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BAYES DOUBLE SAMPLE ESTIMATION PROCEDURES"?

BY ARTHUR COHEN AND HAROLD B. SACKROWITZ

Rutgers University

Bayes double sample procedures are given for estimating the mean of’
exponential family distributions. The distribution can be multiparameter and
so the case of normal mean with unknown variance is included. Linear
combination loss functions are usually assumed. Stein’s double sample pro-

 cedure, and other intuitive double sample procedures for estimating a binomial
parameter, are studied. Recommendations are given, including guidelines for
the size of the initial samples.

1. Introduction and summary. Double sample inference procedures are
intuitively appealing and are widely used by statisticians. It appears natural in a
study to take a “pilot” sample that would help determine how many additional
sample points should be drawn. Miller and Freund (1977), page 245, discuss
estimating a binomial parameter p with a bounded precision. One can interpret
their suggestion to be to take a first sample, estimate p by p, say, and use this
estimate to determine the size of the second sample in a standard way. Stein
(1945) offered a double sample method of confidence estimation of the mean of
a normal distribution. Stein’s procedure can also be viewed as a double sample
point estimate of the mean with specified precision. In both the Miller and
Freund and the Stein references, the choice of the first sample size is arbitrary.

In this study we develop double sample Bayes estimation procedures for the
mean of exponential family distributions. The procedures consist of stating n;,
the size of the first sample; ny(X;), the size of the second sample which depends
on X;, the data from the first sample; and finally the point estimate. The loss
functions usually are linear combinations of loss due to terminal decision and
loss due to sampling. We also study vector losses where the components of the
vector consist of a loss due to terminal decision and a loss due to sampling.

When the terminal decision loss is squared error, a general and applicable
procedure is obtained for the general exponential family using conjugate priors.
The exponential family can be multidimensional, although in this paper we
estimate only one mean. Thus our treatment includes estimating a normal mean
when the variance is unknown. Miller and Freund’s procedure and Stein’s
procedure are seen to be appropriate for some loss functions but not others. The
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1036 COHEN AND SACKROWITZ

Bayes procedures are also studied numerically and compared with optimal one-
stage sampling procedures, and compared with Miller-Freund procedures. The
double sample Bayes procedures compare very favorably. For the normal case,
considerable attention and computation is devoted to Stein type procedures and
some guidelines are given for how to choose the first sample in a Stein type
procedure. Recommendations are given that also pertain to possible variations
of the procedure.

In Section 2 we discuss Bayes double sample estimation procedures in the
exponential family model. Section 3 is concerned with these procedures for the
binomial case, whereas the normal case with unknown mean and unknown
variance is studied in Section 4.

2. Double sample Bayes estimators. Let X be a d X 1 random vector
with distribution

dPy(x) = e*""MOdy(x),

where M(0) = log [ e” du(x), u is a o-finite measure on the Borel sets of R¢,
0 €0 = 1{0] M(0) < ). Assume that 2, the interior of the convex hull of the
support of x is a nonempty open set in R and © is a nonempty open set in R%. It
is known, (See for example Diaconis and Ylvisaker, 1979) that

E(X|0) = E(X) = VM(0) = (0M(0)/36,, - - -, 0M(6)/364)"

(21) = (M1(0), M2(0)9 ) Md(a))t

and
2 d

(2.2)  E/(X — VM(0))(X — VM(6))* = M"(6) = <QM) = (M)
30:90; /; ;-

Let the conjugate prior probability distribution on ® be
(2.3)  nyx(0) = B(no, xo)exp(noxo - 6 — noM(6)) dd, no € RY, x, € RY,

where ny and x, satisfy the conditions of Theorem 1 of Diaconis and Ylvisaker
(1979) and B(no, xo) is to enable (2.3) to integrate to 1. From this same reference
we conclude that if X;, X5, - -, X, is a random sample of size n from P,, then
the posterior distribution is g +n, (g +n%)/(ng+ny and

(2.4) E(VM(0) | Xy, X5, - -+, Xi) = (noxo + nX)/(no + n),

where X is the sample mean.

The problem is to estimate w = M;(f), namely the expected value of XV, the
first coordinate of X, with a double sample. Hence the actions consist of triples
a = (ny, ng, 7), where n, represents the size of the first sample, n, represents the
size of the second sample, and 7 represents the estimate. Note n = n, + n,. Let
¢ be a constant representing the cost of an observation. For the most part the
loss functions are either

(2.5) Li(w, a) = (1 — w)2 + c(n; + ny)
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or
(2.6) Ly(w, a) = (1 — w)? + c log(n, + n,).

