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BOOTSTRAP AND CROSS-VALIDATION ESTIMATES OF THE
PREDICTION ERROR FOR LINEAR REGRESSION MODELS

By OLAF BUNKE AND BERND DROGE
Humboldt-University Berlin

Different estimates of the mean squared error of prediction for linear
regression models are derived by the bootstrap and cross-validation ap-
proaches. A comparison is made under normal error distributions, especially
by the biases and the mean square errors. The results indicate that the bias
corrected bootstrap estimator is best unbiased and should be the first choice,
while its simulated variant has approximately the same behaviour. On the
other hand, if only a comparison between uncorrected estimators is made
(with implications for nonlinear regression models in mind), then other
variants of bootstrap estimates are preferable for a large or a small dimension
of the model parameter. For a small dimension, the cross-validation estimate
and sometimes grouped variants of it seem also to be acceptable if the model
error is known to be small.

1. Introduction. One of the most frequent uses of a regression model is
the prediction of future values of the dependent variable for some fixed values of
the explanatory variables. The mean squared error of prediction (MSEP) de-
scribes the performance of the model and estimates of it are of interest. Such
estimates have been proposed as criteria for the comparison and selection of
regression models and of the explanatory variables in these models (see e.g. the
surveys by Hocking, 1976, and Thompson, 1978). Model selection will usually be
a more complex process than merely comparing models by a criterion like MSEP,
but such comparisons are an essential tool in a (possibly stepwise) strategy,
which additionally could include regression diagnostics, transformation analysis,
outlier and variable elimination procedures, etc. as e.g. discussed in Weisberg
(1981), Montgomery and Peck (1982) or in Bunke (1984). Nevertheless, after
finally selecting a hopefully good model, a good estimate of its MSEP is needed
as an assessment of its prediction performance.

Recently, the problem of estimating the prediction error has been investigated
in papers of Efron (1979, 1983) in a general setup, including regression and
discriminant analysis. There, the main interest was the introduction and discus-
sion of an interesting and somewhat unorthodox approach: the bootstrap and
other variants of resampling. His simulation studies indicate that for the special
discriminant problems investigated there, some variants of the bootstrap ap-
proach lead to better estimators of the prediction error than other approaches,
such as cross-validation.

Our paper is intended to provide additional insight into the behaviour of
bootstrap error estimates by an exact comparison of the performance of different
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bootstrap and cross-validation estimators of the prediction error in a case where
this is possible, namely for linear regression models with normally distributed
observations. For the sake of completeness we will include in our investigation
some other estimates like corrected residual sum of squares or Mallows’ C,,
which have been considered elsewhere.

We choose a setup with replicated observations, which allows one to estimate
the unknown variance without any restriction on the observation mean vector
(as e.g. to be in a linear subspace of R") and, moreover, to introduce also a
balanced grouped variant of cross-validation into the comparison. Results like
those in Section 5 may also be performed in a similar way for other setups, e.g.
without replications but with the less realistic assumption that the observation
mean varies in a given linear subspace.

The model and all estimators of MSEP are introduced in Section 2, except for
the bootstrap estimators, which are defined in Section 3. Section 4 presents the
biases and the mean square errors of the estimators of MSEP, which are the
basis for their comparison in Sections 5 and 6. The comparison and the numerical
values described in Section 7 are discussed in Section 8. They show the essential
advantages of the bootstrap approach and are in accordance with the findings of
Efron (1983) for the discriminant rules. Almost all of the results were obtained
in the thesis of Droge (1982) under the guidance of the co-author.

2. The MSEP and its estimators. We assume a linear model

(2.1) y=1,® L) )u+e=Au+e¢

for the random vector y = (y1, ---, y»)T of n = mh observations with the
standard assumptions

(2.2) Ee =0, De=o?l,

and unknown parameters
(2.3) . wER™ *>0.

In (2.1) we use the h-vector 1, whose components are all equal to one, the
m X m unit matrix I,, and the Kronecker product ®. For the integers m, h we
assumem =1, h> 1.

REMARK 1. (2.1) may be interpreted as h replicated observations of a de-
pendent variable Y for each of m different fixed values x; (design points) of a
vector x of explanatory variables. The components of u would be the values u; =
& (x;) of the response or regression function g(x) = E, Y. Estimating these values
u; or predicting future values, say z;, of the dependent variable Y for the design
points x; are problems of practical interest.

The prediction problem could be formulated as predicting the values of a
random vector z obeying

(2.4) Ez =y, Dz=d’l,,
assuming that in (2.1), (2.2), (2.4) the same parameters u, ¢* appear and that y
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and z are uncorrelated. The performance of a predictor Z = Z(y) of z depending
on the observations will be described by a mean squared error (MSEP)
(2.5) r=El|z-2(y) ¥,

where the expectation is over both random vectors z and y.

In (2.5) we use the notations || z | % = 27Wz and W = Diag[w;, - - -, w,], where
the positive weights w; fulfil ¥2; w; = 1. The weights measure the relative
importance of prediction errors for the components of z as in Mallows (1973) or
Bendel and Afifi (1977).

The prediction

(2.6) 2(y) = XB(y)

is assumed to be performed using a possibly inadequate linear model X3 approx-
imating the mean vector u. In this paper we assume that X is an m X p-matrix
of rank p < m.

The estimator 3 could be the ordinary least squares estimator (OLSE), but we
prefer to use the linear estimator 3 minimizing the MSEP (2.5) among all linear
estimators 8 = Ty with minimum “bias”

2.7) | EGz = XB) % = A = ming || u — X8 %
This estimator is just the “weighted LSE”

(2.8) B = (XTWX)'XTWi,

where it is the OLSE of u in the model (2.1):

29 i=hTATy, A=1,81,.

