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ASYMPTOTIC NORMALITY FOR A GENERAL CLASS OF
STATISTICAL FUNCTIONS AND APPLICATIONS TO MEASURES
OF SPREAD!

By PAUL JANSSEN, ROBERT SERFLING, AND NOEL VERAVERBEKE

Limburgs Universitair Centrum, The Johns Hopkins University, and Limburgs
Universitair Centrum

A general class of statistical functionals is introduced and the asymptotic
normality of the corresponding estimators is established. Included are certain
measures of spread, proposed by Bickel and Lehmann (1979), for which the
asymptotic distribution theory has been an open problem. The proofs involve
some new results, of independent interest, for empirical and quantile proc-
esses.

1. Introduction. Let X, ---, X, be independent random variables having
common distribution function (df) F. Let h be a function from R™ to R (not
necessarily symmetric) and denote by Hy the df of h(X;, - - -, X,,). A number of
parameters of interest can be expressed as T (Hy), where T'(-) is a functional of
the general form

(1.1) TG =f0 q(T:(G)) dK(?).

Here G is a df, q is a real-valued function of a real variable, K denotes a df on
[0, 1], and for each ¢ in the support S of K, T;(-) denotes a functional of the form

1
(1.2) T.(G) = J; G7'(s) dM,(s),

where G~!(s) = inf{x: G(x) = s} and M, is a signed measure on [0, 1]. Whereas
the T;(.) are simply familiar “L-functionals”, the general form (1.1) includes
L-functionals, “generalized L-functionals” (Serfling, 1984), and certain special
measures of spread introduced by Bickel and Lehmann (1979). These examples
are discussed in detail in Section 2 and illustrate the need for study of the general
functional (1.1).

The main purpose of this paper is to establish the asymptotic normality of a
natural class of estimators for parameters of the form (1.1). A general result,
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1370 JANSSEN, SERFLING AND VERAVERBEKE

Theorem 3.1, is developed in Section 3 and applied in Sections 5 and 6, respec-
tively, to the estimators of two of the above-mentioned spread measures, esti-
mators for which the asymptotic distribution theory has been an open problem.

The estimators we consider for the parameters T'(Hy) of form (1.1) are given
by T'(H,), where H, is an empirical df constructed for estimation of Hz. Specif-
ically, we define

(1.3) Hu(y) = ngmy TIMX;, ---, X)) syl, -w=sy=sw

where the sum is taken over all n,, = n(n ~ 1) ... (n — m + 1) m-tuples
(&1, - -+ , im) of distinct elements from {1, - - - , n}. In the case h(x) = x, H, reduces
to the usual empirical df F,. In general, however, H,(y) is a U-statistic in
structure, for each fixed y. .

In verifying the conditions of Theorem 3.1 in particular applications such as
treated in Sections 5 and 6, a major step is to establish, for a designated
subinterval A of [0, 1], that

(1.4) sups | Ra(t)| = 0,(n7Y?),

where
t — H,(HF'(¢t))

(1.5) R.(t) = H'(¢) — HF'(¢) — he(HF())

and hy is the density of Hyr. In this connection, we prove in Section 4 several
preliminary lemmas on the empirical and quantile processes corresponding to
H,(y) as defined in (1.3). These results are of independent interest and may be
read independently from the rest of the paper. Even in the case that H, reduces
to the usual empirical df F,, the results are new. In particular, Lemma 4.2
establishes an in-probability analogue of the strong approximation result of
Csorgo and Réveész (1978) on the distance between the quantile process and the
uniform quantile process, under weaker regularity conditions on F.

The results on asymptotic normality may be applied, for example, in connec-
tion with the computation of asymptotic relative efficiencies of the spread
estimators considered here, in comparison with each other and with other spread
estimators. A general numerical study of a collection of spread estimators is in
development by the present authors.

2. Examples

EXAMPLE 1. L-functionals. With h(x) = x, so that Hr = F, and with ¢(x)
= x and M,;(-) = M(-) (independent of t), the form (1.1) reduces to T'(F) =
f6 F~'(s) dM(s), the familiar “L-functional”. The asymptotic normality of the
corresponding estimators has been studied by many authors (see, e.g., Serfling
(1980), Huber (1981) and Helmers (1982) for general discussion).

EXAMPLE 2. Generalized L-functionals. With arbitrary h(-) and otherwise
as in Example 1, we obtain the functional T'(Hr) = [§ H7'(s) dM(s) introduced
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by Serfling (1984), where also the asymptotic normality is proved (see also
Silverman, 1983).