For (2.6) we assume at least one observation will be taken or that when (n, + n,)
=0, log(n: + n,) is replaced by 0. We also study the vector loss functions

2.7 L, (w, a) = ((r — w)? c(n; + ny))
or ,
(2.8) L, (0, @) = ((r — w)? ¢ log(n; + ny)).

In some cases we replace (1 — w)? by (7 — w)%)/M11(0). Now let Y; = > X, Y,
= YiZ.+1Xi, and let dP(y;) denote the marginal distribution of Y; (not dependent
on 0). Let Z, = E[M1,(0) | Y1] and Z, = E[M},() | Y1, Y2]. Consider

(2.9) ny = [[(Z,/¢)"? — ny — ny]J*,

where [[b]]" means the largest integer < b if b > 0 and 0 otherwise;

(2.10) B = {y1: Z; < c(n, + ny)?,

and

(2.11) f [( 4 ) + nlc] dP(y:) + f [2(Z10)? — noc] dP(y,).
B|\ni + ng B’

THEOREM 2.1. For the loss function in (2.5) the Bayes procedure with respect
to the prior in (2.1) is to choose 7 to be the first coordinate of (2.4), n, as in (2.9)
and n, to minimize (2.11).

PrOOF. It is well known that the Bayes procedure is obtained by working
backwards. (See for example, Ferguson, 1967, Section 7.2.) That is, we decide on
the terminal decision assuming we have observed (Y;, Y»). We then decide on n,
assuming n,, y, are fixed and finally we decide on n,. The choice of 7 for the
terminal decision is clear. Now write the Bayes risk as

EE(EM\(0) | Yy, Ys) — Mi(9))* + cEEy(ny + n,)

@1z = EVaGLO)1Y:, YD) + BE(m + n)

= f E{[Var(M(0) | Y, Yo)l| Yl} dP(y1) + ¢ f (ny + ng) dP(y1).

An integration by parts in the expression for the posterior variance of M;(6)
given (Y, Y,) yields

(2.13) Var(M1(0) | Y1, Y2) = E(Mu(0) | Y1, Yo)/(no + ny + ny),

when the left hand side is finite. (When the left hand side is infinite, (2.13) still
holds. See Woodroofe, 1981 and 1983.)
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Substitute (2.13) into (2.12) to find that the Bayes risk is

(2.14) f [———é———— + c(n; + n2)] dP(y).

no+ n; + ny
To minimize (2.14) we first minimize the integrand for fixed n, and y,. Treating
n, as a continuous variable, we find by differentiating with respect to n, that the
integrand is minimized by choosing n, according to (2.9). Substituting this value
of n, into (2.14) then yields the fact that n; need be chosen to minimize (2.11). 0

REMARK. In this section and some of the other sections, some small degree
of approximation is implicitly assumed. The need for approximation is because
n, and n, must be integers and yet in the minimization problems we treat them
as continuous variables. Hence by using [[b]]" we are introducing an approxi-
mation. The approximation can be avoided when the computation of a procedure
can be executed and one can distinguish the posterior risks given [[b]]* and [[b]]*
+ 1 for every value of (n,;, y,).

Later we will develop the Bayes procedures for the binomial case and the
normal mean case when the variance is unknown. It will be noted that neither
Miller and Freund’s suggestion nor Stein’s method will ensue. However, both of
these methods will essentially be shown to be limits of Bayes procedures when
the loss function is (2.6). Toward this end, consider

(2.15) ny = [[(Z:1/c) — ni]]*,

(2.16) B={y:2Z, <cny}

(2.17) f [—Z—‘ + nlc] dP(y;) + f [2(Z1¢)?] dP(y,).
BlMm B’

THEOREM 2.2. Consider the loss function in (2.6). Consider the sequence of
priorsin (2.1) wi{h no — 0. Then the a.e. limit of the sequence of Bayes procedures
is to choose 7 = XV, ny as in (2.15) and n, to minimize (2.17).