Its optimality is also valid in the class of all estimators § with minimum bias if
(y, 2) follows a normal distribution (see Bunke, 1973, or Bunke and Bunke,

1984).
REMARK 2. Each component p; of i is the mean of A components
y(k—l)m+i(k = 19 ) h)

of y, namely of those with expectatibn ui. The predictor Z is the oblique projection
2z = Pu with

(2.10) ' P = X(XTWX)'XTW = ((p;)).
REMARK 3. The usual unbiased estimator of o?in model (2.1) is
(2.11) a*=(n—-m)" |y — Anli.
With the notation
(2.12) B=WP, t=h"'trB

we may write the MSEP (2.5) as
(2.13) r=A+d*(1+t)=|u—Pulw+ o1 +1t).
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Several approaches to estimating the MSEP are possible:
1. The weighted sum of squared residuals
(2.14) RSS =y =9I} =rae

is a rough empirical estimate, which corresponds to the “apparent predictjon
error” rag in the terminology of Efron. In (2.14) we use the vector § = AXg =
1, ® 2 of “fitted y-values”, and the diagonal matrix V = h™'I, ® W, which gives
the appropriate weights corresponding to the weights w; in (2.5). The RSS has a
negative bias —2ts? (see Appendix Al) as an estimator of the MSEP and a
correction term yields the unbiased estimator

(2.15) F = RSS + 2¢%.

2. A somewhat better idea is to calculate a plug -in” estimator, replacing in
(2.13) the parameters u, o2 by their estimates i, ¢

(2.16) rs = |l —Z[Ww+ ¢*(1 + ).
In general it will be biased (see Table 1) and its corrected version would be
(2.17) rus= i — 2% + 6%(1 — A" + 2t).

As we will see in Section 3, it may be derived as a bootstrap estimator. In the
case of equal weights, the estimators (2.15) and (2.17) coincide and are just the
C,-criterion in essence. Its generalization (2.17) with different weights has already

been suggested by Mallows (1973).

3. Another approach to the estimation of a prediction error is cross-validation,
that is, an estimate of the form

(2.18) re=lly—9-1%

where each component y_; of _= (J_1, - - - ,5-,) T is the jth fitted value calculated
holding out the observation y;. Analogously as in Stone (1974) we may express
(2.18) by the vectore =y — 3 = (ey, - - - , e,) T of ordinary residuals in the form

r. = | e || & where
C=1,8C, C=Diaglcy, ---, cn]
. ¢; = hw;[h — pi]~®
(the term inside the brackets is positive because of p;; < 1 (see Belsley, Kuh and
Welsch, 1980)).

4. A grouped variant of cross-validation, too, may be defined in a somewhat
balanced way, leaving out one of h different groups of observations, y* =
(Yk=tyms1s =+ » Yoymsm) > B =1, -+, m, each with the mean Ey® = yu. This
allows some interesting insights into the behaviour of.grouped cross-validation
estimation in comparison with others. The estimate is

(2.20) rée=h7 3k ly® = 3PN%,
1
where for each k, * is the vector of fitted values calculated without the

(2.19)



1404 BUNKE AND DROGE

observations in y*. We have 3 = Pji_,, where ji_, = (b — 1)7* Tir y* is the
OLSE of u calculated without the observations in y®.

3. Bootstrap estimates. The bootstrap approach is an idea of broad ap-
plicability, explained in Efron (1979). For its formal application we assume that
the components of the standardized error vector ¢ = ¢ ~'¢ in (2.1) are i.i.d. with a
p.d. Q. We use the empirical p.d. Q of the “standardized residuals” é;, that is, of
the components of é = s™!(y — Ai), where s> =n""||y — Au ||. The p.d. Qis an
estimate of the p.d. @ and both have the same mean zero and variance one, which
is the reason for introducing a standardization of the residuals that is different
from the usual one (see Belsley, Kuh and Welsch, 1980). We observe that in the
definition (2.5) of the MSEP the expectation has to be taken under the true u,
o® and Q. A variant of the bootstrap approach would consist in their replacing
by the estimates i, 62, Q. This leads directly to the estimate rg in (2.16), because
the MSEP depends only on u and ¢, namely, in the form (2.13). The Monte-
Carlo variant of Efron (1979) would be defined based on N simulated bootstrap
samples ¢!, - - - , ¢V, where the components of the random n-vectors ¢“ are i.i.d.
with p.d. Q.

For each “bootstrap observation”

y=Ap + ge* (u=1, ---,N)
we can calculate the corresponding estimates p“, 2“. The simulated bootstrap
estimate is
(3.1) =6+ NN la— 2% =N"3.rk

and it may be interpreted as approximation to rg. The simulated bootstrap
estimator may also be corrected for bias (see Table 1) and provides

(3.2) s =r8 + 6%t — h™Y).
If we followed the approach in Efron (1979, 1982), we would be tempted to

define a b/oﬁstrap estimate in the following way: First we find the bootstrap
estimate EEE of the “expected excess error”

EEE=r—-E|y—-yl% =20%
(see Al) and then we use
—_—
(3.3) reoor = |y — ¥11¥ + EEE.

With EEE = 252t we see that reoor is identical with 7 given by (2.15). Intuitively
it is felt and somehow apparent from numerical results of Hinkley (/1528) for
similar estimators in other problems that a bias correction like EEE may
considerably increase the variability of the apparent error rag, which, moreover,
in many cases will be a bad estimator of r. This latter statement will be confirmed
later by the mean square error (MSE) of rag in comparison with that of 7 and
rus (see Table 2 and Droge, 1982). In Section 5 it will also be shown that rgoor
=} is outdone by rus, except for cases where 7 = ryg. .



