

(iii) [l (sl de =0, i=1,...,r-1.

We shall denote by ., the class of such kernels. Variation diminishing proper-
ties of the kernel ¢' show that ¢ — y(t) must have at least ¢ — 1 0’s for
t € [0,00) and hence at least [¢/2] sidelobes [Karlin (1968) and Brown,
Johnstone and McGibbon (1981)]. For functions f € L% ®,), we wish to study
the bias of kernel smoothers based on ¢ as a function of bandwidth o. So set

¥o(1x]) = 0~ %Y(|x| /o) and
faolx) =frig(x) = /f(x - 02)y(|2]) dz.

In fact, the choice to work within L% ®,) below is made only to facilitate
comparison with the results for two-dimensional sums of ridge functions in
earlier sections: The conclusions below pertain to both approximation of smooth
functions and to approximation in L%R?). A bothersome technical point arises
because ® is not shift-invariant: f,, need not have finite norm even though
f € L¥®), as is illustrated by f(x) = [¢(x)1 + |x|¢*1)]" /2 Let S, denote a
shift operator: (S, f)(x) = f(x — u). Writing s#= L¥®), we introduce a (non-
closed) subspace " [also denoted SL%(®)] whose members have integrable local
shifts:

H' = {f € #: for some h > 0, Sin fEH,i=1,...,d}.

Let || {113 = 11|+ Z,enllS,fI%, where I = (+e,i=1,...,d}. Thus f €'
if and only if ||f||% < o for some positive A. Corresponding subspaces
Gy A g £y, of the smoothness classes #,, o, , £, are defined in the obvious
way. The following lemma bounds the norm of a kernel smooth of a member
of 7.

LEmMMA 7.1.  If Y has supportin {x: |x| < 1}, if [|Y(z)|dz = Band h > ¢Vd,
then )

(7.2) I xqll2 < cuB2%™ /% fI2.

We defer an interpretation of the following results to samples drawn from ®
until Section 9.
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Stated for L% ®,), our main conclusions can be summarized as

THEOREM 7.2. (i) If f has r L? Laplacians in SLX(®) and € X;, then
1 fae— FlIZ=C(d, ¥, )™ |AF|*(1 + 0(1)).
(i) If & = ([ € #": |&f |1} < By}, then
sup || fx, = [ 2 < C'(d, ¥, 7, By)a™.
fes
The following simple corollary is an analog, for kernel approximation, of
Theorem 6.1.

_CorOLLARY 7.3. Let %= (fe€F L,DDP~" ||* < By}, Z,.,={fe
%, |AF 11} < By} and € X}, 5. Then

(i) supg||f 4, — f|I* < Co®?, C = C(¥, p, B,) and
(i) if ¥ €KAo\ Hpypia and |AP72f |12 > 0z, then

hm 0—2p” fro— f“2 = (fll/p/&l(x) dx) ||AP/2f“2 >0,

where {, ,, | is defined before Corollary 7.5 below.
Together (1) and (ii) imply
sup|| f, = f||* < Ca®P.
‘g;"/
(i) If p/2 < r < p and € X, then
SElp"f*o_f"2SCO4r7 C=C(‘I/’r’ BO’ Bl)
2,,

REMARK. Part (i) of the corollary follows from (ii) of the theorem because
Cartesian smoothness of order p guarantees Laplacian smoothness of order p/2.

Part (ii) says (roughly) that if y(#) has no more than p/2 — 1 0’s in (0, o],
then the rate of convergence over 371,' is sharp, for example, a radial polynomlal
J,;, with degree k > p/2 has AP/%J;, = ¢4pdy_ s 1—pse # 0 and is thus approxi-
mated at rate exactly ¢2?.

Part (iii) represents the analog of the ridge function approximation result
(6.1). It recovers a faster rate, ¢*, for functions in the subclass .,? ' of 3‘" /
having extra Laplacian smoothness To obtain these higher rates however
kernels ¢ having more (at least r — 1) 0’s are also needed.

In Section 6, the usual rate of approximation was expressed in terms of best
approximation using a polynomial with N free coefficients. Since kernel smooth-
ing is not a projection, this benchmark is not available, and is replaced by worst
case statements of parts (i) and (ii) of the corollary.

