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PROPER ACTION IN STEPS, WITH APPLICATION TO
DENSITY RATIOS OF MAXIMAL INVARIANTS?!

BY ROBERT A. WIJSMAN
University of Illinois at Urbana-Champaign

Let G be a locally compact group acting continuously on the left of a
locally compact space 2. It is assumed that G = HK where H and K are
closed subgroups. It is shown that if K acts properly on 2 and H acts properly
on Z /K, then G acts properly on 2. Under a mild additional condition the
converse is also true. Several examples are given to show how these results
can help decide the properness of composite actions. Proper action can be
used to justify the representation of the density ratio of a maximal invariant
as a ratio of integrals over the group.

1. Introduction. Comparison of proper action and Cartan property.
Let X be a random variable taking values in a locally compact space 2  on which
a locally compact group G acts continuously on the left. (In applications 2 will
usually be a subset of Euclidean space.) We adopt in this paper Bourbaki’s
definition of “locally compact,” which includes the requirement that the space
be Hausdorff ([5] I Section 9.7, Definition 4). Let ug be left Haar measure on G,
i.e., ug(g1 dg) = ue(dg) for every g, € G. We shall also assume that there is on
2 a measure \ (usually Lebesgue measure) that is relatively invariant with
multiplier x; i.e., there is a positive continuous function x on G such that A (g dx)
= x(g)\(dx), g € G. Consider only distributions P of X that have a density p
with respect to . If £(X) is a maximal invariant and p;, p, two densities of X,
then the following formula for the density ratio p’/p? of t(X) has proved itself
very useful:

_P_é _ J pa(8x)x (8)uc (dg)
(1) pl CO) = (X @nolde)

Such “integration over the group” methods in statistical problems were initiated
by Charles Stein (1956) and several early applications in specific problems are
known (for references see, e.g., [11]). Examples of more recent use of (1.1) include
Andersson and Perlman (1984), Eaton and Kariya (1983), Kariya (1978), Wijs-
man (1972).

There is, however, a nontrivial question under what general conditions (1.1)
is valid. In Wijsman (1967) (1.1) was derived first of all under the restrictions
that G is a Lie group, 2 a subset of Euclidean space, and the action of G on 2
linear. In Wijsman (1972, Section 7) this was extended to affine action. These
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restrictions do not pose much of a limitation in practice since all known examples
seem to be of that nature. However, there is another condition that was needed
in [11] to derive (1.1): 2 was required to be a Cartan G-space. That means that
every x € 2 has a thin neighborhood, i.e., a neighborhood V, such that
((Vy, V,)) has compact closure; cf. Palais (1961). We have used here Palais’
notation: for any A, B C 2, define

(1.2) ((A,B))={gE€G:gANB#J}.

Some sufficient conditions for (2, G) to be Cartan were presented in Wijsman
(1972, Section 7).

More recently, the Copenhagen school has demonstrated the usefulness of the
Bourbaki notions of proper action and quotient measure in problems concerning
distributions of maximal invariants; among the main papers in this area are
Andersson (1982) and Andersson, Brgns, and Jensen (1983). The general defi-
nition of proper action ([5] III Section 4.1, Definition 1) is that the mapping
0: GX & - X X Z given by (g, x) — (x, gx) be proper ([5] I Section 10.1,
Definition 1). However, for G and 2 locally compact there is a criterion that is
easier to apply, stated below for future reference as a lemma. It is essentially a
restatement of [5] III Section 4.5, Theorem 1(c) (note that our ((A, B)) defined
by (1.2) is denoted P(A4, B) in [5]). ‘

LEMMA 1.1 If & and G are locally compact and G acts continuously on 2,
then the action is proper if, for every pair A and B of compact subsets of <,
((A, B)) has compact closure.

This follows from the fact that a mapping from one locally compact space into
another is proper if and only if the inverse image of every compact set is compact
([5] I Section 10.3, Proposition 7). Now ((4, B)) = pr; 6 *(A X B), where pr;, is
the projection of G X 2 onto G, and 6 (A X B) is closed and contained in
(pr1 67(A X B)) X A. Therefore, ((A, B)) is compact if and only if 7*(A X B) is
compact. Hence, the action is proper if and only if for every pair of compact
subsets A and B of Z, ((A, B)) is compact. Since in any case for continuous, but
not necessarily proper, action the set ((4, B)) is closed ([5] III Section 4.5,
Theorem 1(a)), it suffices to check that ((4, B)) has compact closure.

