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Theory for finding designs in estimating a linear functional of a regression
function is developed for classes of regression functions which are infinite
dimensional. These classes can be viewed as representing possible departures
from an “ideal” simple model and thus describe a model robust setting. The
estimates are restricted to be linear and the design (and estimate) sought is
minimax for mean square error. The structure of the design is obtained in a
variety of cases; some asymptotic theory is given when the functionals are
integrals. As to be expected, optimal designs depend critically on the particular
functional to be estimated. The associated estimate is generally not a least
squares estimate but we note some examples where a least squares estimate,
in conjunction with a good design, is adequate.

0. Introduction. Let T be a set of sites. An observation at ¢t € T is assumed
to be of the form

(0.0) Yi=ft)+ o &

where Ee; =0, E¢?2 = 1 and f € #, a class of possible regressions over T. This
paper fixes certain #’s (see (0.4)) and deals with designs, that is, placement of
uncorrelated observations in T, for the estimation of regression parameters.
The class % can be one of the standard classes, such as polynomials of fixed
degree, but our intent is to treat problems where % is not finite dimensional and
thereby develop some theory about designs which are robust against departures
of f from a standard simple model and, more generally, to treat designs for
estimating characteristics of a nonparametric regression function. For example,
suppose T = [—1, 1] and ¥ is a class of functions on T with bounded second
derivative, namely, {f| | f”(t) | = M, all t} where M is specified. This & can be
thought of as a class of nearly linear functions (it clearly includes all linear
functions) and serves to represent departure from the “ideal” model where f is
linear. Generally, we envision problems where a precise (finite dimensional)
model cannot be safely specified but where certain linear functionals of the
regression function, which we call parameters, are of special interest. In the
above example we might be interested in the estimation of £(0) or f(1) — f(-1)
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or [§ f(t) dt. The question we address is: how do we design the observations to
accomplish the estimation in an optimal way?

The specification of ¥ is an approximation for the “real” f whose explicit
form can never be known. Thus the choice of a finite dimensional polynomial
class gives a specific approximation and an estimate of a coefficient of the
polynomial is an estimate of a linear functional of the approximation rather than
a characteristic of f itself. It is a consequence of the finite dimensionality that
there is then ambiguity about what characteristic of f is being estimated. For
example, if f is in the class of straight lines on [—2, 2] then there is no difference
between the linear functionals (f(1)— f(—1))/2 and f’(0). However, if f is viewed
as a member of a larger class, for example, %, = {f| | f”(x) | < M}, then the two
linear functionals on #; are distinct. The effect on designs will be seen to be
considerable: within the smaller model a best design for either functional is to
put half the observations at —2 and half at +2 while in the larger model the best
designs are markedly different, the first functional requiring placement of obser-
vations nearer to —1 and +1 while the second functional requires observations
nearer to 0 (see Examples, 2.1 and 3.1).

The original work introducing concern about departures from a “parsimonious”
model is by Box and Draper (1959) who investigate the design consequences of
using the smaller model for estimation in a'larger but finite dimensional class;
thus, the smaller model may be the linear functions while the larger class consists
of quadratics. The subsequent interesting papers of Karson, Manson and Hader
(1969), Kiefer (1973, 1980), Draper and Herzberg (1976) and Galil and Kiefer
(1977) also resort to finite dimensional classes and, necessarily, retain the
ambiguity about what properties of f are being estimated.

A reflection of the confusion caused by this ambiguity is the widely held view
that, in the traditional fitting of a straight line, the optimal design, which divides
the observations equally among the two most extreme available sites, is objec-
tionable because it requires specifying the extreme sites and because it provides
no information at intermediate points in order to assess the validity of a straight
line fit. It is our view that clear objectives stated in terms of characteristics of
the underlying f can provide a rationale for choices of design which deals with
the type of objections described above and does not suffer from ambiguities
caused by appealing first to an approximation of f.

We concentrate here on treating specific linear functions of f; we do not
address the curve fitting problem. Huber’s (1975) formulation of curve fitting is
a step towards providing a more relevant model, albeit a halting one since no
implementable design can serve in that formulation; another approach to curve
fitting is taken by Agarwal and Studden (1978).

The pertinent and more exacting task of exploring problems involving several
functionals simultaneously is deferred; such a study for a specific pair of func-
tionals (f(0), f(0)) was initiated in Marcus and Sacks (1976) for an infinite
dimensional model slightly different than the ones we consider in this paper and
related studies were carried out by Li and Notz (1982), Pesotchinsky (1982) and
Li (1984).
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Our attention is limited to estimates which are linear functions of the obser-
vations. When # is a finite-dimensional vector space (e.g., all polynomials of
fixed degree) and the ¢’s are normal this is no restriction if a minimax approach
is adopted since least squares is minimax for squared error loss.

However, when # is an infinite dimensional class (like those in (0.4)) which
can be thought of as representing the departures from an “ideal” simpler linear
model there is, necessarily, a bias term which is introduced and it is generally
true that the least squares estimates connected with the ideal model will not
suffice for minimaxing mean square error even among linear estimates (Example
1.2). A similar observation was at the heart of the treatment by Karson, Manson,
Hader (1969). Various authors cited earlier assume the use of least squares
estimation based on the parsimonious model (e.g., Box and Draper, 1959; Huber,
1975; Agarwal and Studden, 1978; Pesotchinsky, 1982) although it is by no means
certain that the optimal choice of both design and linear estimates leads to least
squares nor is there much a priori justification for adherence to least squares. In
some examples least squares can be optimal (see Marcus and Sacks, 1976; Li and
Notz, 1982); and in other examples, the marriage of the least squares estimate
with a good design may serve to provide adequate suboptimal solutions (see
Sections 4 and 5, and Marcus and Sacks, 1976), but the general utility of least
squares remains an open issue.

The restriction to linear estimates rules out the possiblity of considering gross
errors in the distribution of the ¢’s even for finite dimensional . When & is
more general, for example the class of functions with bounded derivative, we may
be interested in functionals which are bounded, such as f(1) — f(—1). In such a
case linear estimates cannot be optimal, and if the bound is small enough, and
the observations are few enough, there is evidence that substantial improvement
may be available (Cassella and Strawderman, 1981). At the very least, truncation
of the linear estimates would be preferred. Fortunately, the effect of the bound-
edness is likely to be minimal for reasonably sized n and we do not regard this
aspect as a serious failure of linear estimates.

Even when the parameter is unbounded the minimax linear estimate is not
minimax among all estimates in the models of (0.4) (Sacks and Strawderman,
1982). Moreover, it is shown there that the minimax linear estimates are typically
not asymptotically minimax as the sample size goes to « unless the observations
accumulate rapidly at a few sites. The designs for the parameters in Sections 1
and 2 have this property so that we do not regard the use of linear estimates in
those contexts as potentially troublesome at least for reasonable n. In the context
of Sections 4 and 5, where the designs are more diffuse, asymptotic minimaxity
of linear estimates will not hold; nonetheless, the gain achievable by use of
alternate estimates may not be substantial and, in any case, the designs suggested
appear to be reasonable ones.

Mathematical Preliminaries. Our mathematical development begins with a
space .# of functions on T, a linear functional I" defined on % and n uncorrelated
observations satisfying (0.0). Suppose the n observations are such that n; = 1 are
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located at sites t;, i = 1, ..., k. The design problem we pose is to choose &,
n=0ny, - ,m),t=_(, ---,t)and e = (cy, - -, cx) to minimize

J(k, n, t, ¢) = sup+E(3 k. ¢; Y, — Tf)?