PROOF OF FORMULA (7.0). Although (7.0) provides useful information, it is
somewhat tangential to the main development in this section, so its derivation is
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merely sketched. It is a remarkable fact (proved by applying the Fourier
transform twice) that Gaussian convolution on % is equivalent to rescaling:
w

k1 w
Jpi * Bo(w, @) = (V1 - 0?) Jkl( oo V1o

To expand the right side terms of </, ,(w,w), we exploit the connection (4.7)
between T, ,(r) of (4.6) and the Laguerre polynomials L} *(r?/2) and use a
scaling formula for the latter [Szego (1939), page 387]. The result is

AR\ (1 j
Ju* @=L (j)(j)j!(202) Sr—j,1-js
j=0

from which (7.0) follows. O

ProOF oF LEMMA 7.1. As in previous arguments, and via the Cauchy-
Schwarz inequality,

[1Pe s Bfdeolx) [ W) *(x = 0z) e

= B[ del¥(2) [dyoly+o2)] ().

Now exploit the inequality o|yz| < o|z| |y| < oVd max,|y| < kA max, |y, to find

é(y + 02) < c e IP/2rhmaxiy]

< cde"Q/2 Y o(y + u).
uehl

Substitution into the previous inequality yields the result. O
To prepare for the proof of Theorem 7.1, we establish some lemmas.

LeEMMA 7.4. Suppose that Y(|z|) has compact support and [ Y(|z]) dz = I({).
If f has two continuous derivatives, then

faolx) = f(x)I(¥) = 0®Af *y ,(x)

7.3
(7 = o [Af(x — 02)¥y ,(I2]) =,
where

¥i(s) = (TY)(s) = /fdrrd-w)[@(r) - 9(s)]
(7.4) - /{ Ly HED[E(eD - 9],

2-d _
g(r) = r /(2 d)’ d>2,
log r, d=2,
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Ty has compact support and ¥, (|z]) = 6~ %Y (|z| /o).
If Y(|x|) vanishes for |x| > R, then so does Ty.
If Y(|x|) is absolutely integrable, then so is (T )(|x|).

REMARK. If we formally take Fourier transforms of both sides of (7.3), we
get

fll/a - 8 = _477202|§|2f4’;1,07
where 8 is the delta function. On cancelling f , we are led to the definition,
b =T (= - 8/4n7k17) = (-8) (v - 9),

where 7! is inverse Fourier transform. This approach can be made to work:
A~! is a Riesz transform [Stein (1970), Chapter 3], but we shall use the direct
approach given below.

Proor or LEMMA 7.4. This is essentially a consequence of Green’s theorem.
First, set ¢ = 1 and write

fev(e) = 1) = [Tarr () [ dolf(x = re) = (@),

where z = rw, w € 8¢~ 1. Let » = »(x) denote the (outward) unit normal vector
to S9! at x € S9!, Using Green’s theorem and the assumed smoothness of f
and denoting by B, = B,(x) the ball of radius p centered at x, we get

Jawli(x = re) = f()] = [[do]  =j(x pu) do
roo af
= faee ], 5

= fordpp“deAf

- /deAf(z)[?(r) - %(|z - x|)].

Integrate over r and interchange orders of integration: The end product reduces
to (7.3). For general o, it is easy to show directly from (7.4) that (Ty,) = o%(TY),,
which yields the general form of (7.3). O

That Ty vanishes outside the support of ¢ is evident from the definition.
Now Ty (]x|) is continuous, except possibly at 0, and so to check integrability, it
will suffice to bound the growth of Ty at 0. If [|§| = A, then

o dv
T < —_
TGN < [ = [

12|

N WI(21) dz

< A9(s),
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which is integrable in a neighborhood of 0.
Denote by T the rth iterate of the map defined in (7.4) above, and write

¥, o(2) = 0" UTY)(x/0).

COROLLARY 7.5. Iff € C* and y € X, then
f*q - f = 0.27‘A7‘f * ‘ll/r,u‘

ProoF. If in Lemma 7.4 we substitute f(x) = |x|**2, o = 1, and evaluate
(7.3) at x = 0, we obtain

(7.5) (d+a)2 +a) [To(eizl"dz = [¥(=])izl"2 de.