PrROOF. The proof is essentially the same as in Theorem 2.1. That is, one
derives the Bayes procedure for fixed ny. The determination of 7 is the same as
before. The determination of n, is the solution of a quadratic equation whose
solution in the limit is (2.15). Continuity implies that n, is chosen to minimize
(2.17). 1

REMARK 2.3. In the normal mean case with unknown variance, we also
consider generalized Bayes procedures using a uniform generalized prior on the
mean and a proper prior on the variance. For both loss functions (2.5) and (2.6),
this amounts to regarding ny, = 0 and the resulting generalized Bayes procedures
are as in Theorems 2.1 and 2.2.

REMARK 2.4. If in (2.5) and (2.6) squared error loss is replaced by squared
error divided by M;,(6), then it is known that the Bayes double sample procedure
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is a one-sample procedure. (See Whittle and Lane, 1967.) This, however, will not
necessarily be the case if in (2.7) and (2.8) we replace squared error by squared
error divided by M;;(9) and utilize the flexibility this formulation permits in
enlarging on the conjugate priors. See Cohen and Sackrowitz (1984b), Section 3.

REMARK 2.5. The determination of n, involves the minimization of (2.11) in
the case of loss function (2.5) or (2.17) in the case of loss function (2.6). In all
cases the determination of B, Z, and P(y,) is straightforward. In some cases the
minimization step requires a computer. However, the computer program required
is straightforward.

3. Binomial case. Let X;,i=1, 2, --- be i.i.d. Bernoulli variables with
parameter p. Then the natural parameter is § = log p/(1 — p), and My;(0) =
e’/(1 + e%*=p(1 — p). Thus

ny — y1 + no(l — xo)
(n1 + no + 1)(ny + ng)

The Bayes estimator is 7 = (noxo + ¥1 + y2)/(no + n, + ny). Note that if no = 0,
(a limiting Bayes case) the estimator is the usual sample proportion p. The
quantity Z; may be expressed as p;(1 — p;)(n,/(n, + 1)) where p, = y,/n,. For
the loss function in (2.5), we see from (2.9) that when (2.9) is positive, n, is
determined by setting (n, + n,) = k(p:(1 — p))/? where k is a constant. Thus
(n, + ny) is set equal to a multiple of the estimated standard deviation of X;. If
the loss function is (2.6) however, from (2.15) we determine n, by setting (n, +
ng) equal to a multiple of the sample variance. This then corresponds somewhat
to one aspect of the intuitive procedure recommended by Miller and Freund
(1977). This latter procedure determines n; by setting p,(1 — p;)/(n, + no) = A,
where A is a preselected constant. The procedure then estimates p by the sample
proportion based on n; + n, observations.

Note that the best fixed sample size procedure for the prior (2.3) is to choose
N = [[Vnoxo(1 — x0)/c(no + 1) — no]]* and estimate p by (2.4). The risk for this
procedure when the loss function is (2.5) is

(3.2) pi(n§ — N) + p(N — 2n3xo) + (noxo)?/(N + no)>.

Some computations were done to assess the value of the double sample
procedures. For the loss functions in (2.5) and (2.6) we studied the risks of the
double sample Bayes procedure for the uniform prior, i.e. nox, = 1, xo = %, the
single sample Bayes procedure, and some Miller and Freund (MF) procedures
with a first sample size and A that would yield comparable risks. We varied the
values of c¢. For the loss function in (2.5) we also found some optimal first sample
sizes for varying values of ¢ for the uniform prior. These are given in Table 3.1.

Table 3.2 gives risk functions for the single sample Bayes procedures, double
sample Bayes procedures, and Miller-Freund procedures. The last column gives
the risk for the fully sequential procedure which can serve as kind of a baseline.
The loss is (2.5) and three values of ¢ were chosen so that the single sample
procedures had sample sizes of N = 50, 100, 406. MF-n,, A means the Miller-

(3.1) Z, = EM1,(0) | Y1) = (31 + noxo)




TABLE 3.1

Optimal values of n,

C n; [ n;
.05 0 .005 3
.03 0 .001 8
.02 1 .0005 11
.01 2 .0001 21

TABLE 3.2

Risk functions for loss (2.5)

c=.000062 N=50
D 2-sample 1-sample MF-26,.064 MF-30,.064 MF-35,.064 sequential

0.000 0.00289 0.00346 0.00161 0.00186 0.00217 0.00297
0.050 0.00341 0.00427 0.00325 0.00338 0.00352 0.00332
0.100 0.00446 0.00500 0.00432 0.00438 0.00453 0.00439
0.150 0.00543 0.00564 0.00562 0.00538 0.00527 0.00540
0.200 0.00618 0.00619 0.00695 0.00657 0.00621 0.00618
0.250 0.00673 0.00666 0.00784 0.00752 0.00717 0.00674
0.300 0.00712 0.00704 0.00822 0.00801 0.00779 0.00714
0.350 0.00740 0.00734 0.00830 0.00819 0.00808 0.00742
0.400 0.00759 0.00756 0.00830 0.00824 0.00818 0.00760
0.450 0.00771 0.00768 0.00828 0.00825 0.00822 0.00771
0.500 0.00776 0.00773 0.00828 0.00826 0.00823 0.00775