(0.1) .
= ¢% T4 (¢}/ni) + sups(Cf — Tf)?

where C is the linear functional defined by
Cf = E\(Tki a:Yy) = Thief(t) = J;de.

(Here the functional C is identified with the measure it induces. We shall also
use the notation C(x) to denote the value of the induced distribution function at
x.) The minimization of (0.1) is called the exact problem. If J is optimized with
respect to n for fixed &, t, ¢ and without regard to the integer nature of the n;’s,

the resulting minimum occurs when n;/n, = |¢;|/|c:|, i =1, ---, k, and has
value
(0.2) J(k, t, ¢) = (¢*/n) (Tk1 | c:])? + sup#(Cf — Tf)%

The minimization, of (0.2) by choice of k, t, ¢ (equivalently by choice of C) is
called the approximate problem. If C* is optimum for (0.2) and n* has noninteger
values, then implementation of the design requires replacement of the n} by
integers. When C* calls for many sites (relative to n) the implementation is
troublesome; otherwise the comparative tractability of (0.2) to (0.1) makes the
approximate approach advantageous.

If & is a finite dimensional linear space, say {f|f = Y&: aif; for some
ay, -+, ag}, then T' is a linear combination of the regression coefficients {a;}
and, with &, n and t fixed, (0.1) calls for the minimax mean square error estimation
of . The supremum over % of the mean square error will be finite only when
an unbiased estimate is used, so one is led to the least squares estimation of T.
The subsequent minimization with respect to n and t is a central problem in
standard design theory and has been extensively studied (Guest, 1958; Hoel,
1958; Kiefer and Wolfowitz, 1959; Kiefer, 1961; Karlin and Studden, 1966; Wynn,
1970; Fedorov, 1972, are important early papers).

The functionals I" we will treat for infinite dimensional & are

i) Discrete:  If= SN, vif(x) = [ fdT,
(0.3) ii) Continuous: I'f= [ y(x)f(x) dx,
iii) Derivatives (when appropriate): Tf = f'(x0).

In the finite dimensional settings we discuss (see (0.4)), these parameters (func-
tionals) are uniquely determined, in contrast with the finite dimensional set-up
where, for example, if & = {a + Bx, some a, 8} on [—1, 1], then a and B have
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representations as

=10 =MDEIED 1 [ g

p=po=TOZICN 2 [ o

among others.
Here are the ¥ ’s we consider. With T' = R*

=FAM) ={f] If(x) = f(y)]| = M|x —y|, for every x, y € T}

D FUM) = {f| |f'(x)| = M, all x} D, {constants)}.

(0.4)
T = F(M) = {f| f € F(M)}

D ZUM) = {f| f € FIM)} D {linear functions}.

The restriction to R’ is a substantial one; we hope to address multidimensional
T at another time. In order to avoid added complications, we do not consider
subsets T of R' but results about such problems can be obtained by following the
arguments we present.

The placement of f in #; or #; is an assumption about its smoothness — f or
its derivative satisfies a uniform Lipschitz condition. It turns out that the theory
appropriate for #; or % is the same as that for 9 or 9, respectively, so one
can begin with either type of condition about f. Since %, contains constant
functions—indeed the constants represent the intersection of the classes #; (M)
over M > 0—it can be viewed as a collection of nearly constant regressions.
Similarly, since %, contains all linear functions it can be taken to be a model for
nearly linear regressions. Huber (1975) has solved the problem of design for
extrapolation from a half-line in the ¥ }(M) setting.

There are, of course, other s of interest. The choice here is motivated by
some knowledge of minimax linear estimation for these spaces (Sacks and
Ylvisaker, 1978), their general acceptability and their (relative) simplicity.
Dei-in Tang is investigating Sobolev spaces, in response to the work on estimation
that has been done there (Speckman, 1979). Spruill (1982) has recently treated
some general questions on extrapolation when % is a Sobolev space.

The paper is organized in a straightforward way. Successive sections will deal
with discrete parameters, nonsmooth (%;) and smooth (%,) cases; derivatives in
F,; continuous parameters, nonsmooth and smooth cases. One reason to set
matters up in this way is to attempt a contrast of results according to the degree
of smoothness which is assumed. Each section contains relevant theory, several
examples, and some efficiency calculations for the obtained estimates and designs
when they are employed in standard models. The final sections on continuous
parameters contain some asymptotic theory—we allow n — o for fixed ¢2 and
M. There is the customary interplay between these three parameters and one
important aspect of the relationship is carried by the parameter p = nM?/¢? as
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can be seen at (0.2). Some reduction in complexity occurs if one adopts an error-
scaled model—take M = oM and get p = nM?>.

The choice of M, o2 (or M) is clearly relevant. For design problems we cannot
ask that the data inform us about proper choices via crossvalidation, for example.
It is relevant therefore to evaluate the qualities of a design for different plausible
values of M, o? as indicated in some of the examples we present.

1. %, Discrete parameters. We use the notation set at (0.3) and (0.4)
where the parameter I' is identified with a discrete signed measure whose support
we denote by S (I'). By C* we mean an optimum functional (if it exists) associated
with (0.1) or (0.2) depending on the context, and S(C*) denotes its support. We
shall, in fact, show the basic result for both the exact and approximate problems,
that the support of the optimum design can be sharply limited and that an
optimum C* exists (Proposition 1.1). In Proposition 1.2 we show that the
approximate problem has C* = I' if I is a positive functional. Later propositions
provide some structure for C* which we use to calculate a number of examples

exhibiting various behavior.
The space %, contains all constants and a functional C cannot correspond to
the minimum at (0.1) or (0.2) unless C1 = I'l. For a C with finite support write

Cf — Tf = Tky ef (6) — Ty vif (%) = T2y aif (22)
withz; < ... <zpand Y2, a;,=0. Thus {21, - - - , 2} = S(C) U S(T'). Now
|Cf = Tf| = | R aif(z) | = | 222 Ai(f(2) — f(zi1)) | = M X725 | Ai| Ai 6;

for all f € # where A; = Y2, a;and §; = 2, — 2,1, L = 2, ..., m. Moreover,
equality is achieved when f(z;) — f(z;-1) = Mésgn A;, i =2, ..., m. Thus (0.1)
becomes

(1.1) J(k, m, t, c) =d® Tk, (c?/m) + MA(TR: | Al &:)%

and (0.2) can be written as
2
(1.2) J(C) = 5’; Sk lal)? + MX IR, | Ail 8)>

Observe here that, while the definition of ¢/ in (1.2) could be extended, the domain
of J is taken to be finitely supported C’s and we minimize accordingly.

PROPOSITION 1.1. For (1.1) or (1.2) there is an optimum C* with S(C*) C
S(T).

PROOF. Begin with (1.1) and suppose that C1 = I'l. If there are elements
2; < 2g+1in S(T') with 2541, -+, 2,in S(C) — S(T') and if
| Ar| = min(| Ags1], -+ -, | Agarl),

move the observations at z,, - -, 2z, to 2,41, those at 2,41, ---, 2,—; to 2, and
replace Cf by C’f =YL af(t) + f(t) It ¢ + f(tgr) B8 e + Tk cif (). The
variance term in (1.1) is not increased by this change while the bias term,
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7t | A;| 8;, gets replaced by (321 6;) | A,| which is also not an increase (| A;|
remains the same as do all the other A’s). If, say, z,+1 = x;, then move the
observations left of x; to x; itself and find J to be no larger. Thus we may restrict
attention to C’s with support contained in S(I'). For fixed n the minimum of
(1.1) is achieved at some ¢ since ¢ is continuous in ¢ and goes to ® as | ¢ | — .
Subsequent minimization over n shows that, in the exact case, an optimum must
exist. The approximate case is argued in the same way.