When iterated, this identity shows that [T (|]z])dz2 =0 for i=1,...,r—1
[from (iii) of (7.1)].

We now apply induction, the preceding lemma establishing the case r = 1.
Writing out the result for r — 1, using (7.5) to check that I(y,_;) = 0 and then
applying (7.3) to ¢,_;, we find

frve—f=0""2 [N 7f(x — 02)y,_(2l) dz

= 0¥ %2 [A(Kf )(x = 02)T4, (J2]) de
= o2rArf * ‘Pr,o' .

ProOF oF THEOREM 7.2. For the first part, we begin by noting that the
equality

(7.6) e = FI? = o IAF %4, |7

extends from f € C? to f having r L? Laplacians by the device of regulariza-
tion: Let & be a C* function of compact support, k,(x) = e~ %k(x/¢), and study
the convergence of the smooth approximants f *%_ and their derivatives to f
[see, e.g., Gilbarg and Trudinger (1977), Lemma 7.2, or Stein (1970), Section
3.2.2].

The details of this standard method are explained in the references cited, so
we make only comments on the modifications necessitated by the use of a
nonshift invariant measure (®,). The two useful tools are:

(i) (convergence of regularizations) If f(x) € #’ and k(x) has compact
support with [k(x)dx =1, [|k(x)|dx < oo, then ||f*k, — f||> = 0.
A standard proof [see, e.g., Stein—Weiss (1971), Chapter 1] uses the bound

(1) Ifxk, = fll < [wy(se)lk(s)l ds,

where w;(t) = |IS,f — I <|IS;f|l + || f|l. In 5, the shift S,f is continuous at
t = 0, and the assumption that %2 has compact support is a convenient way to
ensure that the integrand in (1) can be dominated by (1 + 1)|k(s)| for small &.
These facts together imply the claimed convergence.
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(ii) (continuity of convolution) Let k(x) have [k =1, [|k| < oo and support
contained in {x: |x| < h/ Vd ). If ||f, — fll, = O, then || f,xk — f * k|| = 0. (This
is an immediate consequence of Lemma 7.1.)

To prove the theorem, it now suffices to apply the regularization argument to
(7.6) as 0 — 0. Lemma 7.4 shows that ¥, , is an absolutely integrable kernel, and
hence property (i) above shows that

2
I&F %, 12— ( [r4(x) dx) &7 12,

which implies part (i) of the theorem. [Note that the constant can be evaluated,
if desired, from (7.5).] Part (ii) of the theorem can be read off from (7.6) and
Lemma 7.1. O

8. Formal interpretation. The results given so far admit of interesting
formal interpretations. We shall pursue these here: Difficulties and cautions are
postponed to Section 9.

Three kinds of approximation procedures. The paper has studied procedures
based on local averaging (KA) and on reconstruction from projections (RA). The
paper has also considered, implicitly, a third approximation scheme —polynomial
series approximation, represented by the operator Py.

The differences between these procedures are perhaps clearer if we regard
them as (approximately) orthogonal series procedures. The proof of Theorem 6.1
shows that RA behaves somewhat like an orthogonal series scheme using the </,
basis, where terms corresponding to large values of 2 — [ or k + [ are dropped
from the expansion. Similarly, KA behaves like an orthogonal series scheme
where terms corresponding to large values of kIl are dropped. Finally, the
operator Py, drops terms with large values of & + .

These three truncation strategies are appropriate in different circumstances.
The first is appropriate when the function to be recovered has most of its energy
concentrated at basis elements with small values of & — [; the second, when the
energy concentrates at small values of kl. Membership in 2/, results in the first
condition; membership in %,, results in the second. The third strategy is
appropriate when the energy is only known to concentrate near the origin.
Unlike the other two strategies, it makes no judgement about whether the
energy is more likely to concentrate near radial terms or near harmonic terms.
Membership in %, makes this strategy appropriate.