BOOTSTRAP ESTIMATES FOR REGRESSION MODELS 1405

Another variant of the bootstrap approach would be to use the decomposition
(3.4) r=c1—h™)+Ela—2I%+2EE—pu)"W(i - p),

where the second term can be estimated by its unbiased estimator | i — 2| %.
The remaining terms can be estimated using the bootstrap approach, and it is
easily seen that this yields directly the unbiased estimator (2.17). We remark
incidentally that because of this property and because no bias correction seems
to be necessary, a simulation variant of this approach would be convenient in
the case of nonlinear regression models, where we have no simple expression for
the MSEP like (2.13).

4. Mean and MSE of the estimates. As we explained in Section 1, it is
our aim, if possible, to find the best of the different estimators of the MSEP
introduced in Sections 2 and 3, most of which have been favoured by different
authors. At least we would like to compare their biases and mean square errors
under special conditions, where there is more insight into the structure of the
corresponding relatively intricated MSE formulae. For this we assume in the
following that the observational vector y follows a normal p.d. As all estimates
of r in the previous sections were quadratic in the observations, their expectations
and variances may be calculated in a straightforward manner with some algebra
and using the well-known formulae

(4.1) Elylz=lult+ o’ T
(4.2) Dlyl% = 46| pl% + 20%r T?
for a vector y with normal p.d. N(u, ¢2I). This is done in A2 and the results are

compiled in the following tables. To make the simulated bootstrap estimator r§

comparable with the grouped cross-validation r” in the numerical effort, we use
N = h so that we have to calculate h LSE’s in both of them.
We use the notation £ = Pu.

(4.3) A=40h p— %, X=40?|p— £l
(4.4) P=h7"g®P=((p;), J=1,17
(4.5) K= (I, — P)TC'(I,, - P), G =hC(d, - P)I,—- P)7C.

The variances for the different estimators are calculated in A2, I, and together
with the formulae in Table 1 they lead to the MSE(¥) = E|# — r|? of those
estimators 7.

5. Comparisons of the estimators. First we may investigate the bias for
each biased estimator by looking at Table 1. This yields

THEOREM 1. The following inequalities hold for the bias Bias(7) = EF — r:
1. 0<Bias(r’) <h™'(h—1)"l¢?

2. 0 < Bias(rg) = Bias(ry) < h~1¢?
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TABLE 1
Means of estimators
Estimator 7 Mean EF

7 (2.15) r=A+d*(1+1¢)

r. (2.18) hllp—¢l2+o2trK

rt (2.20) A+ o1+ hh—1))

rg (2.16) A+d*(1+h™)

rus (217) r

rg (3.1) A+ X1+ A

s (3.2) r

rag (2.14) A+d¥(1-1t)

TABLE 2
MSE of estimators
7 MSE(#)

7 A+ 20*{h7%tr[hW? — 2WB + B2 + 4n7't + 4(n — m)™'t}
re N+ 204t K2+ [l — El3c-w + o*(tr K— 1 — ¢)
rh A+ o 2h U W2 + 2(h — 1) 'WB + (h* + h — 1)(h — 1)°B% + (h — 1)7%¢%}
rs A+ o2 % (W —=BX +2(n—m) {1+ t)2+ (A —t)?
rus A+ 204A" % (W — B2 + (n — m)™'(1 — b7 + 2t)%
rh MSE(rs) + 2h~%(n — m)~'*[(n — m + 2)tr B® — 3k T2, wiph
ris MSE(rys) + 2h73(n — m)'¢*[(n — m + 2)tr B* — 3h~' ¥, wipi]
T'AE A+ 204{h—2tl'[hW2 - 2WB + BZ] + 2t2}

3. Bias(rs) = Bias(r?) iff
(5.1) t < h—l —_ h—z
4 Bias(r)>0if Sripiz=py (=1, ---,m)

5. Bias(r.) =0(h™).

The relations 3, 4 and 5 are proved in A3 while 1 and 2 follow from the
inequality

(5.2) - 0<t=h'Ilipawi<hT'IE wi=h7h

We see that the grouped cross-validation estimate r” overestimates r in the
average and that in most cases (if condition (5.1) is fulfilled) it has a smaller bias
magnitude than the also nonnegatively biased bootstrap estimator rs. With
infinitely increasing number h of replications, the bias of all the estimators rg,
rY, r. tends to zero with order A7, that of the grouped cross-validation estimator
r even with order A2

The unbiased estimator rug depends only on the sufficient and complete
statistics (fi, 62) and therefore
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THEOREM 2. ryg’s a best unbiased estimator of r.

Comparing the MSE for the different estimators, we first state that obviously
the corrected bootstrap estimator ryg is uniformly better than (or equivalent to)
other unbiased estimators as e.g. 7 and rf. This is also true for the biased
bootstrap estimator rp, which is also uniformly better than the simulation
bootstrap r% in essence. Together with the other interesting relations this is

stated in:

THEOREM 3. (Proof in A4)
1. 2n7Y(n — m)™}(n — m — 1)t’* < MSE(rfizs) — MSE(rus)
= MSE(r}) — MSE(rg)
<2h'(n—m) Y (n—m+ 2 - 3n"Y)t%*
2. MSE(rfg) <MSE(?) if tr W?=2m™*(m+1) and h=zm+1=3
3. MSE(rys) = MSE(rg) and MSE(r}is) <= MSE(r}), where equality holds iff
t = h™!, which is fulfilled for p = m.