We turn next to finding the solution to the approximation problem (1.2). In
view of Proposition 1.1, take z; = x; for i = 1, ..., N, with ¢; = 0 if x; is not a
point in the support of C. Standard notation is used in writing I' = I'* — I'" to
indicate the decomposition of a signed measure into its positive and negative
parts.

PROPOSITION 1.2. If T is a positive measure or a negative measure then C* =
T is the unique solution to (1.2). Otherwise, I' is not optimum.

ProoOF. If C1 =T1 and I is a positive measure, then
0'2 0'2 0'2
J(C) = = (i 161)* = = (B 6)* = = (B 7)* = J(T)

and the first inequality is strict unless C = I". On the other hand if ' =T*— T~
with I'*(1)I' (1) > 0 it is not hard to show that I' is worse than C,= (1 — ¢)I'* —
(1 — &(I'*(1)/T(1)))T~ for small positive e.

From now on I' will be an honest signed measure as we try to minimize JJ. For
perturbing a given C we use the notation C = C;; where é&; = ¢; — ¢, § = ¢; + ¢,
¢, = ¢, otherwise.

PROPOSITION 1.3. If C* is optimum for (1.2), C** =T*and C* <T".

PROOF. Suppose ¢; > 0 and ¢; > «;, for some 2 < i < N — 1. From the
definition of A; (see (1.1) above) A; = A;41 + ¢; — v:. If C is changed to € = (7,-,,~_1
then A; = A; — e and A, = A, if q # i. Therefore, if A; > 0 and ¢ is small ¥, | 4;| §,
>Y |4;16and Y | ¢j| =3 |é] soJ(C) <J(C). If A; <0 then A= A; — ¢ + v
< 0. Now use C= G+l and get A~,'+1 =A;—c+yi+te=A1+eso |Ai+1| <
| Ai+1] if & is small enough. Since A=A forq#i+1,% |A;j|8>3 |46 and
Y l¢il = ¥ 161, implying J(C) < J(C).

If i = N then Ay = ¢y — v~ > 0 and the first part of the proof using € = Cy n—;
shows that J(C) < J(C).If i = 1 then A, = A; — ¢; + v1 = —¢1 + ¥1 < 0 and we
use the second part of the proof with € = €, ,to get J(C) < J(C).

PROPOSITION 1.4. If n is sufficiently large and C* is optimum for (1.2) with
S(C*) C S(T') then :
(i) S(C*) =S(I),
(i) vvj-1> 0 implies A} =0,
(iii) ;> 0 implies Af <0, v; < 0 implies A} = 0.
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ProOF. The minimum value of (1.2) is O(1/n) since
J(T) = (¢*/n)(Z1] %)™
Therefore, for an optimum C*, | A}¥| = O(1/vn) for i = 2, and then,
|} — vil = |A¥ — A%l = 0Q1/Vn) fori= 1.

This guarantees that, for sufficiently large n, every c} differs from zero, thereby
establishing (i).

From (i) we have ¢} # 0 for all j. If ¥ | A¥|9; =0 then all A* =0 (and ¢} =
v;) and there is nothing to prove. Otherwise, let

p=nM?/o® N =TV |c}|, N =p IV |AF|Y;
and then A;, A2 > 0. Recall that ¢; = vy; + A; — Aj41(A1 = An+1= 0) and define
K(A) = CV |7+ A — A )? + p(T | 451 8)>

Since K is minimized at A* let n; be the unit vector with 1 in the jth position,
j=2, ---, N and calculate, if A* # 0,

0<% [K(A* + hn;) — K(A¥)]
= M h osgn(c}) — Mh sgn(ck,) + N\oh sgn(AF)s; + O(h?).
Letting h | 0 and h 1 0 produces, forj =2, --- , N,
(1.3) X sgn(A})8; = \i[sgn(cti) — sgn(c})] if A} #0.

If vj4j-1> 0 then c}c}, > 0 and (1.3) cannot hold. Therefore (ii) is assured.
One now obtains (iii) by observing from (1.3) that if v; > 0 and v;-; < 0 then
Al =0,ify;<0and y;-;>0then A} = 0.

REMARK 1. Note that the conclusions (ii) and (iii) of Proposition 1.4 only
depend on c¥ck, not being 0. A consequence of (ii) of Proposition 1.4 is that
Yj-1, ¥j, Yj+1 > 0 implies A} = A};; = 0 which implies that ¢} = y;. The same
conclusion holds if all three y’s are < 0.

We now give some illustrative examples. A simple computational program is
not yet available but the examples indicate a wide variety of possible behavior in
the context of this section. The notation p = (nM?/¢?) from Proposition 1.4 is
used throughout.

EXAMPLE 1.1. Let I'f = 3¥ f(x;)/N. From Proposition 1.2 the best approxi-
mate design apportions n/N observations to each site and estimates I' by
(1/N) 3K, Y(x;) where Y(x;) is the average of the observations at x. The
minimum value for (1.2) is 02/n which is the mean square error for estimating o
in the finite dimensional linear model EY; = a. In this latter model, any design
will give the same mean square error. If C, is the design which puts all observa-
tions at 0, then J(Cy) will be much larger than J(C*) (e.g., if N = 3 and the x’s
are = 1,0, J(Cy) = (¢2/n)[1 + (4p/9)] compared to J (C*) = ¢%/n). Note that for
the functional considered here the estimator is the least squares estimator.
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If N divides n the approximate design is an exact design. Otherwise, imple-
mentation of C* by an exact design can be done in ad hoc fashion at least for
cases where N is modest compared to n by taking proportions of observations as
close to the approximate solution as possible. In general, computing the best
exact design (minimizing (1.1)) is a formidable task.

EXAMPLE 1.2. Let T'f = f(1) — f(0). Since C1 = I'l = 0 we can write Cf =
¢f(1) = ¢f(0). In the approximate problem J(C) = 4(¢%/n)c* + M*(1 — ¢)? which
is minimized by c* = p/(4 + p) with J(C*) = (¢/n)(4p/(4 + p)).

The problem here is that of estimating a bounded mean since, by assumption,
| £(1) — f(0) | = M. (It is generally true that boundedness of T' on # is equivalent
to I' being a contrast). If we think of the least squares estimate in this case to be
Y. — Y, then J(CLs) = 46%/n which is considerably. greater then J(C*) unless p
is large. The size of the possible improvements over Cis in the case of normal
errors is studied by Casella and Strawderman (1981) and, for p < 4, there are
substantial improvements possible. For p = 16, J(C*)/J(Cys) = .8, and for larger
p the boundedness problem for estimation begins to disappear.

EXAMPLE 1.3. Let I' be the contrast I'f = f(—1) — 2f(0) + f(1). For the
approximate problem we write the general C as Cf = af (—1) — (a + b)f(0) + bf (1)
and minimize

J(C) = (e*/n)(|a| + |b| + |la+b|)2+ M* (|1 —a| + |1 —b]|)2
From Proposition 1.3 one has 0 = a, b < 1 and this reduces J(C) to
(4/n)o*(@ + b)? + M*2 — (a + b))%

There is a range of optimum choices: take a + b = 2p/(4 + p) subject toa < 1
and b < 1. For small p (p < 4) one can even have a design with b =0 i.e.,a =
2p/(p + 4) with no observations at 1.