Such differences between procedures do not occur in one-dimensional smooth-
ing. The main one-dimensional procedures all have a representation as local
averaging procedures (delta-sequence representation). Equivalently, they can be
represented in the frequency domain as cutting off all high frequency terms
beyond a certain point. Thus, the orthogonal series estimate is very nearly a
kernel estimate in one dimension. The spline estimate is nearly a kernel estimate,
and so on.

By contrast, in high dimensions there are several notions of oscillation
(Cartesian, angular and radial) and several strategies for truncating high
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oscillation terms. In this sense, the high-dimensional smoothing theory can be
much richer than the one-dimensional theory.

Complementarity of the procedures. A basic problem in communicating
results on rates of convergence is their use of the smoothness index p. In a given
case, how does one know if the relevant value of p is 1, 2, or c0? The notion of
effective dimensionality alluded to in the Introduction provides a way to com-
pactly summarize these results without using p. To develop these ideas, we need
the following definitions. Let p*(f) denote the smoothness of f as follows:

p*(f) =sup{p: X (k + 1) ey ()P Jull? < oo}
Let r*(f, M) denote the rate of convergence of method M at f as follows:
r*(f, M) = sup{r: N"||f — Myf > = 0(1)},

where My f symbolizes the approximation to f via method M using complexity
N. Now typically, for p-smooth functions one has the minimax rate of conver-
gence for L%(®),

If — fyll2 ~ NP/,

Therefore, we can define the effective dimensionality of a function f for a
method M by

a*(f, M) =p*(f)/r*(f, M).
In terms of effective dimensionalities we have from Theorem 6.1 that when

f € #,,, RA can be tuned to take advantage of the enhanced angular smooth-
ness, so that (ignoring logarithmic terms)

d*(«,,,RA) = 1.5.

pp’
Similarly, the kernel method can take advantage of enhanced Laplacian smooth-
ness:
d*(%,,, KA) = 1.

pp’
On the other hand, RA cannot be tuned to take advantage of enhanced angular
smoothness nor can KA be tuned to take advantage of enhanced Laplacian
smoothness:
d*(#,,RA) = d*(%,,,RA) = 2,

prs

d*(Z,KA) = d*(+£,,,KA) = 2.

pq’

These two relations say that functions with Laplacian smoothness (e.g., harmon-
ics) are least favorable for RA, while functions with angular smoothness (e.g.,
radials) are least favorable for KA, among functions with a certain ordinary
smoothness.

Finally, the orthogonal series procedure based on P, is unable to take
advantage of ancillary smoothness to improve over the minimax rate. Indeed,
considerations such as Lemma 3.2 will show that for a function with exactly p
derivatives in %, (and no more), the rate of approximation of orthogonal series
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approximation (PA), when well-tuned, is always p/2; the effective dimensional-
ity of the procedure is therefore 2, whatever kind of ancillary smoothness we
consider:

2 = d*(#,,PA) = d*(,,,PA) = d*(Z,,,PA).

pq’ prs

The authors know of no comparable results for smoothing in one dimension.
There is only one type of smoothness there, and methods are not complemen-
tary: They are similar.

Analogies to shrinkage and Bayes estimation. Consider estimating a multi-
variate normal mean under squared-error loss. The sample mean, while minimax,
can be improved upon over regions of the parameter space, and different
estimators can be created with different regions of improvement. For the anal-
ogy, think of d* as a measure of risk. The analog of the mean is the orthogonal
series estimate which has a constant effective dimensionality equal to 2. On the
other hand RA improves on the minimax procedure over 7, , while KA obtains
a rate improvement over %,,.

Another helpful analogy is with the Bayes point of view. Compare Wahba
(1978, 1983). Let the f be chosen at random from a certain function space and
consider approximation of f using a complexity no greater than N. A Bayes
procedure in this second setting minimizes the risk, which is now expected
approximation error; expectation being taken under the distribution of f.

Without going into details, polynomial approximation is Bayes for the distri-
bution on f, where Z,, are i.i.d. standard Gaussian, Jj; = J,,/||J,,|| and

f=2X(k+ l)_p/2Zsz~kz,

at least for complexities of the form N = (';') A prior for which KA is
approximately Bayes is where

f= Z(kl) _r/zzkljkl’

and division by 0 at 2 A [ = 0 is interpreted as saying that the prior is improper
on the subspace of harmonics. A prior for which RA can be tuned to be
approximately Bayes is generated by

f=Y((k+0)"*+Nk—19) Zdy.