¢=.000016 N=100

P 2-sample 1-sample MF-47, .0455 sequential
0.000 0.00117 0.00170 0.00075 0.00122
0.050 0.00166 0.00214 0.00170 0.00163
0.100 0.00235 0.00253 0.00229 0.00235
0.150 0.00284 0.00287 0.00306 0.00284
0.200 0.00308 0.00317 0.00357 0.00318
0.250 0.00344 0.00343 0.00387 0.00345
0.300 0.00364 0.00363 0.00395 0.00364
0.350 0.00379 0.00379 0.00400 0.00379
0.400 0.00389 0.00391 0.00404 0.00389
0.450 0.00395 0.00398 0.00408 0.00395
0.500 0.00397 0.00400 0.00409 0.00396

¢ =.000001 N =406

P 2-sample 1-sample MF-136, .023 sequential
0.000 0.00019 0.000406 0.00014 0.000192
0.050 0.00043 0.000521 0.00046 0.000410
0.100 0.00060 0.000623 0.00069 0.000600
0.150 0.00071 0.000714 0.00084 0.000715
0.200 0.00080 0.000792 0.00087 0.000800
0.250 0.00086 0.000859 0.00091 0.000860
0.300 0.00092 0.000913 0.00094 0.000915
0.350 0.00095 0.000955 0.00097 0.000951
0.400 0.00096 0.000986 0.00099 0.000977
0.450 0.00099 0.001004 0.00100 0.000994
0.500 0.00100 0.001010 0.00101 0.000997

1040
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Freund procedure with initial sample n;, and A. Symmetry permits values of p
ranging between 0 and Y%. Table 3.3 offers risks for the loss (2.6). In Table 3.2
the pattern is the same for all values of N. The double sample Bayes procedure
is superior to the one-sample procedure for values of p near 0 and 1. MF is best
at the very low and very high values, but for other values of p it is clearly the
worst. Overall, the double sample procedures do very well since even when their

TABLE 3.3

Risk functions for loss (2.6)
c=.00308 N=50
P 2-sample 1-sample MF-5,.069 MF-15,.069 MF-22,.069 sequential

0.000 0.01126 0.01242 0.00496 0.00834 0.00952 0.01163
0.050 0.01152 0.01323 0.00865 0.01054 0.01138 0.01105
0.100 0.01263 0.01395 0.01442 0.01294 0.01279 0.01212
0.150 0.01412 0.01459 0.02028 0.01547 0.01443 0.01382
0.200 0.01521 0.01514 0.02516 0.01729 0.01600 0.01525
0.250 0.01585 0.01561 0.02865 0.01819 0.01706 0.01609
0.300 0.01621 0.01599 0.03078 0.01842 0.01755 0.01643
0.350 0.01643 0.01629 0.03185 0.01831 0.01768 0.01655
0.400 0.01656 0.01650 0.03224 0.01810 0.01767 0.01661
0.450 0.01663 0.01663 0.03230 0.01795 0.01763 0.01665
0.500 0.01666 0.01667 0.03229 0.01790 0.01762 0.01666

¢=.001601 N=100

P 2-sample 1-sample MF-25, .045 sequential
0.000 0.00641 0.00747 0.00515 0.00662
0.050 0.00678 0.00791 0.00660 0.00650
0.100 0.00781 0.00830 0.00828 0.00764
0.150 0.00863 0.00865 0.00942 0.00867
0.200 0.00906 0.00895 0.00985 0.00918
0.250 0.00930 0.00920 0.00991 0.00936
0.300 0.00945 0.00941 0.00988 0.00947
0.350 0.00956 0.00957 0.00986 0.00956
0.400 0.00964 0.00968 0.00986 0.00963
0.450 0.00957 0.00975 0.00987 0.00968
0.500 0.00970 0.00978 0.00987 0.00969