EXAMPLE 1.4. Let I'f = 3X, v,f(x;) where v, is negative for j < r and v; is
positive for j > r. This is the simplest class of examples not covered by Proposition
1.2.

If n is large enough then, according to Proposition 1.4, every c} differs from 0
and all A} = 0 except possibly for j = r + 1. Since A} = 0, A}, = 0 implies ¢} =
vj, we get all ¢} = v; except possibly, for c¥, cf1 with ¢} + cf1 = v+ + Va1
C* is then easily determined.

For small n use Proposition 1.3 to consider only those C’s for which a; = ¢; —
vi=0,i<r, and a; < 0 for i > r. Then, with L = ¥V 4,, the problem can be
reduced to finding

min0<cqs'yq,psr,q.>.r+1 (0,2/n) [(2cq + 2 Zf]ﬂ-l Yi — L)2
+ P(cq(xq - xp) + Zg 'Yj(xp - xj))2]~
In case I'f = —2f(1) + f(2) + f(3) we find that if p = 1, ¢ = 2, the c; which
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globally minimizes the above expression is (p — 4)/(4 + p), so that, when p > 4,
this is the right solution and we get ¢ = —2p/(4 + p) and c% = 1. For example,
if p = 12 this implies that n/2 observations are at 1, n/6 observations at 2, n/3
observations at 3. If p < 4 we have to use p = 1, ¢ = 3 and get global minimum
at 3p/(2 + 2p) which is < 1 if p < 2. Therefore ¢cf = —3p/(2 + 2p), ¢ =0, c¥ =
30/(2+ 2p)if p<2.When2=<p=<4,ct=-1, c§=0, c¥=1is the solution and

JC*) =16p/(p +4) p>4
=4+p 2=p=<14
= 9/(1 + p) p <2

2. %, Discrete parameters. The regression functions in %; are smoother
than those in 4, and, while this means that observations carry more information,
we also experience more complications in carrying out a development parallel to
that in Section 1. While existence of optimum designs still holds (Propositions
2.1 and 2.3) we cannot limit the support of the design in the same way we did in
Proposition 1.1. However, in Proposition 2.3, we obtain some information to
enable an attack on the approximate problem. Proposition 1.2 has its counterpart

in Proposition 2.2. .
Consider a functional C with finite support {t,, - - - , £}. The space %, contains
all linear functions so C cannot minimize (0.1) or (0.2) unless

21) Cl=3k,c=T1=3N,v;, Cx=3k,cit;=Tx=3X, v;x;

for, otherwise, sup;. 5(C(f) — T'(f)) = + .
As in Section 1, let {2, - - -, 2} = S(C) U S(T') and set

(22) D) = Tk ci(u — t)¢,zn(w), G) = X1 vi(u — )10 ().
Then we see that

sup 5 f " (6)d(C = T) = supg f " FOIDE) - G(t)] dt

1 1

=Mfm ID(t) — G(t) | dt

1

so the exact criterion is

(2.3) J(k, n, t, c)=azzc?/ni+M2<fm|G—D|)2.

1

For C with finite support we set

Zm 2
(2.4) J(©) =";2[<25;1 |c,-|>2+p<f |G—D|du)]

1

and the approximate problem is then to minimize (2.4) subject to (2.1). As was
done at (1.2) we consider J(C) to be defined for finitely supported C’s only.
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PROPOSITION 2.1. If n = 2 there is an optimum solution to the exact problem
(2.3). If k = 2 there is an optimum solution to the approximate problem (2.4)
among all C having at most k points of support.

PROOF. As in Proposition 1.1, one holds the c¢;’s fixed so that the variance
term of (2.3) or (2.4) is unchanged while the bias term is manipulated. This
brings about a reduction to those C which satisfy —A<t; < ... <, < Afora
suitable A. The conclusions of the proposition follow quickly once this reduction
is found; further details may be examined in Sacks and Ylvisaker (1982).

For the problem at (2.4) it is not yet clear that a lid can be put on the number
of support points of an optimum C, i.e., that an optimum C exists among all
finitely supported functions. However it will follow from Proposition 2.3 that if
C* is optimum among all C having at most 2N points of support, then C* is
optimum for (2.4). The remainder of the section deals with the solution to (2.4).

PROPOSITION 2.2. If T' is a positive measure it is uniquely optimum for (2.4).
Otherwise, T is not optimum.

PROOF. The first statement is argued exactly as it was in Proposition 1.2.
The converse follows from comparisons covering the cases N = 2 and N > 2
separately (see Sacks and Ylvisaker, 1982 for details).

LEMMA 2.1. If C is optimum for (2.4) among functionals having at most k
support points for some k = 2, then for any s, t in S(C),

f sgn(G — D) = 0.

PRrROOF. The bias term in (2.4) is the only one affected by t. Since

Zm t; Zm
[e-m=f'+]
z 2 tj

1

differentiate with respect to ¢; to get

4 lG—DI=ij sgn(G — D) du.
dtj 2y t;

Then, minimizing [ | G — D | subject to Y, ¢;t; = constant leads to the conclusion
that [i" sgn(G — D) = constant. This establishes Lemma 2.1.

Let x < y < z be three successive points in S(C) and suppose S(I') N (x, 2) =
é. Denote by c, c,, c. the c coefficients that go with x, y, z respectively. G(u) (see
(2.2)) is linear on [x, z] while D(u) is a linear spline on [x, 2] with a knot at y.
The slope of D(u) on (x, y) is C(x) (recall that C(x) is the distribution function
induced by C evaluated at x) and on (y, 2) the slope is C(y). Let A = G — D.
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According to Lemma 2.1, [} sgn A = [7 sgn A = 0. Since 4 is a linear function
on (x, y) and on (3, 2) this means that A((x + y)/2) =0, A((y + 2)/2) = 0. Thus,
if one of A(x), A(y), A(z) = 0 all three are 0 and then A is identically 0 which
means that C(x) = C(y) which implies ¢, = 0. But this contradicts y € S(C).
Assume A(x) > 0. Since A((x + y)/2) = 0, this means that the slope of A is
negative on (x, y) and A(y) < 0 so the slope of A is positive on (y, 2). Since G
has constant slope, C(x) — C(y) > 0 and therefore, ¢, < 0. Alternatively, if A(x)
< 0 then ¢, > 0. In fact, as we shall now show, it is impossible that ¢, # 0 at a
minimum for ¢J.

LeEMMA 2.2. If C is optimum for (2.4) among functionals having at most k
support points for some k = 2, then in any closed interval formed by successive
points of S(T') there are at most two points of S(C).

PROOF. Assume there are three points as in the paragraph preceding the
lemma and that A(x) > 0. We will vary c., c,, ¢, holding the other ¢’s fixed, the
t’s fixed and c, + ¢, + ¢, and xc, + yc, + zc, constant. These constraints guarantee
that f 1dC = [ 1dT, [t dC = [ x dT, and that D(u) will change only if
u € [x, z]. We obtain

dfz"‘
) |G = D| du

__d_f’
—dcx xIG DI
Yy

=f sgn(G—D)(x—u)+fsgn(G—D)[x—u+(y—u)%}

x x

- f sgn(G — D)(x — u) du + f sgn(G — D)[—u(l - : : ;)J du

where we have used dc,/dc, = —(z — x)/(z — y) because of the constraints
described above and also the fact that [} sgn(G — D) = 0 (Lemma 2.1). Using the
fact that sgn(G — D) > 0 on (x, (x — ¥)/2), sgn(G — D) < 0 on ((x — ¥)/2,
(¥ + 2)/2) and positive again in ((y + 2)/2, z) we compute the right side of (2.5)
to be (y — x)(z — x)/4 > 0.

