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As an estimator of the population mean, the sample mean based only on
the distinct units possesses a remarkable invariance property. Under three
forms of simple random sampling, viz. simple random sampling without
replacement (SRSWOR), simple random sampling with replacement
(SRSWR), and fixed cost simple random sampling (SRSFC), it is admissible
and unbiased; and asymptotically normally distributed if and only if the
Erdos-Rényi-Hajek condition is satisfied. An important implication of this
invariance is that for estimating the population mean, theése forms of simple
random sampling are asymptotically equally cost-efficient. However, from a
practical point of view SRSFC does seem to provide greater flexibility in large
surveys.

1. Introduction. It is well-known that as an estimator of the population
mean, the sample mean based only on the distinct units is both admissible and
unbiased under three forms of simple random sampling, namely simple random
sampling without replacement (SRSWOR), simple random sampling with re-
placement (SRSWR), and fixed cost simple random sampling (SRSFC) (cf. Basu
[1], Hajek [3], Joshi [5], and Pathak [6]). The object of this paper is to show
that under these three sampling schemes, it is also asymptotically normally
distributed if and only if the Erdés-Rényi-Hajek condition is satisfied. In broad
terms, the result on asymptotic normality can be stated as follows.

THEOREM 1.1. Consider a sequential sampling scheme under which units are
selected with equal probabilities either with or without replacement at each draw
from a given population of size N. Let v denote the observed number of distinct
units drawn in the sample. Suppose that the effective sample size, namely the
number v, and the population size N approach infinity so that

(1.1) lim Ev =0 and lim(N — Ey) = .

(The notion of limit in (1.1) can be made precise through a triangular array of
populations by indexing both v and N by a common suffix, say k. For reasons of
brevity we have chosen not to use this extra suffix in this paper.)
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Then the sample mean based on the distinct units, y, say, is asymptotically
normally distributed with parameters

(Y, 1/Ev = 1/N)(N - 1) T (Y; - V)?)
if and only if
(1.2) m[¥.(Y; - Y)?/Z (Y; - Y)’1=0
where -(¢) denotes the summation over those population units which satisfy the
inequality
(1.3) (Y;— Y)*>e(Ev/N)(1 - Ev/N) 3 (Y; - Y)?

in which Y; denotes the Y-variate value of the jth population unit, Y = N'Y Y;
and the sum Y extends over all the N population units. (In the sequel we shall
refer to the condition given by (1.2) and (1.3) as the Erdis-Rényi-Hdjek condition.)

For SRSWOR, this theorem is due to Erdoés and Rényi [2] and Hajek [4], and
for SRSWR, it is due to Pathak [7]. We now proceed to show that Theorem 1.1
is also valid for SRSFC.

2. Fixed cost simple random sampling (SRSFC). Consider a population
P= (U, .-, U, .-, Uy) of N units in which the jth unit U; = (j, Yj, C;), where
j denotes its label, Y; its unknown Y-characteristic value under study and C; the
unknown cost of ascertaining the value of Y;, 1 < j < N. We assume that the
cost characteristic has been suitably scaled so that C = N™' 3 C; = 1. Unless
stated otherwise, we also assume that there exists a universal constant A such
that 0 < C; < A for all j. We assume that the total cost, n, to be spent on sample
selection is fixed in advance and is an integer. The noninteger case can be easily
reduced to the integer case by replacing n by the greatest integer contained in n.
We assume that min(n, N — n) is at least as large as 2 A. This last assumption is
a technicality and is needed to ensure that the sample size in SRSFC is at least
two and no more than (N — 2).

Briefly, under SRSFC sample units are drawn sequentially with equal proba-
bilities and without replacement (WOR) until the total accumulated cost of
sampling reaches the preassigned level n. This version of simple random sampling
completely eliminates the randomness of the total cost of sample selection, as
well as ensures collection of maximum possible information at a given cost.
Under SRSFC, we record the observed sample as &, = (u;, ug, - - -, u,), where
u; = (yi, ¢;) is the ith sample unit with y; being its Y-variate value and ¢; its cost
of selection. We define the stopping variable » in a somewhat nontraditional way
as follows: » = r if and only if 3] ¢; < n and Yi** ¢; > n. Since under this stopping
rule, given », the conditional distribution of u,, ---, u, is a symmetric function
of », we shall henceforth refer to v as a symmetric stopping rule. We hope that
the prefix “symmetric” would keep the readers from inadvertently mistaking it
for a stopping rule in the customary sense.