Concerning the condition in 2 of Theorem 3, it should be remarked that tr W?
fulfils m ™ < tr W? < 1 as a consequence of Jensen’s inequality.

It is perhaps interesting that for large sample sizes (large h, m fixed) the
estimators ryg, rip and r} are equivalent in their MSE and better than the
equivalent estimators rag, 7, r., r?, that is, for large samples the bootstrap
approach leads to better estimates than cross-validation. More precisely, with
the notation

(5.3) 7 =40 p — E||%2 + 2¢'m™!
(5.4) Kk =1+ 20%tr W2 —m™),

we prove in Ab5:

THEOREM 4. For the asymptotic MSE

(5.5) M () = limp—..h MSE(F) = lim;_,.hDF
of the following estimators F it holds

(5.6) M(rus) = M(rg) = M(r§) =7 <«
(5.7) M(rag) = M(#) = M(r.) = M(r?) = «.

6. The case of equal weights. A deeper insight into the behaviour of the
estimators is obtained in the case of equal weights

(6.1) W, =Wy = --- =wm=m_1,

because there is a considerable simplification in the formulae. In this case we
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have
W=m, t=ht[m'XX"X)"'XT|=n""p

and the corrected bootstrap estimator ryg is identical with
(6.2) F=rsoor =rus = nMlly —yli+ 2ps?.

The derivations in A6 provide

THEOREM 5. Assuming (6.1) we obtain
1. MSE(#) < MSE(r{s) < MSE(r?)

2. MSE(r!) < MSE(r3) iff p < an, where ay, is given in (A9) and a, — m for fixed
m and h — oo,

3. MSE(r?) < MSE(r}) if p < b, and MSE(r?) = MSE(r%) if p = dy, where
b, di, are given by (A10), (A11) and b, — m, d;, —> m for fixed m and h — .

From this theorem we learn that the corrected exact and simulated bootstrap
estimators are always to be preferred to the grouped cross-validation r?, while
for p < m and a sufficiently large number & of replications, r” is better than the
uncorrected bootstrap estimator rp.

Assuming (6.1), 7 is essentially better than r%g. Only under violation of (6.1)
r{s may be better than 7, namely, if for instance the “unsymmetry” between the
weights w; is high (tr W2 = m™?[m + 1]) and if h = m + 1 = 3. Then the corrected
simulated bootstrap estimator (and obviously also ryg) will be better than 7.

As it can be noticed, a comparison of the cross-validation estimate with the
other estimates is relatively cumbersome, even in the case of equal weights. In
the following theorem (proved in A7), some bounds are given for its bias and
MSE. In particular, we state that r. overestimates r in the average (see 4 in
Theorem 1, where we may use Y7, p?; = p;, which is fulfilled with (6.1) because
of PTP = P).

THEOREM 6. With (6.1) it holds that
1. n~?p%?=<Bias(r.) < (h—1)"%2h - 1)A+ n"*(h — 1) 'ps?
2. M <MSE(r.) < M, where
M=X+2n"%n-p)e* +n'p's’
M= (h-1)7"h*\+2n"%(h — 1)"*h*(n — p)o*
+[(h—1)"%(2h — 1)A + n"'(h — 1) 'pa?)~
For p = m we have MSE(r.) = M.
Under the assumption that h = 6(max?2; p;) it is possible to obtain a better
lower bound (see A8)
(6.3) MSE(r.) = M*= X+ n2%*2p + 2(n — p) *n*(n — 2p) + n"p?]
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which is relatively sharp, since in the special case

(6.4) pi =const(=m™p), i=1,---,m,

the following relation holds (see also A8) with A = 0:
MSE(r.) - M*

(6.5)

=n"2Y2((n — p)~*n* — 1)p + n"%(n — p)~%2n — p)p°].
For the special case (6.4) a comparison of r. with other estimators is possible (see
A9) and places cross-validation behind the others:

THEOREM 7. With (6.1) and (6.4) it holds that
1. MSE(#) <MSE(r.)ifh=3
2. MSE(r!) = MSE(r.) ifp = m.

In the case (6.4) it is also possible to derive the sufficient and necessary condition
(6.6) (n — p)(m — p)o? <= m(2n — p)(n — 1)A (see A10)
for Bias(r") < Bias(r.), which is e.g. fulfilled for p = m.

7. Numerical results. To get an impression of the differences between the

estimators, we have calculated, under (6.1), some quantities characterizing the
MSE itself. A selection of these numerical results is contained in Table 3. We

calculated:
p(F) = ¢ [MSE() — A]

for estimators 7 with the exception of the simulated bootstrap estimators r% and
ris, in the case of r. only with the assumptions (6.4) and A = 0, denoting

po(re) = p(r.) = 6 *MSE(r.) (A =0).
Additionally we calculated for
p(re) = o {MSE(r.) — A]
the upper and lower bounds 5(r.), p(r.) according to 2 in Theorem 6, and
p*(re) = o H(M* — ))

with M* from (6.3), which is a lower bound for p(r.) if h = 6 (max2;p;).
Because of A = A, implying 5 (r.) < p(r.), it is obvious that p(r.) is also a lower
bound for p(r.), while, in general, p(r.) is only an upper bound for p(r.) if A = 0.
Further we should note that, with (6.4) and without the assumption that
A = 0, it holds that po(r.) = p(r.) < p(re).
Concerning the estimators rj and riis we calculated upper bounds for p:

p(r)o(r te)l = p(re)lp(rus)] + 2h™'n"%(n — m)™(n — m + 2)p.