Thus, under the constraints we have imposed

dJ(C)

X

(2.5)

2 d .
=2 % (OXi Iml)(sgn c. + sgn(c,) Z_Z + sgn(c.) 22—)
(2.6) .
+ 2M? (f |A I_)(y — x)(z — x)/4.

The constraints imply that dc,/dc, = (y — x)(z — y). Since ¢, < 0 (4, > 0; see
paragraph preceding the lemma) the first term on the right side of (2.6) is
nonnegative. Therefore, dJ(C)/dc, > 0 and J(C) cannot be a minimum.
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PROPOSITION 2.3. There exists a C* minimizing (2.4) with finite support.
Moreover,

(@) tf > xy, tE, <an.
(b) S(C*) N [x,, x,+1] contains at most 2 points,p=1, ..., N — 1.

ProOF. Suppose C is such that ¢, < ¢; < x;. According to Lemma 2.1 and the
discussion preceding Lemma 2.2, we either have A((t, + ¢;)/2) = 0 or J(C) can
be reduced. If the first alternative holds then, from A(t;)) = 0 and G = 0 on
[t1, t:] we get D = 0 on [¢;, t;] and then ¢; = 0 which is impossible. Now use
Lemma 2.2 to conclude that we need only consider C’s with bounded % in which
case a C* minimizing (2.4) exists (see the paragraph following Proposition 2.1)
and statements (a) and (b) hold. This completes the proof of Proposition 2.3.

We turn now to the computation of some examples. Earlier results serve to
reduce the possible configurations of designs. This together with symmetries, as
they appear, enable calculations in examples where there are few points in the
support of I'. For convenience we will adopt the following scheme to denote
configurations of design points: Denote a point in S(C) — S(TI") by O, a point in
S(I') — S(C) by X, and a point in S(C) N S(T') by ®. Thus the scheme OXOOXO
(read from left to right) denotes a design where k=4, N = 2, t; < x,, t, > x, and
there are two design points in (x;, x2).

EXAMPLE 2.1. We take as parameter the simple contrast, I'f = f(1) — f(—1),
which is bounded over % (as noted in Example 1.2), but is unbounded here.
There is some symmetry which we can use. If Qf(t) = —f(—t) then I'(Qf) = IY.
For C satisfying (2.1) set C(f) = (C(f) + C(QF))/2 and find, by convexity, that
J(C) = J(C). It is enough to consider designs with configurations OXxO, XOOX,
and OXOOXO (®® is covered as a limiting case).

Take s > 1, C,f = cf(s) — cf(—s) with ¢s = 1 to satisfy (2.1) and consider designs
of the first configuration. Note that D(u) = —c(u + s) if | u| < s and that G(u) =
Oifu<-1,=-(1+uw)if |u| <1,=-2if u> 1. Then compute (¢, |G—D| =
s—1and

J(C,) = (a*/n)[(2/5)* + p(s — 1)?]

which is minimized over s > 1, by s*(s — 1) = 4/p. For configurations of the
second type we get the same C, for 0 <s <1 and

J(C) = (¢*/n)[(2/5)* + p(1 — )]

which for s € [0, 1] has minimum at s = 1 and J(C;) = 4(¢2/n) = J(I'). Designs
of configuration OXOOXO can be shown to be worse than I'. Thus the optimum
design is C, with s3(s — 1) = 4/p. As p > 0, s —> 1.

C =T is comparatively inefficient for moderate values of p. For example, if
s = 1.3, p = 6.07, then J(C*)/J(I') = .73. The efficiency of T' gets up to .95 when
p ~ 69 (s = 1.05). So, unless M is large compared to o or n is large, there is
considerable advantage in using the optimum C*.

For an efficiency calculation relative to the linear model f(x) = o + 8x, suppose
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observations can be taken in [—2, 2]. The best design in the straight line model
for estimation of f(1) — f(—1) = 28 places n/2 observations at +£2 and the least
squares estimate has variance ¢%/n. When p = % the best design for % is C,
which takes n/2 observations at +2. The corresponding estimate is the least
squares estimate and J(C;) = (¢%/n)(1 + p) = %(s?%/n). Thus the usual design
only retains %3 of its effectiveness in %.

ExXAMPLE 2.2. Consider the parameter I'f = f(1) + f(—1) — 2f(0). We see that
I'l = I'x = 0 and T is bounded over %. The symmetry of I' allows one to look
only at C’s with C(¢) = C(—t). We will show that the optimum configuration is
Ox®xO. We first calculate, for this configuration, the best design. The appro-
priate C’s are of the form C,f = cf(—s) — 2¢f(0) + cf(s) with ¢ > 0 and s > 1.
Since, for this design, D = c(u + s) on (-s, 0) and G(v) = u + 1 on (-1, 0) we get
(Lemma 2.1) that [%, sgn(G — D) = 0 implies ¢ = 2/s — 1 (thus s < 2). We then
calculate [£; | G — D | = s — 1. Therefore, J(C,) = (¢2/n)[(4c)® + p(s — 1)?] so we
have to minimize, over s > 1, 16(2/s — 1)® + p(s — 1)? which gives ps®(s — 1) +
32s = 64 (p = 256/27 implies s = %, p — 0 implies s = 2, p — o implies s — 1).
Note that J(I') = J(C;) = (¢%/n) 16. For p = 256/27, J(C*)/J(T") = .26.

Other possibilities may be ruled out case by case (Sacks and Ylvisaker, 1982).

3. %, Derivatives. This section is a short one devoted to parameters of
the form I'f = 3 v;f’(x;). Our interest is in the simplest examples since a theory
like that in Section 2 follows with no added effort.

We continue to use the notation Cf = ¥ c;f(t;). Again, z; < - - - < z,, denotes
the combined ordered x,’s and ¢/s. In order that sup 5;[Cf — I'f] be finite, C must
satisfy

(31) Cl= zlf C; = Tl = 0, Cx = Z’f c;t; = 211\1 Y = Tx.
If we define D as in (2.2), but replace G in Section 2 by
(3.2) Gw) = =3 ¥ilz)(w),

then the arguments leading to Propositions 2.1 and 2.3 go through without
further change and we need not restate them.

EXAMPLE 3.1. Let I'f = f’(0). We follow the methods used in Example 2.1
and let Qf(t) = =f(—t). Since I'f = I'Qf, we can restrict attention to C’s satisfying
Cf = CQf and which satisfy Y7 ¢; = 0, ¥ ¢;t; = 1. According to Proposition 2.3
we have only the configuration OXO. Then, the only C’s are of the form C,f =
(1/2s)f(s) — (1/2s)f(—s) for s > 0. It is easy to compute J(C;) = (¢2/n)[(1/s)* +
0(s/2)?] which has minimum value (¢%/n)p'/? at s* = (4/p)"*.

EXAMPLE 3.2. Let I'f = f'(1) — f/(—1). Then I'Qf = —I'f so we only consider
C’s satisfying CQf = —Cf, 3T ¢; = X7 ¢it; = 0. Note that |Tf| = 2M so T is
bounded on %.