In SRSFC, the sample mean 7, = (1/») ¥; y; is an unbiased estimator of the
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corresponding population mean Y. Similarly the sample variance s? = (» — 1)~!
- i (y: — 3,)% is an unbiased estimator of the corresponding population variance
8% = (N = 17" 3 (Y; — Y)% Thus despite the fact that the sample size » is
random, the customary estimators of the population mean and variance continue
to remain unbiased. Admissibility of the sample mean is also preserved. Besides
the customary estimator of the variance of the sample mean, viz. (1/n — 1/N)s2,
with n replaced by » continues to be an unbiased estimator of V(3,) even though
the actual form of V(3,) is quite complicated. We refer the reader to [6] for these
details. Perhaps the most intriguing aspect of SRSFC is that under very mild
restrictions the necessary and sufficient condition for asymptotic normality of
the sample mean under SRSFC is identical to those for the sample mean under
SRSWOR. In order to present this result, we first establish a few moment
inequalities. .

LEMMA 2.1. Let max C; < A. Let v, denote the sample size for SRSFC of cost
n. Then

(2.1) |Ev, —n| <1+ A.

PROOF. Let u = (ui, g, ---, uy) denote a random permutation of the N
population units. Let »,(u) be the observed value of v, based on u and ¢; the cost
of observing the ith sample unit u; in u. Let S(v,) denote the actual cost of
observing an SRSFC sample of cost n based on u. Then S(v,) =c¢; + co + - -+ +
c,,. Clearly

2.2) ES(v,) = E[E(c; + --- + ¢, | v)].

Since v, depends on the ¢/s up to the time », only through the sum S(»,), a
symmetric function of ¢, ---, ¢,, it follows that E(c; |v,) = --- = E(c,, | vy).
Consequently

(2.3) ES(v,) = E[E(vnc: | v,)] = Ele1v,].

Now given the random permutation u = (u, - - -, uy) of the N populations units,

let v = (v, -+, un) be another permutation of the N units obtained from u by
placing u; at random in one of the empty spaces marked by the asterisks in the
arrangement * U * U * - - - * Uy *.'Then like u, v is also a random permutation
of the N population units. Moreover, it is easily seen that for each j, 1 < j <N,
P(u; = Uj|v) = N7 which is free of v. Consequently u,(u) and v are inde-
pendently distributed. Let v,(v) denote the observed value of », based on v. It is
clear that v,(v) = v,(u) — 1. Therefore

(2.4) ci(@)ra(u) < cr(u)(1 + va(v)).

Taking expectations on both sides of (2.4) and invoking the independence
between ¢;(u;) and v,(v), we obtain

(2.5) Ec,v, = (Ec;)(1 + Ev,) =1+ Ev, ,
since by assumption Ec; = N™' ¥ C; = 1. The definition of », implies that
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S(v,) > n — A. So from (2.5) and (2.3), we get
(2.6) Ev,=zn—-(1+A4).

To establish the reverse inequality, consider an SRSFC of cost (n + A). Then
a similar analysis, invoking the inequality v,.,(u) = v,(v), yields

2.7) (n+ A) = ES(wpia) = Ec1vpia = Ec Ev, = Ev,.
The lemma follows from (2.6) and (2.7).

LEMMA 2.2. Ev2 < (n + 24)%/Ec;c,.

PROOF. Consider an SRSFC of cost (n + 2A). Then the total cost of sample
selection admits the representation: S(v,+24) = X1 ¢;, in which the sum Y;; runs
over 1 < i =< y,424. A technique similar to that of Lemma 2.1 yields

2.8) ES?(vp42a) = Ecivaizn + EciCovnioa(Wnrza — 1)
. = Ecicoviion + E(ci — €2)*vni2a/2 = Ecicoviion.