EXAMPLE 3. The spread functional Ts. Take h(x) = x, so that Hy reduces
to F and H, to F,, and take q(x) = | x|”. Choose M, in (1.2) such that T\(F) =
F'(1—-1t)—F'(t) fort <% and = F7'(t) — F7(1 — ¢t) for t > %. Then (1.1)
becomes

T(F) = J; [F7H(t) — F7'(1 = )| dK(2),

a functional proposed by Bickel and Lehmann (1979) as a measure of spread of
a nonsymmetric df F. In particular, they suggest the case vy = 2 and K(-) uniform
on (ﬂy 1- ﬂ)’ 0 <:8< 1/2’ g1v1ng

1-6
(2.1) Te(F) = (2 — ) -[/2 [F7(¢) — F7'(1 — )] dt.

In Section 5 we will show that the corresponding estimator T;(F,) is asymptot-
ically normal under regularity conditions on the density f. This also provides a
proof of asymptotic normality for the asymptotically equivalent estimator (pro-
posed by Bickel and Lehmann, 1979)

n'—l(l/2 - ﬂ)_l Zg;([ln_/g])] [Xk:n - Xn—k+l:n]2;
where X, denote the order statistics of X, --- , X,.

EXAMPLE 4. The spread functional 7(X — X’; a, 8). With h(x;, x2) = x; —
%2, Hr denotes the symmetric df of X — X’, where X and X’ are independent
random variables with df F. Bickel and Lehmann (1979) introduce as a spread
measure the functional 7%(X — X’; a, 8), where 7%(Z; a, 8) is defined by (3.1) in
Bickel and Lehmann (1976) and by (2.3) below. In our notation, 72(X — X’; a,
8) may be expressed as

1-8 2
2.2) THp) = (1 — a — §) f [H;l (t-; 1)] “

Asymptotic normality of the natural estimator T'(H,,) is established in Section 6,
and this result also provides a central limit theorem for the estimator (b) of
Bickel and Lehmann (1979), page 39 (where in their definition of the pseudo-
sample “i < j” should be replaced by “i # j”).

EXAMPLE 5. A measure of dispersion. We note that the functional 72(Z; a, 8)
mentioned in the preceding example is in fact of the form (1.1), since it can be
rewritten as

1-8
(2.3) TF)=(1—-a-p0)" f [ -1 (t 42- 1)] dt,

with F the df of Z. For further discussion of this functional, see Bickel and
Lehmann (1976).
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OTHERS. Further interesting variations, involving Winsorizing instead of
trimming, for example, could be formulated but will be left implicit.

3. A general result on asymptotic normality. Following the standard
scheme of the differentiable statistical function approach (see, e.g., Serfling, 1980,
Chapter 6), we approximate T'(H,) — T (HF) by

(3.1) T(Hr; H, — Hr) = (d/dN) T(Hr + MHy — Hr)) | x=o0+.

Assuming that q is differentiable, we obtain from (1.1) the expression
1
T(Hr; H, — Hr) = j; q' (T.(Hp))T:(Hr; H, — Hr) dK(¢),

where T,(Hr; H, — Hy) is defined analogously to (3.1). Indeed, following standard
treatments of L-functionals (Boos, 1979; Serfling, 1980), we obtain
T.(Hr; H, — H) = nim) 3 A Xy, ---, Xi),

where

s = Ik, -, %m) < HF' ()]
At(xl’ ] xm) - J; hF(HEl(S)) th(S),

provided that Hr has a positive density on the support of M,. However, this
proviso can be relaxed somewhat if we are more specific about the form of M,.
Namely, consider the case that

dM.(s) = J.(s) ds + 31 a,l(s = py),

which corresponds to smooth weighting of quantiles G™'(s) in T;(G) by the first
term and discrete weighting of specified quantiles by the second term. We then
obtain (see Serfling, 1980, pages 265 and 290, Problem 8.P.5)

Ai(xyy -0y Xm) = — J: {[h(x,, -+, x») =y] — Hr(¥)}J:(Hr(y)) dy
(3.2) »
pit — I[h(xy, - -+, xn) < HF (py)]
he(HF (py)) ’
provided that Hr has a positive density at the points p;j, 1 < j < d.. In the case

that the second term is absent (i.e., all a;;’s = 0), this proviso may be dropped.
However, this term is indeed relevant in the particular examples to be treated in

