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GENERATING THE INTRABLOCK AND INTERBLOCK
SUBGROUPS FOR CONFOUNDING IN GENERAL FACTORIAL
EXPERIMENTS

BY BRUCE JAY COLLINGS

Montana State University

A simple method of directly obtaining generators for the intrablack
subgroup and for the interblock subgroup of a confounding plan is presented.
The method is applicable to completely general factorial experiments and can
be used either to construct the design which confounds a specified set of
treatment effects or to determine the confounding pattern of a specified
design. This procedure avoids the usual trial and error approach to confound-
ing and involves nothing more complicated than addition and multiplication
modulo a prime number.

1. Introduction. The problem of confounding in factorial experiments has
a long history in the statistical literature. The classical approach is to identify
each element in T, the set of all treatment combinations, with an element of
some suitable algebraic structure, A. The principal block of the confounding plan
is then obtained as the set of solutions to an appropriate system of linear
equations with addition and multiplication as defined in A. The early work
employing Galois fields, by Yates (1937), Bose and Kishen (1940), Fisher (1942),
Bose (1947) and Kempthorne (1947), is limited to symmetrical prime power
factorials. An extension to asymmetrical prime power factorials by White and
Hultquist (1965), Raktoe (1969, 1970) and Banerjee (1970) employs finite rings.
Worthley (1973) and Worthley and Banerjee (1974) further extend these finite
ring methods to completely general factorials. Bailey (1977) and Giovagnoli
(1977) provide an alternative extension by considering T as a module over some
suitable finite ring. Each of these approaches allows the experimenter to control
which interactions are confounded. However, the methods for solving the system
of equations determining the principal block of the design are largely trial and
error and frequently require the computation of the addition and multiplication
tables for the particular algebraic structure being used.

In addition to the above “classical” methods, the generalized cyclic designs of
John (1973) have been employed for the construction of confounding plans in
general factorials by John and Dean (1975) and Dean and John (1975). Although
applicable to any factorial experiment, this method does not allow the experi-
menter to specify in advance which interactions are to be confounded. Also, the
procedure given by these authors for determining what has been confounded by
a particular design is somewhat cumbersome.
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Two other interesting procedures for confounding m”" experiments in blocks
of size m” have been suggested by Das (1964) and Cotter (1974). The essence of
each method is to append n — r columns to an r X r identity matrix and generate
the initial block by taking all possible linear combinations of the rows of the
resulting r X n matrix. Das places certain restrictions on the appended columns
to control the order of the interactions which are confounded. Cotter provides an
auxillary table of coefficients used to determine the appended columns. In
essence, Cotter has chosen a particular system of n — r equations in n variables
and provided the instructions for computing the n — r constrained components
of the solutions in terms of the r unconstrained components.

The purpose of this paper is to describe another systematic approach to
constructing confounding plans for general factorial experiments. Based on
Collings (1977), vector spaces are used to describe the structure of T. This
procedure requires nothing more complicated than ‘modular arithmetic. This
method produces two sets of generators which specify the intrablock subgroup
and the interblock subgroup for the design which confounds any given set of
treatment effects. This approach is also easily applied to cases involving fractional
replication or multiple levels of blocking.

The term interblock subgroup is introduced and the concept of generators is
reviewed in Section 2. The basic procedure is given in Section 3 for the case
where each factor has the same prime number of levels. General factorial
experiments are discussed in Section 4. Extensions to designs with fractional
replication and multiple levels of blocking are considered in Section 5.

2. The interblock subgroup. The essence of the classical method and its
various extensions and the methods of Das (1964) and Cotter (1974) is to identify
T, the set of treatment combinations, with a suitable abelian group or other more
complex algebraic structure. Each confounding plan is then based on some
subgroup of T. Similarly, Dean and Lewis (1980, Theorem 1) prove that the
initial block of any single replicate generalized cyclic design must also be a
subgroup. If S is the principal block, or intrablock subgroup, the blocks of the
design are the distinct cosets of S in T, namely, S + t,, ---, S + t,. Letting R
denote the set {to, t;, - - -, t;}, then T can be represented as

T=RO®S,

where @ indicates the direct sum. If the set R is a subgroup, it is called the
interblock subgroup of the design. By giving T the structure described in Sections
3 and 4, it will always be possible to choose the t; such that R is a subgroup of
T.