Consider first the configuration OXOOXO. From symmetry and (3.1) we need



1338 SACKS AND YLVISAKER

only consider C,.f = cf(s) — ¢f(r) — ¢f(—r) + cf(—s) for r <1 < s. Lemma 2.1 shows
that r = 2 — s, s = 2 and ¢(s — 1) = % and let C; denote the corresponding
funtional. Identify s = 2 with the configuration OXOXO and disregard s > 2. A
simple calculation then gives J(C,) = (46%/n)(s — 1) 2+ M*(s — 1)’ for 1 <s <
2. The minimum of J(C,) takes place at s* = 2if p < 4 and at s* = (4/p)** + 1 if
p>4.J(Cy) = (6%/n)(4 + p) if p < 4, = (6%/n)4p' 2 if p > 4.

The remaining configuration that is possible is XOX which corresponds to the
functional Cyf = 0. The oddity of estimating I without the use of observations is
due to the special circumstance of a bounded parameter. We have J(C,) = 4M?
< J(Cy) = 46%/n + M? provided p < %.

Therefore, the optimum C* is Cy if p < %, = C, if %3 < p < 4, and = C, for
p > 4 where s* = 1 + (4/p)"*.

4. %, Continuous parameters. The analysis we present here is for the
exact case and we also give asymptotic (as n — ) results. The approximate
problem is inappropriate because, as we shall see, the support of an optimum
design is too diffuse to permit more than one observation at each site. Our
concern is with positive functionals I'f = [§ f(x)~y(x) dx where v > 0 and continuous
on (0, 1). The interval [0, 1] is chosen only for convenience but the assumption
of positivity of v brings a decided simplification. Although much of what we do
for positive v can be done for, say, the case where y changes sign once, we reserve
a discussion for another time because it involves considerably more detail.

It will be easy to see that an optimum C* exists which puts mass at n points,
one observation at each point. While equations for finding C* are stated, the
solution to these equations is not easily obtained and this leads us to asymptotic
solutions which work very well. In the examples which can be directly calculated
we observe that there is a particularly simple suboptimal solution (C° at (4.12)
below) which has high efficiency over a range of parameters covering all except
extreme cases.

Let z, = min(¢;, 0) and z* = max(t, 1). Let

4.1) Glu) = fo ¥(x) dxlio,y(W) + G(Da(w)

D(u) = sz=1 CiI(t,-,z*](u)-

It is straightforward to get the maximum mean square error to be

2* 2
(4.2) Jk, n,t c)=06%Y c?/n; + M> <f |G-D |>
by using
1
(4.3) Shie= j; v(x) dx = T1.

Our first observation is that 0 < ¢,, &, < 1. For, if ¢, < 0, then, differentiating
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(4.2) with respect to t;, produces
2M2<f |G — DI)(—IG(tl) - D) <o,

unless ¢; = D(tT) = G(t;) = 0. Thus ¢, > 0 and similarly, ¢, < 1. We can now set
2, =0,2* =1 and, if we set £, = 0, ;+; = 1, then

1 tiv1
(4.4) f |G-D| = ?=1f |G- D].
0 t;

Differentiating (4.4) at t;, 1 < i < k, produces
|G(t:) — D7) | — | G@t) — D(t) |
which must be 0 or we can decrease J by holding the c¢’s fixed and moving the
t’s. Thus
(4.5) G(t) = (D(7) + D(th)/2.

Since D(t7) = 0, D(t{) = ¢, and G(¢,) > 0 we get c¢; > 0. Since

1 1
" Cp Cr
> = ?= ;= — = f -—,
j; v>Gt) =Tk ¢ ) YT
we have ¢, > 0.

Let D; = D(t}) = D(t5z1). Then D; = ¢; + D;_, and (4.5) can be written as G(t;)
=(Diy+ Dy)/2.If ¢y, - -+, ¢, >0, ¢4y <0 then D, < D,,

G(t.+1) = (D; + D,y1)/2 < D,.
If ¢,+5 < 0 as well then
G(trs2) = (Dr41 + Dry2)/2 < Dpiy < (Dy + Dyin)/2 = G(ty41)

which contradicts G being increasing. Therefore, we have ¢, > 0, ¢,.; <0, ¢ryp >
0 which implies G(u) < D, on (¢, tr+1) and G(u) > D41 on (&1, t-+2). If we change
Cry Cri1 t0 € — &, Cri1 + & We leave Y, ¢; fixed, reduce c?/n, + c¢2,1/n,+: and bring G
and D closer on (¢, t-+2). This means that we cannot have any negative c,’s.

Set t¥ = G™'((Dj-1 + D))/2), j =1, ---, k. If nj # 1 we create a new design
replacing t¥ by s, - - -, sn; where

lG(sp) = Dj—l + ((2P - 1)/2nj)cj’ p= 19 sy Ny

The new design has sites t¥, ---, t},, {sy}, t%, - - -, t} with coefficients c;, - - -,
Cj—15 Cj/Njy « + =, Ci/Nj, Cis1, -+ -, k. Neither ¥, ¢; nor ¥, ¢?/n; are altered and it may
be checked that [ |G — D| is reduced. Confirming that an optimal C* exists is
now easy establishing

PROPOSITION 4.1. If Tf = [§ v(x)f(x) dx with v > 0 on (0, 1) and continuous
then an optimal C* exists with k* = n, n¥ =1 and ¢} > 0.
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Taking Proposition 4.1 into account and recalling ¢; = D; — D;_, we write J =
(¢%/n)K where

tiv1 2
K, D) =n 3L, (D;: — Diy)* + P[Zf;o f |G — D;| du:l .

i

Differentiate with respect to D, and get

(4.6)

i

i1
9K =2n(2D; — D,_, — D;;,) + 2p0<— f sgn(G — D)) du
oD, t
fori=1,...,n—1where 6 = [5|G— D]|. It follows that if we want to minimize
K subject to D, = G(1) (equivalent to 37 c; = G(1)) we have to solve (4.6) together
with (4.5). Use (4.5) to calculate

tiv1 G~Y(D)) tiv1
f sgn(G—Di)=—f +f
t; t; G™UDy)

i i

4.7) - ‘ | |
= -2G7'(D)) + G_l<&.+2_DL__1> + G"1<Dt +2D;+1>

=& (say).
We then have to solve
(4.8) =D;y + 2D; = Dy = p(0/n);, i=1,.-.,n—1
where 0 is defined following (4.6), £; is given at (4.7) and D, = 0, D,, = G(1).

EXAMPLE 4.1. Tf= [} f(x) dxsoy =1 and G(u) = u.
& = Y[D;y — 2D; + Dyyy).

Therefore, (4.8) becomes —D;_; + 2D; — D;;; = 0, Do = 0, D,, = 1 which implies
D;=i/norc}=1/nand t} = (20 — 1)/2n. An easy calculation shows that

J(C*) = (o*/n)[1 + p/16n?].

EXAMPLE 4.2. Let I'f = [§ 2xf(x) dx so G(u) = u® Consider the case n = 2
and note that Dy = 0, D, = z, D, = 1 with 0 < z < 1. The problem is to determine
z from (4.8). If we let M?/o® = 6, then z = .487. This translates to the optimum
functional C*f = .487(.493) + .513f(.862). In fact, there is little effect due to
M?/s* in the present example. For the limiting case M2/¢%> — 0, z = .5 and
C;[ = .5f(.5) + .5{(.866); for the limiting case M?/o? — o, (4 — /2)z1/2 =
(V2/2)(1 + 2)'/2 at z = .427, so C*f = .427f(.462) + .573f(.845).