Again let u = (uy, us, - - -, uy) denote a random permutation of the N population
units. Let v,424(u), ci(u) and co(u) be the respective observed values of these

variables based on u. Next given u, let v = (v, v, - - -, Uy) be a second permutation
obtained from u by replacing u; and u; at random in the (N — 1) empty spaces
marked by the asterisks in the arrangement * uz * ... * uy *. It is easily seen

that the pair (c;(u), cz(u)) and v are independently distributed. Let »,(v) denote
the observed value of the symmetric stopping time based on v of cost n. Then
vZ,oa(u)ci(u)cz(u) = vi(v)ei(u)cy(u). Independence of (c;, ¢;) and »,(v) now
implies that

(2.9) Eclcgu?,+2A = EclczEu?,.

The lemma follows from (2.8), (2.9) and the fact that S(v,+24) < n + 2A.

LEMMA 2.3.
(2.10) V(v,) = 8An + 8n*S%/N
where S2=(N-1)"4(F C? - 1).
This follows from the preceding lemma and the observations that Ec,c; — 1 =
Cov(cy, ¢2) = —S?/N and that
Ecico = Ec:E(cz| c1) = Ec;(N — A)/(N — 1) = (Ec;)/2 = Y.

The complement of an SRSWOR sample of size n is an SRSWOR sample of
size (N — n). It is natural to ask if this duality is also shared by SRSFC. If it
indeed were true, we should then be able to establish a dual of Lemma 2.3 with
n replaced by (N — n) on the right side of (2.10). This can be done only if we
assume that the cost-characteristic assumes only positive values.
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LEMMA 2.4. Suppose that C; > 0 for all j. Then
(2.11) V(,) < 20[A(min(n, N — n)) + (S2/N)(min(n, N — n))?].

PROOF. Let u be a random permutation of the N population units. Let w be
the permutation u in the reverse order. Let v,(u) denote the symmetric stopping
time based on u for SRSFC of cost n and define vy_,(W) similarly for SRSFC of
cost (N — n). The lemma follows from Lemma 2.3 and the identity: v,(u) =
N — vy_n(w) — 0, where 6§ = 0 or 1 with 6§ = 0 only if S(v,) = n.

We turn now to the investigation of asymptotic normality in SRSFC.

3. Asymptotic normality in SRSFC. Let R, denote an SRSFC sampling
experiment of selecting » units of cost n from the given population P, and R,
refer to an SRSWOR sampling experiment of selecting n units from P. Let ¥,
and 7y, denote the sample means under SRSFC and SRSWOR respectively. We
first show that 7, and ¥, are asymptotically equivalent. To do so, we perform the
following random experiment.

RANDOM EXPERIMENT.

1. First draw an SRSWOR sample of size n from P as follows: Let u =
(4, - - -, un) be a random permutation of P. Let &, denote the observed SRSWOR
based on the first n coordinates of u and let S(n) denote the total cost of selecting

this sample.

2. If S(n) > n, select an SRSFC subsample & of cost n from 4, treating &,
as a population in its own right.

3. If S(n) < n, select sequentially additional units from the remaining units
in P until an SRSFC sample %, of cost n has been selected.

4. Repermute the v units in % at random. For notational simplicity, we denote
this repermuted sample also by the same symbol .

Under this experiment %, is an SRSWOR sample of size n and &, an SRSFC
sample of cost n.

LEMMA 3.1. Under the given experiment
(3.1) : E(3, - 3.)=E|1l/v—1/n|s}

where s? denotes the sample variance based on &,.

PROOF. Observe that given S(n) < n and %, % is an SRSWOR subsample
of size n from .. This implies that given S(n) < n and

S El(3n— $)%18(n) = n, )= (n"' —v7)sk.

