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ASYMPTOTIC EFFICIENCY OF ESTIMATORS OF
FUNCTIONALS OF MIXED DISTRIBUTIONS

By LUKE TIERNEY AND DIANE LAMBERT'

University of Minnesota and Carnegie-Mellon University

Suppose F is a mixture of a known parametric family of distributions
with an unknown nonparametric mixing distribution. Consider the problem
of estimating the value T'(dF) of a smooth functional T at the mixed distri-
bution F. One nonparametric estimator of T(dF) is T'(dF,) where F, denotes
the empirical distribution. Under a differentiability condition on T given in
this note, T'(dF,) is shown to be fully efficient asymptotically in the sense
that the limiting distribution of any other estimator of T'(dF) that is regular
in the sense of Hajek and Beran can be expressed as a convolution of the
limiting normal distribution of T'(dF,) with another distribution. The differ-
entiability condition is verified for the case that the parametric family being
mixed is a one-parameter exponential family and the support of the mixing
distribution is an infinite set with a finite accumulation point. Regularity is
verified for the maximum likelihood estimator of the probability of zero in a
mixed Poisson distribution under certain conditions on the mixing distribu-
tion. Moreover, the maximum likelihood estimator and the sample proportion
of zeroes are both shown to be fully efficient in this example.

1. Introduction. Consider a distribution F with density f that is a mixture
of a parametric family of densities {f(-, )} with respect to a o-finite measure x.
That is, f(x) = [ f(x, 6)dG(0) for some mixing distribution G. The form of the
family {f(-, 8)} is assumed to be known, but the distribution G is assumed to be
unknown. Suppose the value of a known smooth functional T'(dF) of the mixed
distribution is to be estimated using a random sample X;, -- -, X, from F. For
example, T'(dF) might be the probability of zero in a mixed Poisson distribution.

Several approaches to estimating T'(dF) are available. One is to use the
nonparametric estimator T'(dF,), where F, denotes the empirical distribution
of Xi, ..., X,. Another, following Simar (1976), Lindsay (1983a, 1983c), and
Jewell (1982), among others, is to compute the maximum likelihood estimator
(mle) G, of the mixing distribution G (when G is identifiable) and to use
TS f(-, ﬂ)dG‘,,(ﬂ))du). Both the nonparametric estimator and the partially
parametric mle of T'(dF) are consistent in general, but little else is known about
their statistical properties.

The limiting distribution of the mle of T'(dF) is investigated in Lambert and
Tierney (1984) for the particular case that (i) {f(-, 6)} is a family of Poisson
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densities, (ii) the support of the mixing distribution is an infinite set with a finite
accumulation point, and (iii) T'(dF) = f(xo) for xo =10, 1, 2, - - . . It is shown there
that the mle has the same limiting distribution as the nonparametric estimator,
which is the corresponding sample proportion, under an additional assumption
on the behavior of the mixing distribution near zero. In this case, then, the
nonparametric estimator has relative efficiency one with respect to the mle.

In this note the nonparametric estimator T'(dF,) is shown to be asymptotically
efficient among all “regular” estimators in the mixture context under more
general conditions than those studied in Lambert and Tierney (1983). In Section
3 it is shown that under a given condition, called Condition D, the limiting
distribution of any “regular” estimator T, of T'(dF) can be expressed as the
convolution of the limiting normal distribution of T'(dF,) with another distri-
bution. Thus, under Condition D any regular estimator is asymptotically at least
as dispersed as the nonparametric estimator T'(dF,). Roughly, Condition D,
which is defined precisely and interpreted more fully in Section 2, might be
described as a two-sided differentiability requirement on T. Our concept of
regularity, which is also defined precisely in Section 2, is analogous to that of
Hajek (1970) and Beran (1977). Condition D is verified in Section 3 for the case
that {f(-, #)} is a one-parameter exponential family of densities and the support
of the mixing distribution G is an infinite set with a finite accumulation point.
Condition D fails typically if the support of G is a finite set. Regularity is verified
in Section 4 for the mle of the probability of zero in a mixed Poisson distribution
under the condition that the support of G is an infinite set with a finite
accumulation point and G(6) satisfies a certain condition on its behavior near
zero. The implications of these results are discussed further in Section 5.