However, neither KA nor RA will be exactly Bayes in these cases. This means
that for a given complexity a slightly better procedure is available in each case.
As in the shrinkage literature, the insight such representations should give is
that on the region where the prior is large, one should do well with the Bayes
procedure. The hyperparameter A in the prior affects the number of directions
that are used by the ridge approximation and thus is related to the amount of
shrinkage from the minimax rule.

9. Cautionary notes. The interpretations of the last section depend in an
essential way on formal manipulations possible for the Gaussian distribution.
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While one is accustomed to such manipulations in other cases (e.g., trigonometric
series over L2[0, 27 ]), caution is needed (at least at present) in extrapolating our
results to broader situations.

Rate improvement classes (RIC’s). Our results show that for RA and KA,
there are classes of functions on which a particular method achieves better than
minimax rates of convergence. Especially in view of the Bayes analogy, there is a
sense in which RIC’s can be thought of as nonparametric models: When the
function of interest is a member of a certain procedure’s RIC, it is natural to
apply that procedure. However, several comments about such interpretations are
apt.

(i) RIC’s need not always exist: A method may be simply minimax without
being “Bayes” [relative to the risk measure d*(f, M) of Section 8]. The
orthogonal series approximation operator P, is of this type, as described in
Section 7.

(i) RIC’s need not take on a mathematically elegant form. For example,
tree-structured regression [Breiman, Friedman, Olshen and Stone (1984)] seems
naturally adapted to dealing with functions whose gradients tend to be parallel
to one of the coordinate axes. The class of such functions does not seem
amenable to description in usual function space terms.

(iii) Such models need not be unique. Although information that f €./,
might lead one to use PPR, quite a different sort of information can also lead one
to seek nonparametric function estimates made up from sums of ridge functions.
Suppose that Z represents an infinite sequence of unobservable independent
Gaussian random variables. Suppose that in terms of this unobservable Z, the
function f has the representation

f(Z) = Zgi(Z;),

where the g; are nonlinear functions of their argument. Now suppose that we
can observe X = (B{Z,..., B:Z) and want to construct an estimate of f from this
partial information. The Gaussian distribution on Z ensures that the best
estimate

f(X) = E({(2)X)

has the form [ = T,h,(a’X). That is, the conditional expectation of the unob-
servable function is a sum of ridge functions.

Plausibility of ancillary smoothness. We have shown that RA and KA are
able to take advantage of the ancillary smoothness represented by membership
in &, and %,. Why should such smoothness occur in cases of practical
interest?

It was hinted earlier that functions with good tail behavior are angularly
smooth. To see this, note that

D0f|x=rcosﬂ = r(—sinﬂ,cos0)tvf,

y=rsinf
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so that
[Dyf| < r|Vfl.

Thus, if f is small for large values of r, for example, if f = 0 for r > R, then it
will have as many angular L%(®) derivatives as ordinary L*(®) derivatives. Thus
the functions in %, of compact support are actually in <, ,- More generally, we
should expect functions with decent tail behavior to belong to «/,, whenever
they belong to #,. For example, if V{ grows no faster than a polynomial, then
the last display shows that D, f isin L%(®).

When should a function have more Laplacian derivatives than strictly guaran-
teed by the number of ordinary derivatives? The authors have no simple
intuitive condition which guarantees this. One can construct such functions
explicitly as solutions to the heat equation

Af=nh,

where A is a strategically chosen element of L% ®). In geophysics, meteorology
and oceanography, one has, of course, observations on functions of precisely this
form. Compare Wahba and Wendelberger (1980). In those cases, one observes
such data at sites scattered more or less uniformly on a sphere, so the present
analysis does not apply directly. However, the qualitative superiority of kernel-
based methods over projection-based methods should carry through.

In the authors’ opinion, the two classes have very different plausibilities. In
many real cases one expects the function to be estimated to have rather simple
behavior in the tails. Then a PPR-type representation of the function makes
sense. In physical problems, one might expect to see a function satisfying a heat
equation, and then a kernel method may be appropriate. However, the tail
condition seems more likely to hold in most applications of high-dimensional
smoothing.