Sections 5 and 6.
Thus, due to the structure of H,(y) as a U-statistic, T;(Hr; H, — Hr) is a U-
statistic and hence T'(Hr; H, — Hr) may be represented as a U-statistic:

(3.3) T(HF; Hn - HF) = n(_ﬂll) 2 G(Xip M) Xi,,,):

+ it a

where

G(x, -+, xm) = J; q' (Te(HF)) Ae(x1, - -+, xm) dK(2).
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Consequently, noting that E[G(X;, - - - , Xi»)] = 0, defining
Gl(x) = E[G(xy le MY Xm—l) + ...+ G(le ct Xm—ly x)]

and ¢%(T, F) = Var{G,(X)}, and assuming 0 < ¢*(T, F) and E[G*(X;, - - - , Xn)]
< o, we have by central limit theory for U-statistics:

(3.4) n'?T(Hp; H, — Hp) =4 N(0, o*(T, F)).

Therefore, a similar limit theorem holds for n*/?[T'(H,) — T'(Hr)] if the remainder
term

A, = T(H,) — T(Hr) — T(Hr; H, — Hr)
can be shown to satisfy
(3.5) A, = 0,(n7V2).

Now, assuming that q is twice differentiable, we may write A, = An; + An2, where
1
Apy = J; q'(T:(Hp))[T.(H,) — T:(Hr) — T.(Hr; H, — Hr)] dK(t)
and
1
App =" J; q”(0.(Hr, H,))[T.(H,) — T:(Hr)? dK(t),
with 6,(Hr, H,) a random variable between T.(Hr) and T;(H,). Assuming that

g” is uniformly continuous, it follows immediately that a set of conditions
sufficient for (3.5) is given by (A)-(D) below:

(A) m= J; lq’(T.(Hr))| dK(t) < x;

(B) ne = J; q”(T.(Hr))| dK(t) < ;

(C) supies | T:(H,) — T:(Hr) — Ti(Hr; H, — Hp)| = 0,(n7/?);
(D) Sllp:es[T:(Hn) - Tt(HF)]2 = Op(n_l/z)»

where S denotes the support of K.
We summarize the previous development in the following general result.

THEOREM 3.1 Let T'(Hr) be given by (1.1) and let q have uniformly continuous
second derivative. Assume that Hy has positive density hr at appropriate points
and that 0 < ¢*(T, F) and E[G*(Xi, -+, Xn)] < . Then, under conditons

(A)-(D),
(3:6) n'2[T(H,) — T(Hr)] =a N (0, ¢*(T, F)).

REMARKS. (i) In cases where ¢” = 0, we have 7, = 0 and condition (D) may
be deleted.
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(ii) In fact, the density hr need be positive only on the union of the supports
of M, for t € S. In Theorems 5.1 and 6.1 below, this set is contained in the
interval given in condition (iii) of these theorems. With specific information on
the form of M,, the assumption of a density can be stated more sharply, as
discussed above in connection with (3.2), and in some of these cases the assump-
tion can be dropped completely. Also, from consideration of selected L-functionals
for example, we see that the density assumption is superfluous in still other
cases. However, the methods of the present paper do not yield a complete
resolution of this issue, which we leave as an open matter.

(iii) For the case of (generalized) L-statistics, we have 7, = 1 and 7, = 0,
leaving only (C) to be dealt with. In this case, (C) takes the form

3.7 T(H,) — T(Hy) — T(Hp; H, — Hg) = 0,(n""?).

Thus the present approach reduces to the usual treatments of L-statistics (see
Boos, 1979; and Serfling, 1980) and of generalized L-statistics (see Serfling,
1984), where the verification of (3.7) has been carried out in various situations.

4. Empirical and quantile processes of U-statistic structure. In Sec-
tions 5 and 6, a crucial step is to show that for appropriate ¢, and ¢,,

(4.1) SUpy <i<s, | Ru(t)| = 0p(n™"?),

where R, (t) is given by (1.5). Introducing the notation ¢, = Hr'(t) and &,, =
H;'(t), and assuming that there exists a constant M > 0 such that hp(s) > M
for s € [¢., £:,], we have

SUD,<t<t, | Ra(t)| <= M7'[R1n + Ron + SUDPysess, | Ha(En) — 1],
where
Ry, = supysese, | [Hnu(§in) — Ha(£:)] — [Hr(£m) — Hr(£:)]|
and
Ry, = Py, <e<, | Br(E)[Een — &:] — [Hr(§m) — Hr(£:)]1.