2. The lower bound on the variance. The proof that the nonparametric
estimator T'(dF,) is asymptotically fully efficient has two parts. In this section,
a lower bound on the variance of the asymptotic distribution of any “regular”
estimator of T'(dF') is obtained. In Section 3, the nonparametric estimator T'(dF,,)
is shown to achieve the lower bound.

The lower bound is most easily understood by drawing an analogy with a
simpler version of our problem. Consider a k-dimensional parameter 6 for a
family of densities {f(-, #)} and a real-valued function g(-) of # with a vector
D(-) of first order partial derivatives. Let {T,} be a sequence of asymptotic-
ally normal estimators of g(6); that is, under # the asymptotic distribution of
n“2(T, — g(0)) is normal with variance o%(f). When the behavior of T', is
“regular”, () is no smaller than D(8)'"Z7~*(0)D(6) = || D(0)|? where _#(9) is
the Fisher information matrix and | - | represents what might be called the
information norm rather than the usual Euclidean norm (Walker, 1963). The
analogy to be drawn in the mixture setting is that, under regularity conditions,
the variance of the asymptotic distribution of an estimator 7, of a functional
T(dF) of the mixed distribution is no smaller than || p |2 where p is the derivative
of Tatfand | - | is a non-Euclidean norm. In contrast to the typical k-dimensional
problem, however, in the mixture problem the nonparametric estimator T'(dF,)
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achieves the lower bound | p |2 To extend the k-dimensional parameter lower
bound to the mixture setting, we work with a generalized x> norm that can be
interpreted as an information type norm, a notion of score functions developed
by Lindsay (1983b), and a definition of regularity that is similar to that used by
Beran (1977a) and Begun et al. (1982). With these choices, the correctness of the
lower bound analogy between the k-dimensional parameter problem and the
mixture problem follows directly from Theorem 6 of Beran (1977a) on the
representation of limiting distributions of regular estimators.

The specific framework used throughout this note is the following. Let
(R, #) denote the real line with its Borel o-field, and let (0, &) be a meas-
urable space with the point sets {#} belonging to # for each § € 0. Also let
{f(-,0): 0 € O} be a family of densities on R with respect to the o-finite measure
u. Assume that f(- , -) is ZX ¥ measurable. Let & denote the collection of all
probability measures on % and let # = {f(-) = [ f(-, 0)P(d0): P € #} be the
set of densities for measures of {f(-, 0)}. Also, let & be the set of all densities
on R with respect to u.

Choose and fix a mixed density f from _#; in the following we assume that 7'
is to be estimated atf For the chosen f, define the corresponding space of f~%/2-
weighted square integrable densities by 7 = {g € & [ (g*/f)du < »}. De-
fine an inner product (-, -) and its associated norm | - || on 7 by (g, h) =
f (gh/f)du and | g || = (g, g)"/*. If the measure u is discrete and uniform then
| & = f | reduces to what might be called the x2-distance from g to f. Thus, this
norm can be thought of as a generalized x>-distance. Next, let & be the set of
mixed densities that are a finite distance from f; i.e., ¥ = # N <}.

In the k-dimensional problem, the score functions are the derivatives of the
log-likelihood in the coordinate directions of the k-dimensional space. Here the
analogy to a score function is defined in terms of the set & of directions from
which the mixed density f can be approached through sequences in & To be
precise, let

= {8 €L} | n*2(f, — f) — Bl — 0 for some {f,} C ¥}.

As Lindsay (1983b) has shown, & essentially consists of those densities in &}
that are of the form cf-U where c is a positive constant and U is a “score function”,
i.e. U is a directional derivative of the log-likelihood in a direction leading into
& along a smooth one-dimensional subfamily of & In this sense, % can be
thought of as-the “score space” of & at f. Further, if n'/2(f, — f) tends to 3, then
nlf. — fll? tends to |82 = [ (B%/f)du, the Fisher information at f in the
direction 8. Note that % is a closed cone, and that if & is convex then #Zis a
closed, convex cone.