Next given S(n) > n and %, % is an SRSFC subsample of cost n from .. This
implies that (v™* — n~")s2 is an unbiased estimator of E[(§, — 7,)*| S(n) > n, #]
(cf. Pathak, Theorem 2.1, page 1014, [6]). From these considerations, the lemma
follows.
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LEMMA 3.2. Under the given experiment
(3.2) E(§, — 9.)* = (10A/nd)[A + VV()]o?
where 6> =N"'1Y (Y;— Y)%

PrROOF. Techniques similar to that of Lemmas 2.1 and 2.2 show that

—_ — 2
(33)  E(5, - 5.7 = E[' rorlln z o) ] < D2 [+ VIO

LEMMA 3.3. Under the given experiment

(34)  H(, 3.) = EQV—(;—%)— = 104[A + ‘/T’(”)]E e n]'

This follows from Lemma 3.2 and the fact that V(3,) = [(N — n)/n(N — 1)]¢%

We refer to H(y,, y.) as Hajek’s measure of disparity between y, and y,. Now
suppose that H(y,, y,) approaches zero asymptotically, i.e., as Ev = n — ® and
(N—=n) >,

(3.5) lim H(y,, ¥») = 0.

The implications of (3.5) are quite remarkable. First, it implies that
lim V(y,)/V(y,) = 1, showing that both y, and 3y, are asymptotically equally
efficient. Second, it implies the asymptotic equivalence of the limiting distribu-
tions of y, and y, in the following sense. Suppose that under a certain condition
¥» is asymptotically normally distributed with parameters (Ey,, V(3,)). Then
under the same condition ¥, is asymptotically normally distributed with param-
eters (Ey,, V(¥,)) and vice versa (cf. Hajek, [4]).

Lemma 3.3. implies that Hajek’s disparity between y, of SRSFC and ¥, of
SRSWOR can be made to approach zero asymptotically provided n — o and
(N — n) — « such that lim V(v)/n? = 0 and lim V(»)/(N — n)? = 0. Lemma 2.3
implies that all SRSFC satisfy the first of these two conditions. The second
condition is, however, more restrictive. For example, under the added assumption
that the cost-characteristic is strictly positive, Lemma 2.4 holds. Then both of
these conditions are satisfied. It is worth noting that inverse simple random
sampling (SRSI) becomes a special case of SRSFC if we allow the cost-charac-
teristic to be simply nonnegative so that it can also assume the value zero. Under
SRSI units are drawn sequentially (WOR) until a preassigned number n of units
with a specified trait are included in the sample. For such SRSFC schemes
V(v)/(N — n)? does not approach zero without added restrictions on the rate of
growth of n and (N — n). A simple additional condition that suffices is to require
that lim n/(N — n)? = 0 which is satisfied if for example the sampling fraction
remains strictly less than one.

Thus through the preceding analysis we have, among other things, established
the following main results.
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THEOREM 3.1. Suppose that the cost-characteristic is strictly positive and
bounded. Let lim n = lim(N — n) = «. Then under SRSFC of cost n, the sample
mean y, is asymptotically normally distributed if and only if the Erdos-Rényi—
Hajek condition of Theorem 1.1 holds.

THEOREM 3.2. Suppose that the cost-characteristic is nonnegative and
bounded, then the conclusion of the above theorem goes through if we require that
lim n = lim(N — n) = « and lim sup(n/N) < 1.

The proof of these theorems are immediate consequences of Theorem 1.1 and
the discussions following Theorem 1.1 and Lemma 3.3.

It should now be clear from the above theorems that as the cost of sampling
gets larger and larger, the cost-adjusted relative efficiency of SRSFC versus
SRSWOR approaches one. Our theorems provide for the first time a truly rigorous
justification for results of this nature first anticipated by Basu [1] and others. In
broad terms a second and perhaps equally important implication of our results
is that asymptotically conditional inference based on simple random sampling
is likely to be just as efficient as their unconditional counterparts provided
the reference set for conditional inference is chosen so as to ensure that
lim V(»)[1/(Ev)? + 1/(N — Ev)?] = 0. We would like to thank Professor Marvin
Zelen for bringing this point to our attention.
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