Given S and t,, - - -, t;_;, the ith block can always be obtained by selecting
any treatment combination which does not appear in any preceding block as t;.
In this sense, the interblock subgroup is not necessary for the construction of
the design. However, the direct construction of R avoids the necessity of (and
potential for error in) searching for each successive t;,. Although not formally
recognized as such, the existence of an interblock subgroup for certain types of
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designs is implicit in the procedure for constructing additional blocks from the
principal block called “ringing in the changes” (see, e.g. Bailey, 1959).
Generators have often been employed in an effort to reduce the computational
effort involved in constructing designs (e.g. Bailey, 1977). A subset of the elements
of a group G is called a set of generators of G if every element of G can be
expressed as a sum (allowing possible repetitions) of elements of the subset.
Since any subgroup may be specified by a set of generators, the design based on
S may be completely specified by producing a set of generators for S and a set of
generators for R (if R is a subgroup). The only systematic approach in the
literature for producing such a set of generators for S is that provided by Katti
(1960). Katti’s result only applies to the p” case and depends on the inversion of
a suitably chosen n X n matrix which does not depend on p. Clearly, this need
not be a simple task. However, the procedure described in Sections 3 and 4
insures that R is indeed a subgroup and provides a simple, direct method for
obtaining sets of generators for R and S in completely general factorial settings.

3. The p” case. Consider an n factor experiment where each factor has
p levels for some prime p. Each element t € T can be represented as t =
(t1, - - -, t,) with t; an integer between 0"and p — 1 indicating the level of the ith
factor. Clearly, T can be viewed as an n-dimensional vector space over the field
GF(p). It seems reasonable, therefore, to exploit some of the properties of vector
spaces (e.g. bases, orthogonal subspaces and annihilator subspaces) in the con-
struction of confounding plans.

To more fully exploit the vector space structure, define the effect space E to
be the set of all linear mappings of T into GF(p). (E is the dual space of
T (Herstein 1964, page 146).) Any element of E can be represented as e =
(e, es, - -, e,) With each e; an integer between 0 and p — 1. The image of any
t € T under the mapping represented by e is given by te’ (mod p). Two vectors
e, and e, are said to be equivalent if e; = ce; for ¢ € GF(p), ¢ # 0. This
equivalence relation partitions the p” — 1 nonzero vectors of E into equivalence
classes of p — 1 vectors each. These equivalence classes are the usual “treatment
effects” (see, e.g. Kempthorne, 1979) and may be conveniently represented by
the member of the equivalence class whose first nonzero component is unity.

For any subspace D contained in E, the annihilator of D is a subspace of T

defined by
D°={teT:td’ =0 foralld€ D}

The annihilator of a subspace of T can be defined similarly as a subspace of E.
Since D° is a subspace of T, it can be used as the intrablock subgroup of a
confounding plan for T. The effects confounded by the design with S = D° as
the intrablock subgroup are precisely the effects contained in the subspace D
(see Bailey, 1977). Furthermore, there exist subspaces R of T and C of E such

that
(8.1) T=R®S, and
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(3.2) E=Co®D,

with C isomorphic to S, D isomorphic to R and C = R®. A basis (set of generators)
for T which partitions into a basis for R and a basis for S can be obtained by
either of the following methods.

METHOD 1. Suppose {d;, ds, ---, d,} represent m linearly independent
effects in E. Let D = {0} and for each i = 1, .-, m, let D} be the subspace
generated by {d,, - - -, d;} with S} = D}’ and R} such that T = R} & S}.

THEOREM 1. Suppose {ri, - - -, rs} is a basis for R} and {Sp+1, -+-, 8.} is a
basis for S¥. There exists some j,h +1<j<nandc;€E GF(p),i=h+1, .-,
n, such that {ry, - - -, T, 8;} is a basis for R},1 and {8}s1, -+ -, 8}, 8f41 - -+, 87},
with s =s; + ¢8j, is a basis fOI’ St+1.