Beran (1977a) calls an estimator T, regular at a density f if the asymptotic
distribution of n'/2(T, — T(f)) is unchanged whenever f is perturbed to a density
f. for each n and the sequence {f.} converges to f at rate n™"/%. As in Begun et al.
(1982), we require regularity only for some perturbations f, of f. Here, for each
n, the perturbation f, must belong to the set & of mixed densities within a finite
distance of f rather than to the set of all densities. Specifically, an estimator T,
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of T(f) based on a sample of size n from f is said to be Xregular at f if the
limiting distribution of n*2(T, — T(f.)) under the sequence {f} is the same for
any sequence {f,} in Ysuch that n'/%(f, — f) converges to some 3 € 4.

Finally, a functional T on <7 is said to be differentiable at f if there is a
function p € <7 such that for any sequence {f,} of densities in &7 that converge
to f,

lim,|| fo = FIT'[T(fa) = T(f) — <o, f — )1 = 0.

The derivative p is determined uniquely if it is taken to be orthogonal to f. Since
regularity and differentiability of 7" alone are not strong enough for our proof of
the lower bound to hold, we also require that the derivative of T meets the
following condition.

CONDITION D. The derivative p of T at f satisfies ap € 4 for any real
constant a.

In words, Condition D requires that the score space 4 (or directions from
which f can be approached through mixtures) be large enough to contain the
linear space generated by the derivative p of T. Therefore, Condition D can be
satisfied only if the set of mixed densities is sufficiently rich. Condition D is very
restrictive when the mixing distribution G has a finite number N of support
points. In this case, the largest linear space that can be contained in the set &
of score directions is typically 2N — 1 dimensional, since there are N score
functions for the locations of the support points of the mixing distribution and
N — 1 score functions for their weights. Hence, there are at most 2N — 1
asymptotically linearly independent functionals of f that can satisfy Condition
D if the mixing distribution has only N points. On the other hand, if the support
of G is an infinite set, then it is plausible that every functional T'(dF’) satisfies
Condition D. A restricted version of this conjecture is proved for one-parameter
exponential families in Section 3. Finally, another rough interpretation of Con-
dition D is that if p is thought of as the gradient of T at f, then f must be an
interior point of the segment of the line through f in the direction p that intersects
the set ¢ In this sense, Condition D is a two-sided differentiability requirement.

It is now straightfoward to recast and reprove Theorem 6 of Beran (1977a) in
the mixture framework. The revised theorem is given next as Theorem 1; its
proof is omitted. Theorem 1 differs from Beran’s result in two ways. First, the
x2-distance || - | defined above is used instead of the Hellinger distance, and,
second, regularity is required only with respect to the subset ¢ of mixed densities,
not with respect to all densities in 7.

THEOREM 1. Let T be a functional on £} that is differentiable at f with
derivative p. Suppose that p is orthogonal to f and satisfies Condition D. Let T, be
an estimator of T(f) that is “regular at f. Then the limiting distribution of
nY%(T, — T(f)) can be written as the convolution of a normal (0, || p ||?) distribution
with another distribution depending on f.
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3. The asymptotic efficiency of T(dF,). Given a functional T to be
estimated at a mixed density f, let S denote the restriction of T to distributions
with densities with respect to the measure u. The functional T is called smooth
at f if (i) S is differentiable at f with derivative p and (ii) [T'(dF,) — T(dF)] —
[ ¥(dF, — dF) = 0,(n""/%), where y = p/f and F, denotes the empirical distribution
of a random sample of size n from f. Note that if T is smooth at f then
n~Y3(T(dF,) — T(dF)) has a limiting normal distribution with mean zero and
variance [ Y2dF = | p|® Also note that, as in Beran (1977b), a contiguity
argument implies that T'(dF,) is regular if T is smooth. Also, if T is smooth and
satisfies Condition D, then Theorem 1 implies that no “regular estimator T,
can be more efficient than 7'(dF,). Moreover, if %, the score space, is sufficiently
rich that it contains every g in 7 orthogonal to f, then Condition D is satisfied
by every smooth functional T and every smooth functional T'(f) is estimated
asymptotically efficiently by T'(dF,). This argument proves Theorem 2 below.