We observe that the difference between these upper bounds and the values of
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F1G6. 1. MSE vs. p for some estimators of the MSEP in the case (6.4),A=0,0=1,m=10,h =2,

p(r%) and p(r¢g) is at most 6h~'n"3(h — 1) 'p, since

2.2 __ -2 2 -2 — -2
Ziwipi=m mipi=mT YLipi=mTp

(see Table 2) if (6.1) holds. ‘
Figure 1 illustrates the results showing the form of the MSE of 7, rg, and r, as
functions of p in the case of A=0,0=1,m=10and h = 2.

8. Discussion of the results.

1. From the exact comparisons and the numerical results, it is obvious that
the corrected bootstrap estimator ryg should be the first choice among the
estimators considered in this paper. The corrected simulated variant riig is
approximately as good as ryg if N is large.

2. If we only choose among the estimators rg, r., r?, and rgoor to investigate
an interesting situation like that occuring in nonlinear regression, where it is
hard to get reliable unbiased estimators, we will derive the following recommen-
dations, which of course are only preliminary and require further investigation:

(A) For large p(=m or somewhat smaller) use the bootstrap estimator rg. If
the weights are approximately equal (see (6.1)) and p < m, one can also use the
grouped cross-validation r?, assuming a sufficiently large number h of replications
(2 in Theorem 5).

(B) For smaller p use the bootstrap estimate rgoor.

(C) For small p the cross-validation estimate r. is not as good as rgoor, but
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may be acceptable if the model error A is known to be small. The grouped cross-
validation r’ is also acceptable if h is very large. This could be important in
nonlinear cases in which approximate calculations of y_; (see Fox, Hinkley and
Larntz, 1980) and therefore of r. are easier than those of rgooror of its simulated
version.

With respect to the other estimates, the reliability of r” increases with h.
Under (6.1) we see from Table 3 that for h = 5, r” is better than rp for p < 0.6m,
while for h = 10 this is already the case for p < 0.8m.

3. With the exception of r, the difference between the MSE'’s of estimation
does not depend on A. Increasing model errors A > 0 are increasingly disadvan-
tageous for r., and even for moderate h the MSE of the cross-validation estimator
r. could be very large (see Table 2). On the other hand, under (6.1), (6.4), it is
obvious by some rough bounds for the MSE (increasing with A), that the cross-
validation remains a relatively reliable estimator for small dimension p and small
A. If (6.4) is not fulfilled, the behaviour of r. will not be essentially better than
in the case (6.4), because of the smallness of (6.5).

4. The estimators considered in this paper may also be defined in the more
general case of a model

8.1) Ey=Fa, Dy=¢%,, Ez= Ha, Dz= o¢’l,,
instead of (2.1) and (2.4), where F is an n X g-matrix and H an m X g-matrix,

both of rank ¢, and where o € RY, ¢ > 0 are unknown parameters. (8.1) covers
the special cases

(a) F= 1, ® Im’ H= Im’
which corresponds to model (2.1) (v = Ha = a),
(b) F=1,8 X, H=X,

where the projection 3 = X8 is performed with an adequate model,

L, 0 -+ 0
0
(C) F = . y = m, H=Imr

q

which describes an experiment with h; replications at each of m = g different
design points (see Remark 1 in Section 2). )
As before, the predictor of z will be of the form Z = X3, assuming X = HT for
some matrix T In (2.8) i is now defined to be the OLSE
i =Ha of up = Ha (&= (FTF)"'FTy).
A best unbiased estimator of the MSEP may again be obtained by correcting
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a plug-in-estimator or, alternatively, by the bootstrap approach and is given by
(8.2) roe = &= 2% + ¢%{1 + 2t — te[WH(FTF)"'HT}},
with

¢*=(n—-q) 7" |y—Fali, t=t[WPH(F'F)"'H"].

APPENDIX

(Proof of the statements in Sections 2 to 6)

Al. With (4.1), p = Ap and B = h"2J ® B = PTV we obtain
Ely =313 =EId - P)yl}=Elyl}s= I 2ll3-5 + o%r(V — B)
= A+ ¢%(1 — ¢t).

A2, I. Calculation of means (using (4.1)).

L1 With K given in (4.4) and 5 = P = A¢ it holds that
Er.=Elylk=li—nlé+ctr K=hlp—£l%+ oc%tr K (see (2.19)).

1.2 For calculating E(r!) we rewrite (2.20) in the form
re=ly=y"1%,

where

"= (I, ®P)

Kk
Observing that, because of 4_; = h(h — 1) — (h — 1)7'y?, we have y — 3" =
Sy, where
S={L®[I,+ (h-1)"'P}} — h(h - 1)7'P,
we may also write
ly —9"I% = llyll%, where R =STVS.
A straightforward algebra provides
hR = {I, ® [W + (2h — 1)(h — 1)°B]} — {h(h — 1)"*(J ® B)}

and
trR=1+hth—-1)""
Then
Erf=|E(y =39} +c%trR=A+ o’[1 + h(h — 1)7].
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1.3 We have
Ela—-21w=Elal¥w-5= lulv-s+ ¢*h7'(1 — tr B)
=A+d*h7 - 1),
and therefore the formula for Erg in Table 1.
I.4 Now and in the following we will work with the useful short notations E*

and D* for the conditional mean and variance over the bootstrap observations
y* under the condition of a fixed y. Then,

Er§ = E[E*(r})] = E[N™' 3, E(r§/y)] = Erg

and analogously Er{ig = Eryg = r - EF and Er,g follow from Al.