PrOOF. Since d;+, & D} = S}, s;d}+1 # 0 (mod p) for some j, h + 1 <j <
n. Let b = s;d}+; (mod p) and define ¢; = —b~'s;d}+, (mod p) for each i, h + 1 <
i < n. Then the s¥ (i # j) as given in the theorem are linearly independent and
each is such that s¥d; =0 forg=1, .--, h + 1. Hence,

* * * *
{sh+l MY sj—-ly sj+ly Tty sn}

is a basis for S¥,;. The set {ry, - - -, rs, $¥41, - -+, 851, 8, 8f41, - - -, S5} is a basis
for T, hence, {ry, - - -, rs, s;} must be a basis for R¥,;.

The design confounding {d,, ds, - - -, d.»} can be obtained by setting R = {0}
and S = T and selecting any basis for S§. Applying Theorem 1 m times produces
a basis for the intrablock subgroup and a basis for the interblock subgroup. This
procedure involves only arithmetic modulo p and produces the desired sets of
generators directly without explicitly solving any system of linear equations.

EXAMPLE 1. (Kempthorne, 1979, page 325). Consider an experiment with
four factors A, B, C and D, each at 3 levels. To obtain blocks of size 9, confound
the effects ABC and AC2D? Thus, d, = (1, 1, 1, 0) and d; = (1, 0, 2, 2). For
convenience, any basis of T can be represented as a 4 X 4 matrix with the rows
as basis vectors. Beginning with the identity matrix, the first application of
Theorem 1 givesj=1,b=b""=1,¢c; =2, ¢3 = 2 and ¢4 = 0. Thus,

ST

(3.3) 2 010
0

represents an intermediate basis for T; the first row generates R} and the last

three rows generate S¥.
Applying Theorem 1 to (3.3) givesj =2, b=b"" =2, ¢s = 1 and ¢, = 2. Hence,
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a set of generators for T = R} ® S5 = R ® S is obtained as

849  fe=eere—m—- -

where the first two rows generate R and the last two rows generate S, i.e. the
interblock subgroup can be generated by (1, 0, 0, 0) and (2, 1, 0, 0) while the
intrablock subgroup can be generated by (1, 1, 1, 0) and (1, 2, 0, 1).

It is interesting to note that in this particular case the vectors which generate
the intrablock subgroup are identical to vectors representing two of the effects
which are confounded, namely, ABC and AB2D. This will not, of course, be true
in general. Also, there is nothing unique about (3.4); the same design could be
specified by several different sets of generators. )

REMARK. The amount of effort required by the above procedure depends
largely on the choice of the basis for S,. Any choice will work; however, a judicious
choice for this basis may substantially reduce the effort required in constructing
the design.

METHOD 2. The following theorems provide an alternative to the above
procedure. Theorem 1 provides a simple, general proof of a result of Das (1964).
Theorem 2 indicates how to proceed for arbitrary sets of independent effects. Let
{dy, - -+, d,,} be as above. _7 denotes a suitable identity matrix.

THEOREM 2. Let o/ be the m X n matrix whose ith row is d;. If o7 has the
form [ 7| #], then the n X n matrix

Z 0
is a basis for T such that the first r rows generate R and the last n — r rows

generate S. The — %’ in (3.5) indicates that each element of %’ is replaced by its
additive inverse modulo p.

PROOF. Itis clear that the rows of (3.5) represent a basis for T. Furthermore,
since [-@'| 7] &/’ =0, it follows that the last n — m rows do indeed generate
S = D Again, since the rows of (3.5) form a basis for T, the first m rows of (3.5)
must be a basis for R.

THEOREM 3. If {d,, - - -, d,.} is a basis for D, there exists a basis {df, -- -, d}}
such that the m X n matrix &/* whose ith row is d} has the form [ 7| 8*] for
some B*.

PrROOF. The matrix o/* is obtained by converting the matrix </ into row-
echelon form and possibly interchanging columns (reordering the factors).