¢ =.000408 N =404

P 2-sample 1-sample MF-73, .025 sequential
0.000 0.00193 0.00246 0.00175 0.00196
0.050 0.00229 0.00257 0.00227 0.00226
0.100 0.00264 0.00267 0.00279 0.00266
0.150 0.00277 0.00276 0.00292 0.00277
0.200 0.00285 0.00284 0.00296 0.00285
0.250 0.00291 0.00291 0.00299 0.00291
0.300 0.00296 0.00296 0.00302 0.00296
0.350 0.00299 0.00301 0.00305 0.00299
0.400 0.00300 0.00304 0.00397 0.00301
0.450 0.00302 0.00306 0.00308 0.00302

0.500 0.00303 0.00306 0.00308 0.00303
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risks are not the lowest they are not exceeding the other risks by very much.
Furthermore the risk for the double sample is extremely close to the risk of the
fully sequential procedure. The pattern in Table 3.3 is similar although the MF-
procedures do somewhat better here and look quite reasonable.

4. Estimating a normal mean when variance is unknown. Let X,
i=1,2, ... beiid. normal variables with mean u and unknown variance 2. It
is easily seen that for this case 0, = u/¢? 6, = —Y4o?,

M(0) = (1*/20%) + % log 0 = —0%/40, — V2 log(—26,)
so that M,(8) = u and M,,(0) = ¢2. Let
M= Xy ye= S X
Vi=y/m, o=/, y =yt v, J=y/(n+ ny),
n=nm+n;, u=3Y(@x-y)? v=u/(n—1), h=(1/s2.

In deriving the Bayes procedures it is convenient to put the priors directly on
(», 0%). Consider the normal-gamma prior (See Raiffa and Schlaifer, 1961, page
300) with 4 hyperparameters

fN,,(ﬂ’ h' mly no, p, ") = fN(/"' I mly h) nO)f'yz(h I P, V)
(4.1)
« exp{—Yehno(p — m’)%h*"/2exp{—Lhpvh}h */?71,

where p, v, no = 0 and 8(no) = 1 if ny > 0, 8(n,) = 0if no = 0. Note if no = 0 the
marginal prior on u is a generalized prior. The posterior distribution for the
above conjugate prior when n observations are taken is normal-gamma with
parameters m” = (nom’ + ny)/(n + ng), n” = no + n,

, _ Lov + nom’?] + [u + ny? — n"m”?
[p + 8(no)] + (n — 1) ’

v” = [v + 6(no)] + (n — 1). Thus the estimator is m” and either from the posterior
variance of u or from the posterior expectation of (1/h) (both derivable from
Raiffa and Schlaifer) n, is determined from (2.9) with

(4.2) Z, = [pv + nom'2] + u+ nl_)_/% — [(m/n0)2 + 2m’ng + n%)"%]/(nl + o)
. ' [(ny — 3) + v + 6(no)] :

The set B defined in (2.10) is readily determined as is the marginal joint
distribution of (1, u). However, completing the description of the Bayes proce-
dure for the loss functions (2.5) and (2.6) would require choosing n, to minimize
(2.11), which in this case would require a two dimensional numerical intergration.
It is of greater interest to treat the special case n, = 0. This is easily justified by
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intuition, invariance, and other considerations. When ny = 0, (4.2) becomes
(4.3) Zi=(pr + u)/[(v — 2) + (n; = 1)] = (N + u)/[(ny — 1) + 2(a — 1)],

if we set p = A/2 and v = 2a. (The parameterization in terms of A\ and « is
preferred since now the generalized prior is the product of a uniform prior on u
and a gamma prior with parameters (\, ) on h = (1/6?)). For this prior, it
follows that the marginal distribution of u is such that w = A\/(u + \) has a beta
distribution with parameters («, (n; — 1)/2). Thus the Bayes procedures for the
loss functions in (2.5) and (2.6) can be determined. We summarize for the loss
function in (2.6). (In the remainder of this section, we will assume the loss
function is (2.6) and remark that (2.5) could be used with the obvious changes.)

THEOREM 4.1. The generalized Bayes procedure for the generalized prior which
is a uniform prior on u and a gamma prior with parameters (\, o) on h is to
estimate by ¥, take

ny = [[(Aa + u)/c[(n, — 1) + 2(a — 1)] — m]]*,

and choose n, to minimize

? wala — 1) + a
J; [1 + log{—*-——w(2a = 3)Hf(w) dw
(4.4) 1 ( 1+
wala — a
+ J; [log n + P a— 3)}f(w) dw

where a = N/c,d = a/(n,[(n; — 3) + 2a] — (o — 1)a) and f(w) has a beta distribution
with parameters (o, (n; — 1)/2).