Since |H.(£wm) — t| < ngm), it is immediate that supe<i<, | Ha(£:) — t]| =
0,(n""2). Hence for (4.1) it suffices to show that

(4.2) Ry =0,(n72), i=1,2.

Define u(xy, -+ , %m) = Hr(h(x1, - -+, %)) and let U, be the empirical df of
the n,, uniformly distributed, but dependent, random variables u(X;, --- , X; ).
Introduce the associated empirical and quantile processes,

an(t) = n?[U,(t) - t], 0<t=<]1,

and .
u,(t) = n"2[U;Mt) - t], 0<t<]1,
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respectively. Then H, = U, ° Hr and it follows readily that
(4.3) Rin = n720(0tn; 72| Un ||,

where w(g, 6) = sup|,—:|<; | &(s) — g(t) |, the modulus of continuity function, and
lgll= = sup;| g(¢)|, the supremum norm. Also, it is readily seen that

4.4) Ry < n7Y2 SUpy <=, | Un(t) | SUDy<ter, | hr(€r) = hp(Em) |,

where v,(t) = n'?[H;(t) — HF'(t)], 0 < t < 1, and £,, lies between £, and Ein.
From (4.3) and (4.4) it is clear that we need appropriate results for | u, || and
SUP;,<i=t, | Un(t) |. These are presented in the next two lemmas.

LEMMA 4.1 |l u, e = O,(1).

PROOF. From the weak convergence of o, (-) established by Silverman (1983),
it follows that | &, || has a limit distribution and thus || @, || = 0,(1). Now it is
readily checked that a.s.

un(t) = —a, (U (1)) + O(n'2),
Thus || u, | < || s llw+ Op(n—l/z)- O

LEMMA 4.2 Suppose that for some ¢ > 0, hr is bounded away from 0 and is
Lipschitz continuous on A° = [£, — e, £, + ¢]. Then

(a) SUDs, <<ty | hr(£:)Un(t) — un(t)| = 0,(n7Y2)
and
(b) SUPy,<i<t, | Un(t) | = Op(1).

PROOF. Let hp(t) >M > 0,t € A°. Then fort € A°,
[on ()| = M7 | hp(:)va(8) |
S M7 un(t)| + M7 | hp(£)va(t) — ua(t) |.

Hence, by Lemma 4.1, (b) follows from (a). To establish (a), we use the relation
H;' = H7! o U;! and write

he(£)va(t) = n'2he(£,)[HF (U7 (t)) — HF (t)]
= hF(Et)un(t)/hF(Hil (0nt))y
where 0, lies between t and U;(t). Thus

_ _ Un(@®)[hr(&:) — he(HF (0:))]
hF(Et)vn(t) un(t) _, hF(Hil(ont)) ’

and so by Lemma 4.1 it suffices to show that uniformly in ¢t; <t < t,

hp(ft) - hF(Hil(ant)) = -1/2
he(HF (6) Op(n™5).
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Since hr(s) > M on A°, 1/he(H7*(0,:)) < M~ for t € (t;, t). Finally, hp(§,) —
hr(H7' (6,:)) = Op(n~"2) uniformly in ¢; <t < t, by the Lipschitz condition and
a further application of Lemma 4.1.0

For the special case that Hr = F, Lemma 4.2(a) has an almost sure counterpart,
with rate O(n2 log log n), established by Csorgd and Révész (1978) under
second-order differentiability assumptions on F.

We now are in a position to give conditions under which (4.1) holds.

LEMMA 4.3. Under the conditions of Lemma 4.2, (4.1) holds.
PrOOF. We wish to establish (4.2). For R;,, it suffices by (4.3) and Lemma
4.1 to show that, for arbitrary K, .
(4.5) w(an; n72K) = 0,(1).
Now, Silverman (1983) proves
lim,_olim sup,_.» E{w(a,; x)} =0,

so that E{w(an; n7/%)} — 0 as n — . This yields (4.5).
For R,,, we use (4.4) and the Lipschitz condition on hr to obtain

Ry, = n_IO(Suptlscsczl un(t)|?),

which yields the desired conclusion by Lemma 4.2(b). O
5. The spread functional Ts. We return to the trimmed variance func-
tional given by (2.1) and note that since g(x) = x* we immediately have condition

(B) of Theorem 3.1. Also, since | T.(Hr)| = |F~'(t) — F™(1 — t)|, we have
regarding (A) that

1-8
m = 2(1 - 26)7" J; |F71(¢) — F7'(1 — ¢)| dt

1-8
<41 - 28)7 J; | F71(¢)| dt.