An iterative solution to (4.8) is feasible provided n is small. Rather than
pursue this direction, we turn to the problem of producing good designs when n
is large. In such an asymptotic study there is the effect of the parameter M?%/s*
since it controls the balance between variance and squared bias. In the setting of
this section it is generally true, as in Example 4.1, that variance and bias are
each O(1/n).
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In what follows we will suppress the dependence of the D;s on n and, for
simplicity, assume that G(1) = 1. We use (4.5), the fact that n; = 1 and the
notation Bj = (DJ + Dj+1)/2, tj+1 = G'1(6j) to write

1
f |G- D| du
0

=J;1G(u)du+2¥‘1fjﬂ|G—Dj|+f (1 - G(u)) du

]

_ % wdu n_lf’ lu—Dj| f
fo yew YU e 1( » jau+ e (G @

J_

- D_ 1 L Di=Diy)® 1
(4.9) 8 ’Y(tl) + 2 8 v(t;)
-1 = X — )2 1 l -
+ Zl 8 (Dj+1 Dj) ‘Y(tj+1) + ( n 1) (tn)

+ o(S% (D) = Dy-1)?)
D= Dy 1
R A E—Ts

Since D; — Dj_; = ¢j, 3, (D; — Dj—;)* = 1/n with equality when ¢; = ¢ = 1/n and
we can use the Cauchy/Schwarz inequality on the right side of (4.9) to get

! 1 1 V¥ 1
j; |G—D|24—n<Z(Dj—Dj..1)W5)+O(;)
(4.10) 1 2
_1 f _du_> N <1)
: - 4n< o Y 2Gw)y) T \n

where we also use max,(D — D;_;) = 0 which, if violated, would result in a larger
lower bound than given by (4.10). It follows from (4.10) and the lower bound on
Y (D; — Dj-,)? that

. 6_2 M? fl du \' (1
(4.12) JC*) ==+ T (0 71/2(G_1(u))) +0<n2).

If C° denotés the functional with ¢ = 1/n and ¢; determined by (4.5) so that
= G1((2i — 1)/2n) then, from (4.9),

02 M f du__Y (L)-«f_"’ M <L>
4.12) J(C° +16n ( 5 'y(G'l(u))) +o0 o _n+16n2+0 i)

(4.11) and (4.12) can be used to show that C° is usually an adequate choice
except for extreme G’s or when o = nM?/o? is substantial compared to n>.

+ o(X(D; — D;-1)?).

EXAMPLE 4.3. Let y(u) = au®! a = 1. Then G(u) = u* and direct calculation
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and (4.11), (4.12) gives

gL
J(C*) ne? (1 + a)t ° n

J(C°) M? 1
1+ 16nq? + O(;)

Thus, unless « is large or M?/nos? is not small and « > 1, the efficiency of C° will
be high. For example, if « = 2 the efficiency is at least .99 unless M?/o® = .8n
which means that the bias effect is substantially greater than o.

In order to minimize the bias term at (4.9) take, for some constant a,
D; — Dj-; = ay"A(t;) with D; = H(j/n), H continuously differentiable on [0, 1],
H(0) =0, HQ1) =1, and H' = nayY*(G"'(H)). Then

' 1 f‘ du Y 1
(4.13) J; |G -D| 'R( A ——71/2((;_1(”))) +O(?).

In order to gauge the behavior of the corresponding C, which we denote by Cs,
we have to estimate Y, (D; — D;—;)%

EXAMPLE 4.4. Continuing with the setup of Example 4.3, we find H(t) =
t2a/(l+a) and

«\ 2a/(1+a) . 2a/(1+a)72
-1
S (D; = Dj)* = T [(ﬁ) - (’ - ) ]

< 402 l+ 4a? l_'_ol
TQl+a)Ba-1)n QA+ a)?n? n?/’

Therefore,
402 o2 %  4a® M? o® 1
- — 2 + e n?
J(Cp) = 1+a)@Ba—-1)n + n(1+a? n® 1+ <n2)
If a = 2 we get
16 02 16 0> 4 M 1
T s—_z“”’(?)
and then
4
1+ — % + o(%)
J(C*) 81l n n
(4.14) )
J(Cr) = 16+1_6 1£+ 1
9n 81 n? 0 n?

Ignoring the O(1/n?) terms we can see that, asymptotically, J(Cg) < J(C°)
only when M?/0? is very large, in particular if M2/s? = 81.3n + 135.
Instead of minimizing the bias term separately, we can use (4.9) with
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D; = H(j/n) and get an asymptotic estimate

P g i-1\y, M fH'z(u) 1
s = o3 (ufd) - 2]+ e ([ it o) )
12
< f H(u) du + lzln ( J; I“; (5;) u) +o(;1§)

1
= Q(H) + o<—2) (say)
where g = v(G~'(H)). The inequality is caused by the possible contribution of a
term of 0(1/n2) coming from the estimate of (1/n) [§ H'*(u) for
T (H(j/n) = H((j — 1)/n))?

but will be useful for obtaining some insight into the adequacy of C*° as a simple
suboptimal solution.
We minimize Q(H) by a variational argument to get

(4.15) H? = a(g/(g + 20))
for some a > 0,0 = \ [ H'?/g, \ = p/16n>.

EXAMPLE 4.5. Let y(x) = 3x2 so G(u) = u® and g(u) = 3H**(u). (4.15) then
leads to solving

H'H™V3(H?*? + p)"/? = constant, H(0) =0, H(1)=1
where p = 26/3. The solution is
H(u) = {[(1 + p)**u + p**(1 — w)J”* — p}*~.

Then
HI2
f . [ + p)*? — p*2[Q + p)/* — p*] = B, (say)
and
. . 2
(4.16) JC) ~ & [2 (H(—]-) - H<l;1-)) + 3 B,,].
_ n n n 2

According to Example 4.3 with A = M?/16n4?,
J(C*) = (e2/n)[1 + %6)], J(C°) ~ (¢*/n)[1 + AL

If p = .2 then B, = .7941, (3p/2)B, = .2382 and X\ = .3778. If p = .5 then B, =
.7679, (3p/2)B, = .576 and \ = .9767.

We calculate
f H'? = 1.0244
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when p = .2 and, if p = .5,
f H'’? = 1.0491.

Then, for p = .2, J(Cy) ~ (062/n)1.2626 while J(C*) ~ (¢%/n)1.2125 and
J(C*)/J(Cy) ~ .96. For p = .5, J(C*)/J(Cx) ~ .95. Thus, J(Cy) is close to the
asymptotic lower bound. Note that J(C*)/J(C°) ~ .88, .78 for p = .2, .5. For
smaller values of p the efficiencies are closer to 1. Thus when p = .05,
B, = .8530, 3pB,/2 = .064, A\ = .0879 and

J(C*) _ 1.0494 _
J(Cy) ~ 1.0697

J(CY) _

98 and IO 2 .96.

(If we had used Y7 (H(j/n) — H((j — 1)/n))? in place of (1/n) [ H’? then the
calculations are virtually the same. For example, when n = 10 and p = .2, we
would replace 1.0244 by 1.0212.)

Note that p = .2 corresponds to A = .3778 and, if n = 10, this means M?/o® =
60.4 which is an extreme situation and even then the efficiency of C° is .88/.96
= .92. Thus C° appears to be a reasonable choice.

5. %, Continuous parameters. We consider parameters of the form
T'f = [} v(x)f(x) dx with v > 0 and continuous on (0, 1). Because of the difficulties
in obtaining explicit results we will concentrate mostly on asymptotic solutions.
‘Even here, there are difficulties reflecting those encountered in related approxi-
mation theory contexts which we will mention later.