II. Calculation of variances. In the following, the variances of the esti-
mators are calculated basing on (4.2) and with the notation of I.

II.1 With the notation

U=V-B+2n—m)™tl,— h"'J®I,)
it holds that
Di =D yll} = 462 |32 + 20%r U
Now, because of (I, — h™J® I,,)i = 0:
NNt = laltv-2 = & —nl%2=h7p— £l%e.
A straightforward algebra provides
tr U2 = h7?%[h tr W? — 2tr(WB) + tr B% + 4n7't + 4(n — m)~'t%

These relations show that D7 = MSE(7) has the form given in Table 2. Similarly
it can be verified that

Drsg = X\ + 20*h~%tr[hW? — 2WB + B?).
I1.2 With L = C(I — P)(I — P)C it follows that
| K?= (I - P)TL(I - P)
(see (4.4)) and
(A1) Dr.=D|ylk = 4o*llit — 0l + 20*r K>
II.3 Using the notation from 1.2 we obtain
Drt = 46| i || %2 + 20%r R
Because of Su = —1, VS=STV,S(i—n)=pn—1:

Ialze = N1 — nldrves = b7 = £l
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Writing R in the form
R=1,8G —J®G,
with
hGi=W+ 2h —1)(h—1)2B, Go=(h—1)"°B
we easily obtain
tr R? = h tr(G? — 2G,G; + hG3)

(A2)
= h%r[W? + 2(h — 1)'WB + (h* + h — 1)°B?].

Finally we have reached
(A3) Drh = X + 2¢%r R2
I1.4 The derivation for the variance of bootstrap estimators will be carried

out for the more general statistics

rs(y) = & — 213 + vé?,
which provides rp for y =1+ t and rypfor y =1 + 2t — h~'. Similarly, if

ri(y) = la — 2% + vé?,
r§ and r{ are given by

ri(y) = N7 2, ri(y)

fory=1and y =1 + t — h7}, respectively. & and ¢° are independent and
therefore

Drg(y) = Dl i — 2% + ¥v*Dé* = D | al}v-s + v*Dé*
Now, because of || u || Zw-p2 = | & — &I %2,
D il3-5= X+ 20*h~%r(W — B)?
and as a consequence
Drg(y) = X + 2¢*[h72%tr(W — B)? + v%(n — m)7'].

Taking into account the conditional independence of ri(y) and ri(y) (for
u # v) we have

Dry(y) = D{E*[N™' 3. rs()]} + E{D*[N™" L. rs(v)]}

(A4)
= Drg(y + t) + E[N"'D*r(v)] (u fixed),
since
E*rg(y) = rs(y + 1)
Because of

(4 —2)"WP =0 and P(h'J®I,) =P
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it holds
la =2l =la—21%+12—2"I%=lla—21%+ 62l I3
Thus
D*ri(y) = D*|| 4 — 2“I% = 6*D* | «*| 3.

Recalling that E** = 0 and D*¢* = I,,, we derive, because of the well-known
formula for the variance of a quadratic form (see Anderson, 1971),

Dl e|% = 20r T? + (Ee} — 30*) 3 t,

which holds for a vector e = (ey, - - - , &,) 7 with &; ~ (0, ¢2) i.i.d. and a symmetric
matrix T = ((t;;)):

D*|le“|l} = 2 tr B* + X vIBAE*(e!)* - 3].

Noting
E*(ef)* = n(n — m)%6™* T2 That (Ymvymei — i),
EG*E*(e¥)* = 36
and
Ei*=Dé*+ c*=(n—m+ 2)(n — m)'¢*
we come to

E[D*ri(y)] = E&*D*| ¢*|3
=2(n — m)7'¢![(n — m + 2)tr B — 3 3, v?p3)
Together with (A4) and tr B2 = h~%tr B? the above equation implies
Drg(y) = Dry(y +t)
+ 2N n — m)'h2%6Y[(n — m + 2)tr B> — 3h™* 3, w?p?].

A3. Statement 3 of Theorem 1 follows immediately from Table 1:
Bias(rg) = Bias(r?)  iff
h'—t=(h-17" iff t<h™ —h2
Concerning statement 4, we note first that the diagonal matrix
hC — W = Diaglw;{h*(h — p11) 2 =1}, -+, Wni{h*(h — Pmm) ™2 — 1}]
is always nonnegative-definite. Thus

(A5) hllp=ElEzllp—El=A
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By using the assumption ¥ ; pZ =p; (i=1, ---, m) we obtain further
tr K = tr[P"CP + hC — 2CP] = 3, w;h(h — pi) (%, p} + h — 2py)
= Y wih(h — pi)™!
=Y wh7'(h + pi) + T wih7(h — pa) TPk
=1+t+ 3 wh™'(h - ps)7'pi,

since Y; w; = 1 and h™' ¥; w;p; = t. From this and from (A5) it finally results

that
Ere= A+ oq1+t+ Y wh™(h — pi)~'pi] > r.