We remark that for given values of n; and «, (4.4) can be expressed as a finite
sum and so with the computer, determination of n, is not difficult.

It will prove helpful to treat the case of Theorem 4.1 when « = 1. Let n; be
odd. Consider the following function of n;:

1 + log(a/(n, — 1)) + 25';‘1_1)/2 1/j if a=nyn,—1)
{1 + logla/(m = 1)) + " 1/ = (1 = (a/m(m = 1)
= (1 + (a/2ny))[log(a/ni(ny — 1))
+ T2 (1 = (af/na(ny — 1)))7/j]

if a< nl(nl - ].)

(4.5)

COROLLARY 4.2. The generalized Bayes procedure for the generalized prior
which is a uniform prior on u and an exponential prior with parameter A\ = ac on
h is to estimate by y, take n, = [[((A + u)/c(n; — 1)) — ny]]* and choose n, to
minimize (4.5).
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ProOOF. When « =1 (4.4) becomes

fa/(nl(nl—l)) a n—1
1+1 - w)m V2 g
) [ o8 w(n, — 1)] 2 (1= w w

1
a n—1 Ve
+f log n; + 1 — w)m=02-1 gy,
a/(nlm.—l))[ g™ w(n, — 1)] 2 ( )

. a a (n—1)/2
- <1 + log (n, — 1))(1 - <1 "l - 1)) )

(4.6)
a (n—-1)/2
+ (1 - -—nl(nl — 1)> In n;

J

1
+2 Um0/2)-1 (_1)j<((n1 - 1/2) - 1) f w1 dw.
2 J a/(ny(n,—1))

Performing the integrations in (4.6) and using the equalities

a/(ny(n;—1))
("1 1) S (om-v/-1 (_1)1((('11 - 1/2) - 1) j(: (log w)w’ dw

(4.7) X (-1 % ( )(1 —-r) = —Z,— Pr-ry

2o (—D’('}l)(j + 1)

(4.8)
m+1 ) m+1 Jj(m+1
=_< Y€ e D Ol e U ))/(m+1)
J J

Before proceeding to develop specific ‘procedures which can be recommended,
we note an interesting property of the risk of these generalized Bayes double
sample procedures when compared to the risk of any one sample procedure with
estimate y. The risk for the one sample procedure is (¢2/n) + ¢ In n = O(o?) as
0% — oo,

yields the result. 0

THEOREM 4.3. The risk for the generalized Bayes procedures of Theorem 4.1
is O(In o).
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PrOOF. Let K = n;c[(n; — 1) + 2(a — 1)] — M. Then the risk is

f [— +cln nl]f(u; ¢?) du
0 n

T o= +2a-1)
o e J;( o’ Aa +u
A+ u o,
+ ln[c((nl - 1) + 2(a — 1))]f(u, o®) du

where f(u; o?) is the chi-squared density with scale parameter o2 and (n, — 1)
degrees of freedom. Substituting the chi-squared density in (4.9), making the
change of variable ¢ = u/20?, integrating and using crude upper bounds yields
that (4.9) is O(In o) as ¢ — .0

REMARK 4.4. For the loss function (2.5), the risk of the generalized Bayes
double sample procedures can be shown to be O(o).

The significance of Theorem 4.3 and Remark 4.4 is that the double sample
procedures will lead to dramatic improvements in risk for large o when compared
to any one sample procedure. Furthermore, this result does not depend on n;.

Now we set out to study Stein’s procedure and procedures which can be
recommended. What we have been referring to as Stein’s procedure is to choose
ng = [[(w/(n — 1)k) — ny]]* + 1 for k a positive constant. (The constant k is
related to the coverage probability and width of a confidence interval.) Lehmann
(1959), page 203 suggests n, = [[(u/(n — 1)k) + 1 — n;]]*. No mention is made of
how to choose n;.