For 2 and G locally compact, the following useful equivalence is stated in [5]
III Section 4.4, Proposition 7: the action of G is proper if and only if for every
x,y € & thete exist neighborhoods V, and V,, such that ((V,, V,)) has compact
closure. By taking x = y it is seen that if G acts properly on £, then 2 is a
Cartan G-space. It is not known whether the converse is true so that the notion
of proper action may be slightly stronger than the Cartan property. However, to
this writer no example is known where the latter holds and the former does not.
Therefore, it looks as though for all practical purposes there is no real loss in
generality by requiring the action to be proper as compared to requiring the
Cartan property. Assume proper action has the advantage that quotient measure
becomes available; cf. Bourbaki (1963) VII Section 2. With the aid of quotient
measure it is shown by Andersson (1982) that (1.1) is valid.
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Thus, the main purpose of this paper is to develop useful tools for proving the
action of G on 2 proper. Usually G is built up from several subgroups, and each
of these may already be known to act properly. Under what conditions can G
itself be concluded to act properly? This situation is analogous to the problem of
construction of a maximal invariant for G out of maximal invariants for the
subgroups. There it is well-known (cf. Lehmann, 1959, Chapter 6, Theorem 2)
that a maximal invariant can be found in steps if at each stage the action of the
next group induces an action on the maximal invariant obtained in the present
stage. The analogue for the notion of proper action turns out to be true and is a
very convenient way of establishing the properness of action of complicated
groups. This will be shown in Section 2. In Section 3 several applications of the
theorems in Section 2 will be given that together with some elementary rules
help decide the properness of combined actions.

2. Proper action in steps. Assumptions and notation: 2 and G are locally
compact; G acts continuously on the left of 2. The G-orbit of x € 2 is Gx; the
space of G-orbits in 2 is denoted 2/G and is endowed with the quotient
topology ([5] I Section 3.4). The symbol ((A, B)) is defined in (1.2). Let GL(p) =
general linear group of all p X p real nonsingular matrices, PD(p) = all real
p X p positive definite matrices, O(p) = group of all p X p orthogonal matrices,
M(p, q) = set of all real p X q matrices. If M(p, q) is used as a group it will be
understood that group multiplication is matrix addition.

For studying proper action in steps, it suffices to consider two steps. Let G
have closed subgroups H and K such that G = HK, meaning that any g € G can
be represented as g = hk, h € H, k € K. The assumption that H and K are closed
implies that both subgroups are locally compact. Consider the K-orbits Kx,
x € 2, and let = be the orbit projection 2 — Z/K given by = (x) = Kx.
Suppose that for each g € G and x € 2, gKx = Kgx; i.e., g maps each K-orbit
into a K-orbit. Thus, the action of G on 2 induces an action of G on
Z/K: gn(x) is defined as 7 (gx). We shall, for short, simply say that G acts on
/K if this action is induced by the action of G on 2. From the structure G =
HK it follows that G acts on 2/K if and only if H does, and then a maximal
invariant for G may be obtained in steps. If G acts on 27/K, then it follows from
an argument given by Andersson (1982), relations (21) and (22), that the
continuity of the action of G on 2  implies the continuity of the action of G on
Z/K, and therefore of H on /K.

It is plausible to expect that if K acts properly on 2 and H properly on
Z/K, then G acts properly on 2. This is indeed true and will be proved in
Theorem 2.1. The converse is true under an additional mild assumption on the
structure of HK and will be proved in Theorem 2.2.

THEOREM 2.1. Let G have closed subgroups H, K, such that G = HK and such
that H acts on Z/K. If K acts properly on 2 and H acts properly on 2 /K, then
G acts properly on Z.

PROOF. Let A, B be two arbitrary compact subsets of 2. Using Lemma 1.1,
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it suffices to show that there exists compact C; C H and compact C, C K such
that ((A, B)) C C,C, which is compact since C,C; is the image of C; X C, under
the continuous mapping (h, k) — hk. Let 7: 2" — 2/K be the orbit projection
x — Kx and put A = 7(A), B = =(B). Then A and B are compact in 2/K since
w is continuous. Define C; = {h € H: hkA N B # & for some k € K}, then C; can
also be written Cs = {h € H: hA N B # @}. It follows from the properness of the
action of K on 2 that 2/K is locally compact, using [5] III Section 4.5,
Proposition 11. Then by Lemma 1.1, C3 C C; compact in H. Next, compute

((A, B)) = {hk: hkA N B # &} C Ci{k € K: hkA N B # @ for some h € Cy}
= C{k € K: kA N h™'B # & for some h € C,}
C Cifk € K: kA N C7'B # @} C C,Cy,

where {k € K: kA N C7'B # &} C C; compact in K since C7'B is compact and
the action of K on 2 proper.