EXAMPLE 1 (continued). The effects ABC and AC%D? do not satisfy the
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conditions of Theorem 2. However, AC2D? and BC?D form an alternative basis
for D which does satisfy the conditions of Theorem 2. This gives o7 equal to

1 0 2 2
01 2 1|
Substituting into (8.5) gives
1 0 0 0
01
S I 00|
1 110
1 2 01

Clearly, (3.6) is equivalent to (3.4) with the first two Tows generating R and the
last two rows generating S.

REMARK. The choice between Method 1 and Method 2 depends largely on
the amount of effort involved in applying Theorem 3. Method 2 will generally be
preferred when m is small. However, in situations involving multiple blocking as
discussed in Section 5, the sequential nature of Method 1 generally makes it
easier to use.

Either of the above methods may, of course, also be used to determine which
effects will be confounded by a given design. Since T are dual spaces, their
roles, as well as the roles of D and S, may be interchanged. If {s,, - .-, s,,} is a
basis for the intrablock subgroup, the above procedures will produce sets
{e1, - -+, e} and {d,41, - - -, d,} which generate C and D, respectively. Replacing
each d; by the standard representative of the equivalence class to which d; belongs
yields a set of independent effects which, along with their generalized interac-
tions, will be confounded by the design based on S.

4. General factorials. Suppose first that each of the n factors has p* levels
for some prime p. The procedures described in Section 3 could, of course, be
carried out as indicated with all arithmetic operations being performed in GF( p*).
However, the fact that GF(p*) is a vector space over GF(p) suggests the
computationally simpler approach of describing T as a vector space of dimension
nk over GF(p). This is easily accomplished by replacing each factor with k
pseudofactors, each with p levels. The problem can then be dealt with as in
Section 3 with all computations performed modulo p.

In addition to computational simplicity, the use of pseudofactors provides
more flexibility in the choice of block sizes and confounding patterns (see, e.g.
Giovagnoli, 1977). This greater flexibility occurs because the effect space is
partitioned into sets with p — 1 degrees of freedom rather than p* — 1 degrees of
freedom.

The only disadvantage to the use of pseudofactors is that some formally high
order interactions in the pseudofactors may represent main effects or low order
interactions in the actual factors. Any difficulties posed by this can easily be
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avoided by denoting each actual factor by a capital letter and denoting the
corresponding pseudofactors by the same letter suitably subscripted. Under this
convention, the actual order of any pseudofactor interaction is simply the number
of distinct letters it contains, ignoring subscripts, e.g. A;A3B2B4C; is a three-
factor interaction.

In general, suppose that the ith factor of the experiment has m; levels where
m;is any positive integer. Each factor can be represented by a set of pseudofactors,
each of which has a prime number of levels. Hence, T can be viewed as isomorphic
to the direct sum of vector spaces, namely,

(4.1) T=T,®T,® --- ®T,,

where T; is a vector space over GF(p;) for some prime p; with all the primes
distinct. As before, viewing T as an additive group, if S is any subgroup of T,
then there exists a subgroup R such that T = R @ S. Furthermore, from (4.1), it
follows that

S=8,86S8,8..-- 08,

and
R=R, OR,® .-- DR,

where T; = R; @ S;. The definitions of the sets E, C and D given in Section 3
easily extend to the general case with decompositions similar to (3.1) and (3.2)
holding. The problem of confounding any subset, D, of the effect set, E, reduces
to coufounding each D; relative to the corresponding T;, as in Section 3. By
using the obvious correspondence between elements of S; and elements of S, a
set of generators for S may be obtained as the union of the elements of S which
correspond to generators of the individual S;/’s. A set of generators for R can be
obtained similarly.

ExXAMPLE 2. Consider an experiment with three factors: A at 3 levels, B at 4
levels and C at 6 levels. Suppose that the available block size is 12. Using
pseudofactors A, B,, By, C; and C,, where A and C; have 3 levels each and the
other three pseudofactors have 2 levels each, a suitable design can be obtained
by confounding the pseudofactor effects AC; and B,BC;.