The Bayes procedures of Theorem 4.1 and Corollary 4.2 choose n, =
[[c: + ¢28* — ni]]* while the Stein-Lehmann procedures essentially choose
ny = [[1 + c3s?2 — ny]]* with ¢, co, ¢s constants. Hence we can address the
question: Can Stein’s procedure be regarded (approximately) as some generalized
Bayes procedure? Furthermore, if so, what value of n, would correspond to such
a procedure? In an effort to answer these questions, we ask whether the constant
a of Corollary 4.2 can be chosen so that ¢; = a/(n¥ — 1) < 1 where n¥ is the
optimal n,. If we let a | 0, it can be verified by taking the limit in (4.4) that the
Bayes risk becomes a multiple of In n;, and so the optimal value for n, is n; = 2.
(The same result is true for loss function (2.5).) Such a procedure approximates
the Stein procedure but other choices of the constant a will also approximate the
Stein procedure. Furthermore, it is worth considering the slight variations of the
Stein procedure, namely those given by Corollary 4.2. We offer one more result
that enhances the important computer work to be discussed. If ¢ were known,
then the optimal fixed sample size procedure in which the estimator is j is to
choose n = [[¢?/c]]. The risk for such a procedure is ¢ + ¢ In ¢%/c.
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THEOREM 4.4. The risk for any double sample procedure with estimator y is
greater than or equal to (¢ + In ¢%/c).

ProOF. The risk for the double sample procedure is
(4.10) Ef{[c*/(ny + ny(y1, w))] + ¢ Infny + no(y1, w))}.

For fixed (y:, u) the integrand is minimized at n, + ny(y:, u) = o%/c and the
minimum value is ¢ + ¢ In ¢%/c.0

REMARK 4.5. The lower bound in Theorem 4.4 is appropriate not only for
double sample procedures but for k stage sample procedures £ = 2 and also
sequential procedures. Thus if a double sample procedure has a risk close to the
lower bound, then that double sample procedure is very good since not much
improvement can be achieved, not even among procedures that sample at more
than 2 stages.

We now discuss computer work. Table 4.1 yields values of n¥, the optimal
value of n; for various values of the parameter a of Corollary 4.2. For a = 4
(a/(n, — 1)) = 1 implying that this procedure is essentially Stein’s procedure.
Table 4.2 offers risks as a function of o2 of the double sample Bayes procedures
when the cost is ¢ = .01 and the sample sizes for the first sample are n, = 2, 5,
15. They are contrasted with the optimal risk given in Theorem 4.4. Table 4.3 is
the same except that ¢ = .1.

In both cases the procedure with n, = 5 is doing well, particularly when
¢=.1. When ¢ = .1, the risk of the procedure with n, = 5 compares very favorably
with the optimal risk except for very small values of ¢>. When ¢ = .01, the
procedure with n, = 15 does even better than n, = 5 and its risk compares
extremely well with the optimal risk. These tables can serve as guidelines for
recommendations. For costs lower than .01, n; can be increased. For costs near
.1 or higher, n, = 5 is very reasonable. These guidelines can perhaps be used as
suggestions for how to choose the first sample size in Stein’s double sample fixed
width confidence procedure. If 2d is the fixed width then ¢ relates to d by
d?/t*(a) where t*(a) is a two tailed critical ¢-value. For example if ¢ = .1,
a = .05, t> = 8 so d = .9 which means that if 2d is near 2 then n; = 5 could be
recommended.

TABLE 4.1

Optimal values of n,

a n; a n;
4 5 34 13
11 7 42 15
17 9 50 17

25 11 60 19
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Risks for double sample procedures c¢ = .01