The next theorem needs an additional assumption on the structure of
G = HK. Let f: H X K — @ be defined by f(h, k) = hk so that f is continuous.
Then we shall assume that f is a proper mapping ([5] I Section 10.1). This
condition is certainly fulfilled if G is a product group H X K, for then f is the
identity map. In cases where G is not a product group the properness of f may be
concluded if the decomposition g = hk is unique (for instance, if G is a semidirect
product) and G is second countable. This follows by using a device of Bourbaki
(1963), Chapter VII Section 2.9, which consists of letting H X K act on the left
of G by g — hkg™™. This action is continuous and transitive, and the isotropy
subgroup at g = e is trivial as a consequence of the uniqueness of the decompo-
sition g = hk. It follows that the function ¢: H X K — G defined by ¢(h, k) =
hk! is one-to-one. Then ¢ is a homeomorphism since G, and therefore H X K,
is second countable ([4] page 97, Lemme 2). Let ¢ be the homeomorphism (h, k)
— (h, k™). Then f = @ © ¢ so that f is a homeomorphism and therefore proper.

THEOREM 2.2. Let G = HK where H and K are closed subgroups of G and
assume that f: H X K — G defined by f(h, k) = hk is proper. Suppose that G acts
properly on 2 and that H acts on 2 /K. Then the actions of K on 2 and of H
on Z/K are proper.

PROOF. Since G acts properly on 2 and K is a closed subgroup of G, it
follows that K acts properly on 2 ([5] III Section 4.1, Example 1). It will now
be shown that H acts properly on 2/K. First observe that 2/K is locally
compact as in the proof of Theorem 2.1. Then, using Lemma 1.1, we have to
show that for any compact 4, B C 2/K, ((A, B)) as a subset of H has compact
closure. Let 7 be as in the proof of Theorem 2.1. By [5] Section 4.5, Proposition
10 there exist compact subsets A and B of 2 such that =(4) = A, »(B) = B.
First consider the subset C; of H X K defined by C; = {(h, k): khA N B # &},
then C; = f~1C,, where C; = ((4, B)). Since G acts properly by hypothesis, C,
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has compact closure and therefore so does C; since f is proper. Now ((4, B)) =
{h€E H-hANB#Q}={h € H: 3k € K D hkA N B # &} = pr,C,, where pr, is
the projection of H X K onto H. Since pr; is continuous and C; has compact
closure, so does ((4, B)).O

REMARK 2.3. In Theorems 2.1 and 2.2 the subgroups H and K are assumed
to be closed. This is a natural assumption and guarantees from the outset that
H and K are locally compact. Strictly speaking, it is not necessary to make these
assumptions since the closedness of H and K is implied in Theorem 2.1 by the
properness of the actions and in Theorem 2.2 by the properness of f.

REMARK 2.4. A simple counterexample shows that the condition in the
hypothesis of Theorem 2.2 that f be proper cannot be relaxed. Take G to be
noncompact (e.g., R under addition) and H = K = 2 = (. Then G acts properly
on itself (see Subsection 3.1). However G/K consists of one point and H does not
act properly on G/K since H is not compact.

3. Examples of proper actions and the use of Theorems 2.1 and 2.2.
Several examples will be given to illustrate how Theorems 2.1 and 2.2 can be
combined with a few elementary rules to prove properness of composite actions.
Subsections 3.1-3.3 list elementary rules that are used repeatedly. Subsections
3.4 and 3.5 prove properness of some simple actions that occur often in statistics.
Subsections 3.6-3.10 deal with composite actions and the use of Theorems 2.1
and 2.2, in conjunction with numbers 3.1-3.5 following.

3.1. If & = @G, then G acts properly since the mapping G X G - G X G
defined by (g1, g2) — (g2, g182) is a homeomorphism and therefore proper.

3.2. If G acts properly on 2 and G acts continuously on % then G acts
properly on 2 X %/ This follows rather trivially from an application of Lemma
1.1.

33. If G=G, X Gsy, Z = 271 X 23, and G; acts properly on Z;,i =1, 2,
then G acts properly on 2. This follows easily by an application of Lemma 1.1.
It is even true without any restrictions on the groups and spaces by the general
Definition 1 in: [5] III Section 4.1 and I Section 10.1 Proposition 4.