Confounding AC; in a 3% experiment corresponds to computing the annihilator
of the vector (1, 1). Simple application of either of the methods of Section 3

yields the rows of

10
(4.2) ['2“'1']

as generators for R, and S, respectively. Similarly, confounding B, B,C, in a 2°
experiment leads to the rows of

(4.3) 110

as sets of generators for R, and S, respectively. Using the natural embeddings
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into T, (4.2) and (4.3) imply R may be generated by (1, 0, 0, 0, 0) and (0, 1, 0, O,
0) while S may be generated by (2, 0, 0, 0, 1), (0, 1, 1, 0, 0) and (0, 1, 0, 1, 0).

5. Extensions to multiple blocking. The methods described above are
particularly convenient to use for many types of designs with complicated block
structure. Most of the designs described by Nelder (1965) and discussed by Bailey
(1977) can be handled in this fashion.

In particular, consider the common example of a fractional replicate design
with blocks within the fraction. In this case the fraction used, say F, is a subgroup
of T and the principal block, S, is a subgroup of F. The set T can be represented
as Q @ F and F can be further represented as R @ S. Here S is the intrablock-
intrafraction subgroup, R is the interblock-intrafraction subgroup and Q is the
interfraction subgroup.

If the experiment consists of n factors, each with the same prime number of
levels, generators for Q and F may be obtained from any independent set of
defining contrasts using either method described in Section 3. Any independent
set of generators for the effects to be confounded with blocks within the replicate
can then be used to convert the generators for F into generators for S and
generators for R in the same manner. For general factorials, decompose T as in
(4.1), then proceed as above within each T;.

ExAMPLE 3. (Kempthorne, 1977, page 426, and Bailey, 1959). A one-ninth
replicate of a 37 experiment is to be constructed in blocks of size 27. With factors
A,B,C, D, E, F and G, effects ABCD?E and CD?E*F*G* are suggested as defining
contrasts with AB2F?G and BCDF to be confounded with blocks in the fraction.
Applying Method 1 withd, =(1,1,1,2,1,0,0) and d> = (0, 0, 1, 2, 2, 2, 2) gives
the rows of

(5.1)

as a basis for T. The first two rows generate Q and the last five rows generate F.
Applying Method 1 to the last five rows of (5.1) withds; = (1, 2,0, 0, 0, 2, 1)
andd,=(0,1,1,1,0,1, 0) gives the rows of

21
(5.2) 00
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as the final basis for T. The first two rows generate Q, the next two rows generate
R and the last three rows generate S for the desired design.

Method 2 of Section 3 is somewhat more difficult to apply in the case of
multiple levels of blocking. The form of (3.5) suggests that one approach is to
start by generating the innermost subgroup, S, and then work out. For example,
the defining contrasts and the effects to be confounded can be used to obtain a
set of generators for S and Q @ R. Sets of generators for Q and R can then be
obtained by using the defining contrasts restricted to the factors present in the
set Q ® R.

ExXAMPLE 3 (continued). The 4 x 7 matrix 7 whose ith row is d;, is clearly
not in the form required by Theorem 3. However, it can be transiormed into

1 00 0101
0100110
(5.3) 0 01 0211
00010 2 2

Now, (5.3) implies, via Theorem 2, that S is generated by the last three rows
of (5.2) while Q ® R is generated by the rows of

100 000

0
0
0
0

[« e ]
S O =
O = O
= o o
[ e )
[ e )

Generators for R and Q may now be obtained by confounding ABCD? and
CD? (i.e. the defining contrasts restricted to the first four factors) in a 3*
experiment. This is equivalent to confounding AB and CD?. Reordering the
factors as A, C, B and D, these effects can be represented by

1 010
010 2]°

Thus, (2, 0, 1, 0) and (0, 1, 0, 1) are generators of the “intrablock subgroup” with
(1, 0, 0, 0) and (0, 1, 0, 0) as generators of the “interblock subgroup” in the
restricted, reordered experiment. Returning to the original experiment gives the

rows of
21000 0O
0 01 100O0
as generators of R with the rows of
1 00 0 0 0O
0 010 O0O0O0
as generators of Q. Clearly, these are equivalent to the sets of generators obtained

in (5.2). In this particular case, however, the derivation by Method 1 is probably
easier, especially considering the effort involved in obtaining (5.3).
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