Suppose that n; observations are taken at sites t; <t, < --- <, and put z, =
min(0, t,), 2* = max(1, t;). A design C must satisfy CL = T'L for any linear
function L. Consequently, if we set, as in Section 2,

- G(u) = fo (u — 2)y(x) dxloyw) + [(u — 1)G'(1) + G(1))1,.4(w)

D) = 3k, ci(u — t)1,(w)

we get

(5.2) supy—le‘f—Cf|=M(f |G—D|du>

and the maximum mean square error is

2 2* 2
(5.3) J(k,n,t,c)=a22’f%+M2(f |G—D|).

*

Because we assumed vy > 0, G is convex, a property which will play a role in
later developments. The condition that TL = CL for all linear functions is the

same as
1 1
Sie= J; v, Sketi= J; xy(x)
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or, equivalently, when z* =1,
(5.4) D(1)=G(1), D'(1)=G'(1)

(D’(1) is left-hand derivative at 1.)
If ¢ is fixed then minimizing J with respect to the ¢’s leads to the Lagrange
problem 3J/dt; — A¢; = 0. Since

—-——2M2f|G le sgn(G — D)c;,

we get
f sgn(G— D) =X\’
t
or
tiv1
(5.5) f sgnG—-D)=0, 1=1,.---,k—1

i

(compare with Lemma 2.1). If t; < t, < 0 we would get

0=fzsgn(G'—D)=—fzsgn,l)=—f2sgn(cl(u—tl))du

1 1 1
=F(ty — t;) # 0.
Therefore we need not consider designs with more than one point to the left of
0 and, similarly, with more than one point to the right of 1. From this it follows

easily as in Section 2 that we cannot have t; — — or t, — o and then an
optimum C* exists.

PROPOSITION 5.1. If C* is optimum then c; > 0 for all i.

ProoOF. From (5.5)

2] ty
0= J: sgn(G — D) = _[ sgn(G — ci(u — t1))
1 1

which implies ¢; > 0 because G = 0. Thus, c¢¥ > 0 and, similarly, ¢ > 0. Suppose
¢g<Oande, -+, ¢-1>0,1<j<k

The further assumption that G(¢;) — D(¢;) is nonnegative leads to G(u) — D(u)
positive on (¢, tj+1) in violation of (5.5). Thus G(¢;) — D(t;) < 0 and it readily
follows that G(u) — D(u) < 0 on ((¢j-1 + t;)/2, (t; + tj41)/2) with G(u) — D(u) >0
on (tj—1, (-1 + £)/2) U (( + tj41)/2, tis1). Set x = tj1, ¥y = t;, z = tj+1 and vary
Cj—1, Cj, Cj+1 Subject to ¢j—1 + ¢; + ¢j+1 and ¢i1x + ¢;y + ¢j+12 constant. Calculating
as in (2.5) we get

2 y= 2. [ CAnl )R SN A x)c’”]—ﬂ(z—y)(y—x)

dc; 2—x niy N Z—X N

for a positive 8. Now if cj.; > 0 we find (d/dc) J < 0, but if ¢j,; < 0 then
G(u) — D(u) does not change sign on (41, tj+2). The proposition is thus proved.
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REMARK 5.1. If G(t;)) — D(t;) > 0 and there are n; observations at ¢; with
n; > 1 we can put 1 observation at ¢; — ¢ with coefficient c;/n; and the rest at
tj + ¢/(n; — 1) each with coefficient c;/n;. Then ¥ c?/n; remains unchanged
and (5.4) still holds. If ¢ is small then the new | G — D | is the same as the old
|G — D| except on (t; — ¢, t; + ¢/(nj — 1)) where it is smaller. Thus
J |G — D] is reduced and so is J. Based on this we could show that a C for which
G(t) — D(t)) > 0 for all j, is a candidate for optimality only if n; = 1. It is clear
that G(t;) — D(t)) > 0 for all j means, by virtue of convexity of G and (5.5), that
G crosses D exactly twice in (¢, tj+1). We have been unable to rule out the
possibility that for an optimal C, G crosses D only once in some interval (tj, tj+1)
although it appears from examples that we should expect the double crossing to
be the common situation.

EXAMPLE 5.1. Let y(x) = 1. Then G(x) = x%/2. For minimizing (5.3) when
n = 2 use symmetry and (5.4) to reduce to considering functionals C,f =
Y% f(s) + Y% f(—s) with s < %. The design with two observations at % is
covered as a limiting case. Since D(s) = 0 and D has slope % on (s, 1 — s),
G—D=0on(s,1-s)ifs=0. Thus, by (5.5), s> 0.

For s < % the roots of G — D occur at % *+ %+1 — 4s. Since the distance
between these roots must be half the length of [s, 1 — s] for (5.5) to be satisfied,
V1 — 45 =1(1 — 25) s0 s = V3 — % = .2321. If s > % then G — D has no roots
in (s, 1 — s) which violates (5.5) so reduction to s < % is necessary.

We turn to asymptotic solutions. Here we take all n; = 1 and t’s € [0, 1]. We
first consider C’s with ¢; = 1/n. This guarantees that the variance term is as
small as possible and, as seen in Section 4, such C’s can be expected to be
adequate suboptimal choices. Implicit in looking at such C’s is the assumption
that G’(1) = 1; otherwise we would consider nc; = G’(1).

Minimizing J with this choice of ¢ appears difficult. In order to obtain some
estimates we will proceed by defining t so that G — D can be estimated.
Accordingly, let ¢ be defined by

& .
(5.6) G'(sj>=f0 (x) dx:i’ j=1,-n

and then define ¢; by
. 17
. ) . ti
(6.7 G(&) - 8 _ f xy(x) dx = %1 —.
n 0 n

The convexity of G assures that £_; < t; < £. The motivation here is that G — D
=0, D is tangent to G at ;. Therefore

&1
f |IG—-D| = % (&1 — £)*v(ny) for some n; € (&, &.).

J

From (5.6), {11 — & = 1/nv(7)), 7; € (&, £+1) and we get

No-plediman o o L [ (1
(5.8) j; |G- D| =< on 21 T (&1 — &) = onJ () + o(n2>.
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Since there are cases where [§ du/y(u) = +o we have to exercise some caution
to get reasonable estimates in explicit examples provided 1/v is integrable and
for example, v has a bounded derivative.

ExXAMPLE 5.2. Let G(uw) = u?/2. Then & = j/n, t; = (2j — 1)/2n and
[ |G- D| =1/6n?giving J = o*/n + M?/36n* + o(1/n%).

If G(u) = u®/3 then & = (j/n)"/? and t; = %(j*% — (j — 1)*?)/n'/? and then
Y (&+1 — £)°v(n)) ~ (log n)/4n® so

o2 M? (log n)?
St e

If G(w) = u*/4, & = (/M)'2, t; = %(G¥? = (j — D*°)/n’" and T (§141 — £)*v(E)
~ 1/3n°" then '

J ~ o%/n + (M?/324)n~1953,

The last two instances in Example 5.2 indicate why using [ 1/y may be
inappropriate. Unless G has zero of very high order at 0 we are inclined to the
use of the design defined by (5.6), (5.7). Although the choice of ¢; at (5.7) isn’t
quite correct, it should suffice for most purposes since the best bias term
obtainable is O(n?) as indicated by the approximation theory results of Pence
and Smith (1982).
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