Smoothness condition as boundary conditions. Care is needed with the
preceding story. The integral smoothness measures discussed in this paper have
two components. The first requires the existence of ordinary continuous deriva-
tives to some order and the second calls for finiteness of certain L? norms of
these derivatives. It is the latter aspect that the quantitative theory of rates of
convergence addresses. For example, a harmonic function is locally C*®, so it
possesses local Cartesian and angular derivatives of all orders. However, these
derivatives may fail to be in L?(®), because harmonic functions can grow so
rapidly at co. For example, if f €%, , r > p/2, and has exactly p Cartesian
derivatives, then some derivative of f necessarily grows faster than any polyno-
mial. This follows from Proposition 5.2: Indeed, as described above, slow growth
at oo certainly suffices for membership in Ay e

As a result of this feature, our theory is more sensitive to boundary behavior
than one would like. However similar problems occur whenever there is a
boundary, even for the unit disc. Furthermore, this phenomenon is likely to
become more important in higher dimensions, since more points will be close to
some part of the boundary.
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Use of global L? error. At least three objections can be made against global
L? error as a measure of approximation. The first, related to the discussion of
previous subsections, is due to Rice and Rosenblatt (1983), who pointed out that
in many cases the global L? error only measures what happens at the boundary;
on a compact set interior to the domain the rate of convergence of the error can
be much better. The second is that L? convergence is very weak; Askey and
Wainger have shown that Hermite polynomials converge in L? but not in L' or
L*, for example. The third is that L? error can be a poor indicator of the visual
quality of approximation. For example, if f and the kernel are radial, an estimate
of f obtained by kernel regression will have a radial shape. By contrast the
quantitatively better estimate obtained using n, equispaced directions will not
have a radial average shape: It will be a sum of n, ridge functions. For visual
interpretation, this ridge approximation may contain misleading artifacts. In-
deed, the authors have made plots of ridge approximants to radial functions and
found unpleasant ripples in the best L%(®) approximation. Larry Shepp has also
stressed this undesirable feature of best L? approximation in personal communi-
cations. Of course, if there is no spatial interpretation of the x variables or if
numerical prediction is a goal, then L? measures of error may well be very
reasonable.

Translating approximation rates into estimation rates. Our interest in L%(®)
comes from the fact that with (X, Y;) data randomly distributed according to

Y, = f(xi) + &,

where the (X;) are normally distributed, the L%(®,) norm (squared) has interpre-
tations in terms of the predictive mean-squared error and the integrated squared
bias. To translate our approximation results to the estimation setting, unfortu-
nately, takes some effort.

For PPR there are several aspects to this translation problem. The first is that
for PPR, the projection directions depend on the data, whereas our approxima-
tion results use equispaced sets of directions. Since optimally chosen directions
for a given function will do better than equispaced directions, our results give an
upper bound on the approximation error of an optimal procedure which actually
does a directional pursuit. On the other hand, it is not clear that straightforward
implementations of PPR—using the so called greedy algorithm—do as well as
equally-spaced directions would do. Also, for radials and some harmonics,
equally-spaced directions are optimal;’ so our results should give an accurate
picture in that case.

The second problem of translation for PPR is that of specifying which
one-dimensional smoother is being applied to the projections. For technical
reasons, it is easiest for us to discuss smoothing in each projection via an
orthogonal series estimate. Because many one-dimensional smoothers are so
similar, our results probably carry through, for example, to local linear fits as
used in the super smoother routine employed by Friedman and Stuetzle (al-
though, the cross-validation used in that procedure produces additional compli-
cations).
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A third remark, which we owe to Chuck Stone, is that even for fairly general
assumptions on the distribution of the independent variables X, the variance
term in (9.1) below will be inflated due to boundary effects. For example, if the
density {X,} is uniform on the unit disc in R?, the density of any projection a’X
is proportional to (1 — (a’x)?)'/2, so that there will be relatively little data for
a’x near +1.