THEOREM 2. Let T be any smooth functional at f and suppose T.isa &
regular estimator of T at f. If the orthogonal complement of the linear space
generated by f is contained in B, then the limiting distribution of n"/ 2(7, — T(dF))
is the convolution of a normal(0, || p||?) distribution with another distribution

depending on f.

To summarize, the asymptotic efficiency of T'(dF,) depends on the richness
of the set 4 of directions from which f can be approached. If the support of the
mixing distribution G is finite with N points, say, then the largest linear space
that can be contained in % has 2N — 1 dimensions typically. In this case,
therefore, there are usually 2N — 1 asymptotically linearly independent smooth
functionals T for which the associated nonparametric estimators are asymptoti-
cally efficient. In the same spirit, if the support of G is infinite, then one might
expect every smooth T to be estimated asymptotically efficiently by T'(dF.).
What is needed is that 4% contain the orthogonal complement of the space
generated by f.

If the support of G is an infinite set, then in some cases a proof that % contains
the orthogonal complement of the space generated by f can be constructed as
follows. Suppose not. Then since % is a closed convex cone, the supporting
hyperplane theorem implies that there is a v # 0 in 7 such that v is orthogonal
to f and (v, 8) = 0 for all 8 in @. Taking f,(-) = f(:) + n7*[f(-, 8) — f(-)],
which corresponds to the mixing distribution G, = G + n™%[§, — G], where 6, is
the probability distribution that assigns mass one to 0, shows that f(-, 8) — f(-)
€ Pfor all 8 € 0. Therefore, since v is orthogonal to f,

f[(f(-,())—f(-))v(-)/f(-)] dp
=f[f(-,0)7(-)/f(-)]dp50 for all 6 € 0.

Integrating the left side of this inequality with respect to G gives zero, since v is
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orthogonal to f, so that the inequality is an equality for G-almost all 6. If the
support of G is large, it usually follows that ¥ = 0 u-a.e., which is a contradiction.

For a case in which the preceding proof by contradiction is valid, take the one-
parameter exponential family f(x, 8) = exp(fx — x(8)) with © C (—o, ) and
% the Borel o-field on 0. Suppose the support of the mixing distribution G is an
infinite set with a finite accumulation point. Also suppose that the orthogonal
complement of the linear space spanned by f is not contained in 4. Then there
isa y € <7 such that v # 0 u-a.e. and (v, f(-, 8)) = 0 for G-almost all 6. Hence,
there is a sequence of distinct 6, converging to a finite limit such that
[ [exp(8;x) v (x)/f (x)]du = O for all j. Since the support of G is infinite, the trivial
case G({—o, }) = 1 is excluded; hence f(x) > 0 for all x, and for all §

e0x,y(x) 2< Zf[/e%x]
J |5 | < ivie [ 2] a

which is finite. Thus, [ [exp(6x)+y (x)/f(x)]dur(x) is an analytic function of 6, and
by an elementary property of power series (v, f(-, §)) = 0 holds for all complex
0. Hence y{x) = 0 u-a.e., which is a contradiction. The following corollary to

Theorem 2 is now proved.

COROLLARY. Suppose f is a mixture of densities from a one-parameter expo-
nential family and the support of the mixing distribution is an infinite set with a
finite accumulation point. Let T be smooth at f with corresponding derivative p
and let T, be “regular at f. Then the limiting distribution nY*(T(dF,) — T(f))
is normal(0, | p |2) and the limiting distribution of n**(T, — T(f)) is the convo-
lution of the normal(0, | p ||?) distribution with another distribution depending on

f.

4. An example. Take F to be a mixed Poisson distribution and T(dF) to
be the probability of zero under F, ie. T(dF) = f(0) = [ edG(\) for some
mixing distribution G. The derivative p of T at F is described by the vector
(f(0)A = £(0)), =f(0)f(1), =f(0)f(2), - --). Note that p is orthogonal to f, and
that | p |2 = f(0)(1 — £(0)). Suppose the support of G is an infinite set with a
finite accumulation point. Then by the corollary, the sample proportion of zeroes,
which is “regular, is an asymptotically fully efficient estimator for T'(dF) among
“regular estimators, and its asymptotic variance is || p || 2.