n,=2 n =5 n =15 Optimal
Var 2-Stage 2-Stage 2-Stage Risk
Risk Risk Risk
0.01 0.0125 0.0181 0.0277 0.0100
0.11 0.0466 0.0356 0.0347 0.0340
0.21 0.0652 0.0436 0.0409 0.0404
0.31 0.0792 0.0483 0.0449 0.0443
0.41 0.0908 0.0517 0.0478 0.0471
0.51 0.1009 0.0542 0.0500 0.0493
0.61 0.1099 0.0568 0.0519 0.0511
0.71 0.1181 0.0580 0.0534 0.0526
0.81 0.1257 0.0595 0.0547 0.0539
0.91 0.1328 0.0608 0.0559 0.0551
1.01 0.1395 0.0620 0.0570 0.0562
1.11 0.1458 0.0630 0.0579 0.0571
1.21 0.1518 0.0640 0.0588 0.0580
1.31 0.1575 0.0648 0.0596 0.0588
1.41 0.1630 0.0656 0.0603 0.0595
1.51 0.1683 0.0664 0.0610 0.0602
1.61 0.1734 0.0671 0.0617 0.0608
1.71 0.1783 0.0677 0.0623 0.0614
1.81 0.1830 0.0683 0.0628 0.0620
1.91 0.1877 0.0689 0.0634 0.0625
n=2 n=5 n; =15 .
Var 2-Stage 2-Stage 2-Stage Oll){l T{al
Risk Risk Risk 18
1.00 0.1388 0.0619 0.0569 0.0561
6.00 0.3187 0.0809 0.0749 0.0740
11.00 0.4224 0.0871 0.0810 0.0800
16.00 0.5031 0.0909 0.0847 0.0838
21.00 0.5715 0.0937 0.0874 0.0865
26.00 0.6318 0.0958 0.0896 0.0886
31.00 0.6864 0.0976 0.0913 0.0904
36.00 0.7367 0.0991 0.0928 0.0919
41.00 0.7834 0.1004 0.0941 0.0932
46.00 0.8273 0.1016 0.0953 0.0943
51.00 0.8689 0.1026 0.0963 0.0954
56.00 0.9084 0.1036 0.0972 0.0963
61.00 0.9461 ©0.1044 0.0981 0.0972
66.00 0.9823 0.1052 0.0989 0.0979
71.00 1.0171 0.1059 0.0996 0.0987
76.00 1.0507 0.1066 0.1003 0.0994
81.00 1.0831 0.1073 0.1009 0.1000
86.00 1.1146 0.1079 0.1015 0.1006
91.00 1.1451 0.1084 0.1021 0.1012
96.00 1.1748 0.1090 0.1026 0.1017
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TABLE 4.3

Risks for double sample procedures c¢=.1

n,=2 n,=5 n, =15

Var 2-Stage 2-Stage 2-Stage Ol;{t.nl‘;al
Risk Risk Risk 18
0.01 0.0743 0.1629 0.2715 —0.1303*
0.11 0.1303 0.1830 0.2781 0.1095
0.21 0.1836 0.2044 0.2848 0.1742
0.31 0.2293 0.2271 0.2915 0.2131
0.41 0.2692 0.2491 0.2981 0.2411
0.51 0.3049 0.2695 0.3048 0.2629
0.61 0.3372 0.2880 0.3116 0.2808
0.71 0.3670 0.3047 0.3184 0.2960
0.81 0.3946 0.3197 0.3255 0.3092
0.91 0.4204 0.3334 0.3327 0.3208
1.01 0.4448 0.3459 0.3401 0.3313
1.11 0.4679 0.3574 0.3474 0.3407
1.21 0.4898 0.3679 0.3547 0.3493
1.31 0.5108 0.3777 0.3618 0.3573
1.41 0.5309 0.3867 0.3687 0.3646
1.51 0.5502 0.3952 0.3753 0.3715
1.61 0.5688 0.4032 0.3817 0.3779
1.711 0.5867 0.4106 0.3877 0.3839
1.81 0.6041 0.4176 0.3935 0.3896
1.91 0.6210 0.4243 0.3991 0.3950
n=2 n=5 n,=15 .
Var 2-Stage 2-Stage 2-Stage O]l)‘t;;:l(al
Risk Risk Risk
1.00 0.4424 0.3447 0.3393 0.3303
6.00 1.0904 0.5612 0.5169 0.5094
11.00 1.4515 0.6293 0.5783 0.5700
16.00 1.7286 0.6701 0.6161 0.6075
21.00 1.9610 0.6993 0.6434 0.6347
26.00 2.1648 0.7219 0.6649 0.6561
31.00 2.3483 0.7404 0.6826 0.6737
36.00 2.5164 0.7562 0.6976 0.6886
41.00 2.6724 0.7697 0.7106 0.7016
46.00 2.8185 0.7816 0.7222 0.7131
51.00 2.9563 0.7923 0.7325 0.7234
56.00 3.0871 0.8019 0.7419 0.7328
61.00 3.2119 0.8107 0.7505 0.7413
66.00 3.3313 0.8188 0.7584 0.7429
71.00 3.4460 0.8263 0.7657 0.7565
76.00 3.5566 0.8333 0.7725 0.7633
81.00 3.6633 0.8398 0.7789 0.7697
86.00 3.7667 0.8460 0.7849 0.7757
91.00 3.8669 0.8517 0.7905 0.7813
96.00 3.9643 0.8572 0.7959 0.7867

* The optimal value of n, is less than 1 and risk has In n, terms.
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