In any event, the approximation-theoretic results presented here should
translate into sampling-theoretic phenomena. To see how this works, note that if
the directions used are equally spaced and chosen independently of the data,
then the approximation errors used in this paper are essentially the bias term in
the usual expansion of the mean-squared error:

(9.1) Integrated-MSE = bias® + variance.

In our setting, the variance term is essentially proportional to N/n, where N is
the number of degrees of freedom used by the prediction function (e.g., number
of coefficients) and n is the number of observations. The best rate p at which the
mean-squared error can go to 0 is derived from a tradeoff between the bias? and
the variance terms. Formally, one has

nf= I{]nin {N3"+ Ny(n)/n}.
«(n)

This tradeoff is controlled by the approximation rate r; one has the formal result
p
p+d’

r=p/d-p=

Approximation rates go over into estimation rates. In fact, this translation can
be rigorously established, at least in the cases when the measure on X is known
to be Gaussian.

PRrROPOSITION 9.1. Let Y, = f(X,) + ¢;, where f is bounded and X, and ¢, are
independent and the pairs (X,,Y;), i=1,...,n, are i.i.d. with X, ~ ®, and
Ee; = 0. Let an estimate R, ,,f of [ be obtained from the data by fitting
orthogonal polynomial ridge functions (each of degree m) in n,; equally spaced
directions (so that N = mn, coefficients are used). Then

IR,, f—R,, flI*=0,(N/n)

uniformly amongst all functions f bounded by M (say). Thus, if d*(f,PA)
is as defined in Section 8, there exist choices m(n), n,(n) making the rate
of convergence (in probability) to 0 of the integrated mean-squared error
p =p/(p + d*(f,PA)).

In short, improvements in the effective dimensionality of the approximation
problem transform to improvements in the effective dimensionality of the
estimation problem. A proposition of wider validity would of course use a
smoothing method not relying so heavily on Gaussian measure.

Hall (1987) has recently obtained a number of convergence rate results for the
sampling theory of PPR, creating an opportunity for a synthesis of the sampling
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and approximation aspects.

Translating results on KA. There are difficulties translating results on KA
into results on estimation. In the first place, it is not clear what the estimation
procedure analogous to kernel approximation is. Arguments can be made in favor
of either local polynomial fits or kernel regression. Also, an important aspect of
the approximation setting—the ability of isotropic kernel smoothing to repro-
duce harmonics—may be lost in the estimation case. Indeed, the straightforward
KR estimate

f(x) = ZYiK)\(x - Xi)/ZK)\(x - X,)
corresponds to the approximation operator

F9() = [Kylx = )i ()g(x) de | [K(x — s a,

where g is the density of x. This operator does not generally reproduce harmon-
ics, unless g is uniform. For nonuniform g, one can obtain a KR-type estimator
formally similar to KA via a sort of prewhitening to adjust for the nonuniform-
ity. However, the kernel weighting used must then be position-dependent, as in

f( ) = LY.K\(x - X,;)/8(X,)
YT LK (x - X,)/8(X)

This weighting is not reasonable in practice unless one knows g to very high
accuracy.

Problems in translating results on KA into results on KR are not new. Indeed,
there is a sense in which KR is not the right analog for sampling situations of
KA in approximation situations. Actually, weighted local polynomial fitting
behaves very like KR in good cases, but makes better sense in general. For
example, Stone (1982) remarks that kernel procedures can have problems when
the x density is not sufficiently smooth. In his case, one can use local polynomial
fits when the density is not smooth and still get good performance. In this sense,
local polynomial fits are perhaps a more appropriate analog of KA for sampling
situations. However, we have not checked whether local polynomial fits provide
the sort of dimensionality reductions under Laplacian smoothness that the KA
results suggest may be possible.

Conclusion. These results indicate that, in large samples, Gaussian PPR
should produce function estimates which behave well when the underlying
function is angularly smooth. The results may be even better than our upper
bounds suggest, if an optimal set of directions is obtained via a good pursuit
algorithm. The angular smoothness condition will be met if the function to be
estimated has tame tails.