As pointed out by a referee, this example can be generalized considerably. If f
is a mixture of densities from any one-parameter exponential family and the
support of the mixing distribution is an infinite set with a finite accumulation
point, then for any function h the statistic T'(dF,) = [ hdF,=n""Y h(X;) is an
efficient estimator (among “regular estimators) of its expectation T'(dF) =
[ h dF. The derivative of T is p(x) = f(x)(h(x) — [ h dF), and the asymptotic
variance of T'(dF,) is | p |2 = [ h*dF — ([ h dF)>.

It is not clear whether the mle 7', is also %regular in the Poisson example,
but it is ¥ -regular for a restricted class 4 of mixed densities. The argument is
as follows. Given positive constants C, d, b, ¢, let ¥, be the class of mixtures with
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respect to mixing distributions G satisfying (i) the support of G is an infinite set
bounded above by C and (ii) G(x + y) — G(x) > dy® for all x, y, € (0, ¢). The
requirements (i) and (ii) are given as Condition 5.1 in Lambert and Tierney
(1984), and are shown to imply that n'/2(T), — T(dF)) is asymptotically nor-
mal(0, f(0)(1 — f(0))). Since the limiting arguments of that paper hold uniformly
over %, and the variances of the limiting distributions vary continuously over
%,, the mle T', is %,-regular. Further, for any G € %, the mixtures corresponding
to G, =G + n™"%(8, — G) are in ¥, for any 0 < C once n is large enough. Hence,
the argument preceding the Corollary shows that for any f in %, the set of
directions %, from which f can be approached through % is equal to the
orthogonal complement of f. Hence, Condition D holds for %4,, and the mle T},
is asymptotically efficient among %-regular estimators of 7T'(dF).

5. Discussion. The condition of regularity was developed by Hajek (1970)
and Beran (1977) to exclude superefficient estimators. As a continuity require-
ment, it has some intuitive appeal, at least if the parameter is in the interior of
the parameter space. In finite dimensional problems, mle’s are generally regular
on the interior of the parameter space. When the parameter is on the boundary
of the parameter space, however, regularity may be an unreasonable requirement.
For example, if the mean @ of a Poisson distribution is estimated on the basis of
a random sample of size n, and 0 is known to be less than or equal to 5, then the
mle 6 is min{X,, 5}. If 0 is perturbed from 5 to 8, = 5 — n"2¢ for some positive
¢, then the limiting distribution of n'/2(6, — 8,) is the same as the distribution of
min(52Z — ¢, 0), where Z has a normal(0, 1) distribution. Thus, the mle is not
regular. For the best regular estimator 7', n'/*(T, — 5) is asymptotically normal
(0, 5) when 0 = 5, but an estimator with smaller mean squared error can be
obtained by truncating this T,.

Since a finite mixture is on the boundary of the space of all mixtures, regularity
may not be an appropriate requirement to impose and the mle’s cannot be
expected to be regular if the mixing distribution is known to be finite. On the
other hand, if the support of the mixing distribution is an infinite set, then the
mixture is, in a sense, in the interior of the set of all mixtures, and the condition
of regularity may not be too restrictive. This informal argument is supported by
the results of the preceding section. /

Finally, we note that if, as is reasonable to expect, the mle’s are asymptotically
efficient for general mixtures when the mixing distribution is an infinite set with
a finite accumulation point, then the results of this paper imply that their
limiting distribution is normal(0, | p || 2). The nonparametric estimator based on
the empirical distribution has the same distribution, but this observation should
not be construed as a suggestion to use the nonparametric estimator instead of
the mle. In finite samples the mle is preferable since it produces smoother
estimates than the estimator based on the empirical distribution. Moreover,
functionals of the mixing distribution itself can generally be estimated only by
means of the mle; simple estimators based on the empirical distribution are not
available.
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