As to (C), we note that in this example H, = F,, and
| T.(F,) — T.(F) — T«(F; F, — F)| = | R.(t) — R.(1 — t)],

where R, (t) is the remainder term in the Bahadur representation of the tth
sample quantile (see (1.5)). Hence (C) will be satisfied if

(5.1) SUpp<i<1—s | Ra(t)| = 0p(n7"?).
As to (D) we remark that
supp<i=1-p[Te(Fy) — TAF)) < 2 supgeisi-glF (¢) — F7' ()P,
so that (D) will be satisfied if
(5.2) sups=i=1-4[F7" () — F7'(t)])* = 0p(n7'?).
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We are now able to prove the following result.

THEOREM 5.1 Suppose

(i)  JEPIF(@)| dt < oo

(ii) 0<¢*(T, F) <, with ¢*(T, F) as in Section 3;

(iii) For some ¢ > 0, the density f of F is positive and Lipschitz continuous on
[F7(8) — ¢, F'(1 — B) +¢].

Then
n'?[Ts(F,) — Ts(F)] =4 N(0, ¢*(T, F)).

Moreover (by an easy calculation),

16 N ‘
o*(T, F) = A= 25° j; L [F7'(t) - F'(1 - ¢)]
- [F7'(s) = F7(1 — 8)]¥(t, s) dt ds,
where V¥ (t, s) = [min(t, s) — ts]/f(F~1(t)) f (F~(s)).

ProoOF. From (i) and (ii) the asymptotic normality of the leading term
Ts(F; F, — F) is immediate, i.e., (3.4) is fulfilled. (See also Remark (ii) following
Theorem 3.1.) Moreover, from Lemma 4.2 (b) it follows that (5.2) and hence (D)
hold. Since (C) reduces to (5.1), its validity follows from Lemma 4.3. Finally, (B)
is immediate and (i) takes care of (A). O

It should be noted that in this example we could alternatively obtain (5.1) and
(5.2) by applying results for the usual empirical process, namely results on
Bahadur representation and quantile processes (see, e.g., Serfling, 1980, page
101, and Bickel, 1967).

We conjecture that the density assumption in this example can be relaxed.

6. The spread functional r2(X — X’; a, 8). Here we return to the spread
functional given by (2.2) and without loss of generality we assume o <1 — 3. As
in Section 5, condition (B) holds trivially since g(x) = x% and it is easily seen
that a sufficient condition for (A) is given by condition (i) of Theorem 6.1 below.
As for (C), we note that in this example

| t+1
T.(H,) — T:(Hf) — T.(Hr; H, — Hf) = Rn<—>,

2
where R,(t) is the remainder term in the Bahadur representation of the tth
quantile of the empirical df H, of U-statistic structure, so that (C) will be satisfied
if

SUPes<t<1-8

t+1
Rn<——2 )' = sllp(1+a)/2stsl—ﬂ/2|Rn(t)| = Op(n"1/2)_
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Condition (D) in this example reduces to
SUP@ +a)/2=<t<1-8/2 [H;l (t) — HF' (t)]2 = Op(n-llz)-
Therefore, by a proof similar to that of Theorem 5.1, we have the following result.

THEOREM 6.1 Suppose

() J&&e | HF ()] dt <o

i) o< a“’(T F) < o, with ¢*(T, F) as in Section 3, and E[G*(X,, X,)]
< 003

(iii) For some ¢ < 0, the density hr of Hr is positive and Lipschitz continuous
on [HF' (1 + a)/2) — &, HF' (1 — 8/2) + ¢].

Then
n2[T(H,) — T(Hz)] =« N(0, ¢*(T, F)).
Moreover
o*(T, F)
-8
=U=s _a)zf f Hp<t+1>H <s+1) (t’;l,s’;l)dtds,
where
¥(t, s) = 2 PiX; < HF' (®), X;, “_Xiz < HF'(s)} — 4ts
hF(HF (&) hp(HF (s)) ’

with Y, denoting summation over 1 < i) #i, < 2,j,=1,3,ja =1, 3, j1 # ja2.
We conjecture that the density assumption in this example can be relaxed.
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