On the other hand, kernel regression might seem to be appropriate for
harmonic functions and solutions to the inhomogeneous heat equation. However,
the actual performance in practice will not be as spectacular as a naive reading of
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the approximation results might suggest. In fact we doubt that the function class
%,, for r > p/2 admits of any local smoother with good global L? properties.
Functions in %, grow exponentially fast and so sampled data from such
functions have very sporadic behavior. Occasionally an extreme X observation
will give rise to an extreme Y observation swamping the rest of the data in terms

of contributions to the total sum of squares.

Generalization to other measures. Our techniques of calculation rest heavily
on the use of Gaussian measure on X. Consider L% D), D denoting uniform
measure on the unit disc in R2. There are Zernike polynomials analogous to the
{Jy;} basis, and Logan and Shepp (1975) and Hamaker and Solmon (1978) have
developed projection formulas and many further results. From these formulas, it
does not seem that harmonics and radials play the extreme roles in L%(D) that
they assumed for L?(®). Some progress, based on results from the tomography
literature [e.g., Davison and Grunbaum (1981)] is described without proof in
Donoho and Johnstone (1986). Further work is needed here, as well as in the
situation of heavier tailed distributions than ®: We do not know, in this case, if
the differences between radial and harmonic functions become even more pro-
nounced.

Effective dimensionality. The effective dimensionality approach of Section 8
requires care: The effective dimension is not an invariant. Its definition depends
on the measure placed on X. For measures such as the uniform which have
compact support, one has minimax approximation rates of the form

r=2p/d

rather than r = p/d as encountered in the Gaussian case. Presumably, with
heavy-tailed measures one encounters cases where the minimax approximation
rates are even of the form

r=cp/d

for ¢ < 1. In each case one is forced into a different definition of effective
dimensionality: d* = 2p/r*, d* = p/r* and d* = ¢p/r*. The authors prefer to
think of d* as a quantity to be compared only within cases pertaining to the
same measure on X.

10. Further and related work.

Extensions. The paper raises many questions that we hope to pursue fur-
ther.

(i) We have not quantified the extent to which behavior at co dominates the
rates reported here.
(if) How is L? approximation error distributed with distance from the origin?
(iii) What happens for other X-distributions (compare discussion in Sec-
tion 9)?
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Study of faster rates. We have described RIC’s for dimensionalities in the
range [1.5,2). What is the structure of RIC’s for effective dimensionalities
d* < 1.5? We have two observations. First, the results obtained in this paper
were obtained without choosing the directions to depend on the function: This
will be necessary to get faster rates. Also, one will not be able to get dimensional-
ity better than 1.5 on any class including the radials. [This follows from
Beurling-type theorems on orthogonally invariant subspaces of L%(®).] It seems
that functions at which faster rates are possible will have to be nonisotropic,
involving specific directional biases. Second, we believe that faster rates will
require a certain kind of lacunarity of the function, namely that the Fourier
transform of the function will, for high frequencies, concentrate on sets of small
angular measure. For example, the rate d* = 1 can be obtained for functions
which are sums of infinitely many ridge functions in distinct directions, so long
as the norms of the terms decline exponentially fast.

Higher dimensions. What happens when d is 3 or 4? We believe that radials
are still well approximated and harmonics poorly. However, the equally-spaced
sets of directions, so essential in the analysis of this paper, are not generally
available in higher dimensions. It is at least possible to compute the analogs of
Tables 1 and 2 for dimensions 3 and 4 in some special situations (directions given
by vertices of regular and semiregular polytopes).

Connections to other work.

Tomography. Some connections of PPR to tomography have been described
in Huber (1985). Some of our results for RA, based on equally-spaced directions,
are closely related in approach to the results obtained by tomographers. Indeed
the results in Section 2 above correspond in a direct way to results of Logan and
Shepp (1975) for the unit disc. See also Logan (1975).

Additive models. Stone (1985) has also found classes of functions on which
improvements over minimax rates are possible. His conditions are structural,
requiring that the regression model be additive, namely a sum of functions of
individual coordinates. In such cases, the effective dimensionality is one. How-
ever, the procedures are not consistent if the additive model does not hold,
instead they approach the closest additive approximation to the true function.
By contrast, the angular differentiability conditions we use pick out functions
with a certain sort of smoothness, and RA achieves a dimensionality reduction
(but only to d* = 1.5, not d* = 1) on these functions, while still being globally
consistent. :
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