Statement 5 is obvious from
Bias(r.) = llu = £llfc-w
+ [X wih™'(h — pa)7'ph + i wih(h — pa) (T, py — pu)lo?,
since he; — w; = O(h™").
A4.
1. Clearly,
Ly wip?: = ¥ wawp;p; = tr B? < (tr B)? = h%?,
and Jensen’s inequality yields
S wiph =z m™ (TR wipi)® = mT R
Altogether we obtain
2n7'(n — m) Y(n — m — 1)t%*
= 2h3(n — m) Y (n — m — 1)tr B%*
=2h™%(n — m)7'[(n — m + 2)tr B2 — 8h7' ¥, w?pile*
(A6) = MSE(r}) — MSE(rg) = MSE(rfiz) — MSE(rus)
<2h7%n — m) '[(n — m + 2)tr B2 — 3m~'ht?s*

=2h'(n—-m) Y (n — m+ 2 — 3n "t

2. From Table 2 we see that, with tr W2 = m™2(m + 1):
MSE(#) — MSE(rys) = 2h7*(h — 1)(tr W2 — m™Ye* = 2n"%(h — 1)o*.
Using m = 2 and t = h™!, (A6) implies
MSE(r{ig) — MSE(ryg) < 2(h — 1) 'h 2%,
which together with the first inequality leads to
MSE(f) — MSE(rgs) = 2n"%h — 1) '[(h — 1) — m?e* = 0,

since we have assumed that h = m + 1.
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3. Table 2 and (5.2) yield
MSE(rg) — MSE(rus)
= MSE(r%) — MSE(rtg)
=(n-m)Mh'=t)(n—m—-—2h1+4—-(n—-m - 6)t]e*
=0,
since it can be easily verified that
n—-—m-2h1+4>0n—-—m-6)t.

Therefore, MSE(rz) = MSE(rys) and MSE(r3) = MSE(rfs) hold iff h™! = ¢,
which is fulfilled if p; =1, fori =1, ... , m, i.e. if p = m (see (5.2)).

Ab5. At first we remark that lim,_.h MSE(F) = lim,_,..hDF for our estimators
because of (E¥ — r)2 = O(h™2). Also,
limphX = 4%l = &lI%2 = h),
because of
limy_hG = W(I, — P)(I, — P)"™W = (I, — P)"W*I,, — P)

and (I, — P)(u — £) = u — £ (see (4.3), (4.5)). Thus we have to examine only the
asymptotic behaviour of the factor ¢* in the MSE-formulae of Table 2. For the
estimators 7, rag, rs, rus, s, ris the propositions of the theorem are obvious
from the MSE-formulae. In A2, I1.3 we see from the formulae (A2) and (A3) that
lim,_hDr? = h\ + 20'r W?, providing M (r?) = «. The assertion for r, follows
from (Al),

K=I,®C—-h"(J®PTC) — h™'(J ® CP) + h™Y(J ® PTCP)
and

limy_oh tr K2 = limyh tr(l, ® C)2 = lim,_.h%r C? = tr W2
AG.

1. Because of
tr W2=m™!, t=n"'p, tr B2=tr BW = m?p,
(A7)
tr(W — B)2=m™%m — p)
the MSE-formulae in Table 2 lead to
MSE(r?) — MSE(#) = n2m™'(h — 1) °p[4h®*m + 8(h% — 2h)(m — p)

+ 6(m — p) + p(n — m — 2)]¢*.
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Thus, under consideration of (A6)
MSE(r?) — MSE(r#s)
>n7’m™(h — 1) °pa*[2hn + 8h(h — 2)(m — p)
+6(m —p)+ (6m —4)(h — 1) + 4(1 — h7Y) + 2mh7Y],

which is always positive since p < m and h = 2. The inequality MSE(#) =
MSE(r¢g) follows immediately from 7 = ryg with (6.1).

2. After some straightforward calculations we obtain from Table 2 by using
(A7)

(A8) MSE(rg) — MSE(r?) = n"%¢%(a — 2bp + cp?)
where ‘

a=m[4+ m+ 2(h — 1)],

b=h-1)"n-m+2h+2+4h-1)"+ (-1,

c=m(h—1)?nh — 2n + 2h - 2].
Obviously a, b, and ¢ are positive. With the notations

V= (nh—2n+2h-2)"Y(n - m),
b=n-m+2h+2+4h-1)"+h-1)"
and ‘
w=6n+6m+ m?>+ 4h® + 16 + (h — 1) Y (4m + 20)
+24h—1)2+8h -1+ h—-1)"*
it follows that
7 b2 —ac=(h—1)2w>0,
so that the roots of the quadratic function in p
a — 2bp + cp?
are given by
(A9) anlar] = (6 — [+]w'?).
Clearly,
w”>m, y>0n+2'm and 6>n—-—m+2
and therefore a}f > m, from which it follows that
MSE(r?) < MSE(rz) iff p <as,

recalling that p < m and ¢ > 0. From (A9) and the definition of ¥, § and w it can
be easily seen that a, tends to m for fixed m and h — .
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3. From the derivations in A4, 1. and using (A7) we obtain
2n?h Y (n — m) Y(n — m — 1)ps* < MSE(r3) — MSE(rz)
= 2n*hY(n — m) (n — m + 2)pe*.
Thus, with (A8)
n~2c*a — 2byyp + cp?) < MSE(r%) — MSE(r?) = n~2%¢*(a — 2bg)p + cp?),
where a, b and c are defined as in A6, 2. and
by=b—h(n—-—m)'n-m-1), bgy=b—h"(n—m)(n—m+ 2).
With the notations
wo = 4n + 10m + m® + 4h® — 2h + 4(h — 1)7(m + 3)
+22(h—1)"%+8h-1)"°
+h-1D)*+h2+8 ' (h—1)"+2nh -1
w=w +19+n%2+2n7"A7 = 2mh7 + 4m7' + 2071
+8n Y h—-1) 1+ 2nYh—-1)2
we=w+ 13+ 20783 —m) —4n"' + 4n"%2 - 2n'h?
—16n"Yh—1)"'—4n"'h - 1)
bh=n—-m+2h+1+4h-1)"+h"'+(h-1)72+n""!
and
8y = 6, — 3n7!
we find
blhy—ac=(h—-1)%>0 (@=1,2).

The roots by, b} and dy, di of the quadratic functions in p, a — 2bu)p + ¢p® and
a — 2be)p + cp?, respectively, are given by

(A10) bu[bk] = ¥(5, — [+]wl’?)
and
(A11) duld}] = ¥ (02 — [+]wi’?),

where ¢ is defined as in A6, 2. Similarly as there we have
w2>m, y>m+27'm and >n-m+2 (=1,2),

providing b} > m and d} > m. Taking into account that p < m and ¢ > 0, this
shows:

p = d), implies MSE(r}) = MSE(r?),
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whereas
p < by, is sufficient for MSE(r%) = MSE(r?).

From the form of b, and dj, it is obvious that both terms tend to m for fixed m
and h — oo,

AT,

1. With (6.1) we have by using (2.19) and PPT = P = PT
tr K = tr[P"CP + hC — 2CP] = tr[hC — CP] = n'h% 3;(h — pa) !
and therefore (see Table 1)
Bias(r.) = lu — &llic-w + o’n™' Ti (b — pi) “'pi.
(A5) together with p; < 1 provides
0=<llp—¢&lic-w=(h—1)7%2h — 1)A,

since

he; — wi=m 7' h*h —pi) 2 =1l =m ™ (h—1)*2h - 1) (i
From

(A12) O0<pi<1 pi<pi XiDi=Dp

]
\!—l

., m).

it is obvious that
n Yi(h—p)pi=ni(h -1 Tpi=n'(h—1)7p,
and Jensen’s inequality provides
n' 3 (h — pa)'pi = n7'h7 X ph = n7p2
Summarizing the above estimations, we obtain statement 1 of Theorem 6.
2. Let T be an arbitrary idempotent n X n-matrix and D = Diag[d,, - - - , d,]

a diagonal matrix with d; > 0 (i = 1, ---, n). Then, for any eigenvector f of T
corresponding to the eigenvalue 1 the following relations can be easily verified:

(A13) di51( =1, ---, n) implies | fl3ro & I fIF = I fIIF.
Now, with (6.1) (see (2.18) and A2, I1.2) it holds
L=CU-P)C, C=n"'h*I, ®Diagl(h — p1)™% -, (h = Prm) °1}.
Thus, applying (A13):
(ALD) A= ‘fn“Aaz <4|a-nlis*
=A< 4n7'(h — 1)*h*Ac® = (h — 1)*h*),

since
(h—pi)h? =1
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and
[(h=p)*h%(h —1D)*h* =1 (=1, ..., m).
We find
tr K*=tr[hC%+ (PC)*-2PC?]
(A15)

=n"Z;;pih*(h—pi) 2(h—p;)) 7+ Ti (h — 2pi)h*(h— pi) ™),
and therefore, recalling (A12) and ¥; p? = p.;,
n*(n—-p) <tr K< n%h - 1)"*h*(n — p),

which proves M < MSE(r.) < M (see (A14) and 1 of Theorem 6). In the case of
p = m, the above derivations imply MSE(r.) = M, since then

pi=1 for i=1,.-..,m.
AS.

1. With the notation
¢@)=q*2-h), a=h-piG=1--,m)
we derive from (A16)
n*tr K> >p + 3; (h — pi) *h*(h — 2p;) = p + h* 3 ¢ (q).

Straightforward calculations show that ¢ is a convex function of q iff 6g = 5h.
Hence Jensen’s inequality yields

ntr K>*>p+ h* 3, ¢(q) =2p + h*me(m™ 3 qi)
=p+ (n — p)~*n*(n — 2p)

for h = 6(max;p;;), and we obtain the inequality (6.3) analogous to 2 in A7.

2. In the special case (6.4) we have
C=(m-p)?nl, L= (n-p)“n¥I-P),
K=(n-p)*n(-P)
and therefbre

(A16) Bias(r.) = (n — p)~?(2np — p®)A + o’p*(n — p)"'n7},

~

X=(m—-p)ni\ tr K= (n—p)*nitrd — P) = (n — p)~°n2
Consequently, ‘

(A17) MSE(r.) = (n — p)~*n*\ + 2(n — p)°n%¢* + [Bias(r.)]?
leading to Proposition (6.5) for A = 0.
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A9.
1. With (6.1) and (6.4) we derive from (A17), A = 0 and from the MSE-
formula for 7
MSE(r.) — MSE(#)
= n%6*2(n — p)3n*+ (n — p) %* — 2n — 6p — 8(n — m)"'p?
= n"2%(n — p)2*[12np? — 6p3 + 2(n — p) 'np?
+p* = 8(n — m)7'p*(n — p)?].
Clearly, for h = 3
n—mz=2n/3
and therefore
8(n — m)7'p*(n — p)® < 12n7'p*(n — p)* < 12p*(n — p).
Using this, the MSE difference can be estimated from below by
MSE(r.) — MSE(#) = n™%(n — p) %¢*[6p® + 2(n — p)'np® + p*] > 0.

2. For m = p and thus A = A = 0 we see from (A7), (A17) and Table 2:
MSE(r.) — MSE(r")
=2(n — m) Y(h — 1)2h%* + [(n — m) 'n"'m26?)?

—d'2n'+2n"(h - 1)3Bh - 3R+ 1) + (h—1)"h7Y = 0.

A10. With (6.4), the bias formulae (see (A7), (A16) and Table 1) yield
Bias(r.) — Bias(r") = (n — p)~%(2n — p)pA
—oXn—p)Y(h - 1)'n"Y(n — hp)p,

which is obviously nonnegative iff (6.6) holds.
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