3.4. Let G be a closed subgroup of GL(p) and let 2" = M(p, n) restricted to
matrices of rank p. Let the action be defined by X — CX (matrix multiplication),
X € 2, C €G. It will be shown that G acts properly on 2, and it will be
sufficient to do this for G = GL(p), using [5] III Section 4.1, Example 1. If
n =p, then 2 = G and G acts properly by number 3.1. If n > p, then each
X € 2 has m = (p) submatrices of order p X p. Denote these by
Xi, -+, Xn. At least one of the X; must be nonsingular. If X; is nonsingular,
then so is CX; for every C € G. Thus, 2 = 2 U --- U Z,, where Z; is
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invariant and consists of all X with X; nonsingular. It suffices to show that G
acts properly on each 2. Now Z; can be written in the form 27 X %;, where
%, consists of the submatrices X; of X. Therefore, 2; = G. Hence, G acts properly
on %4, by number 3.1, and G acts continuously on %,. Then use number 3.2.

3.5. Let 2 be as in number 3.4 and take G = M(p, r), where r < p. Let
L: r X n of rank r be a fixed matrix and define the action of G by: X — X + BL,
B € G. Then the action is proper. To show this, first postmultiply the matrices
X and L by a fixed nonsingular matrix (which may be chosen orthogonal) such
that the new L is of the form [C, 0], with C: r X r nonsingular. This replaces &
by a homeomorphic image and does not change the problem. Next, replace the
matrices B by BC™!, which amounts to a homeomorphism of G with itself. For
the new 2 the action is X — X + [B, 0], B € G. Write X = [X;, X;] with
Xi:p X rand write 2 = 27 X 25, then 27 = G'so G acts properly on Z; by
number 3.1, and G acts trivially on 25. Then use number 3.2.

3.6. Properness of an affine action. Let G = HK, H = GL(p), K = M(p, r)
(r < p) with group multiplication (C;, B:)(Cs, By) = (C:Cs, B: + C3'By) if
C;€H,B;€ K. Let Z = M(p, n), n =p + r, restricted to matrices of rank p.
Let L be as in number 3.5 and define P, = L’(LL’)"'L, which is the orthogonal
projection onto the row space of L. Let 2 = M(p, n), n = p + r, restricted to
matrices X such that X[I, — P;] = X* is of rank p. Let the action of G be
X - C(X + BL), C € H, B € K. A maximal invariant under K is X*, which is
homeomorphic to 2/K. This can be seen by postmultiplying X and L by an
orthogonal matrix I" whose first r columns span the row space of L. Then the
action of K on the new X is (as in number 3.5) [X;, X;] —» [X; + B, X;] and a
topological maximal invariant is obviously [0, X;]. Transforming back with I'
establishes the claim. Next, H acts on Z/K by X* — CX*. The action of K on
Z was shown to be proper in number 3.5, and the action of H on 27/K is proper
by number 3.4. Then use Theorem 2.1 to conclude that the affine action of G on

Z is proper.
Special choices of L lead to well-known examples in statistics. Take r = 1,
L =11, ..., 1], and write x; for the jth column of X. Then the action is x; —

C(xj+ b), C € GL(p), b € M(p, 1). This is relevant if the columns of X constitute
a sample of size n from a p-variate population, and is also important in sequential
problems. In Wijsman (1972, Theorem 7.1) the Cartan property was proved for
this kind of action. As a second example of affine action, take the canonical form
of MANOVA. Of n independent random p-vectors (here represented as column
vectors), the means of the first r vectors are unspecified both under the model
and under the linear hypothesis. Partition the observation matrix X = [X;, X,]:
p X n, with X;: p X r, and G acts on X according to X; — C(X; + B), X; — CX,.
This corresponds to L = [I,, 0].

3.7. Let G = HK be as in Section 2. Suppose that K acts properly on 2 and
that H is compact and acts on 2/K. Since H is compact, it acts properly on
2 /K. Then by Theorem 2.1, G acts properly on Z. As an application, suppose
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2 = M(p, n), restricted to matrices of rank p. Let H = O(n), K = GL(p),
G = H x K with action defined by X — CXT', T € H, C € K. The action of K
on 2 is proper by number 3.4. Since H is compact we conclude that G acts

properly.

3.8. Properness of the action.
(3.1) S—CSC’, SePD(p), CEeQG,
where G is a closed subgroup of GL(p).

This represents the usual action on covariance matrices, and many invariance
groups in multivariate problems contain (3.1) in all or part of their action. A
recent example is the paper by Andersson, Brgns, and Jensen (1983). The
properness of the action (3.1) is well-known and follows for instance from a
general result stated in [5], page 308, Exercise III Section 4, number 3. Andersson
(1982) states that Tolver Jensen in a 1971 dissertation derived the properness
by showing the inverse image of a bounded set to be bounded. Essentially the
same method was used in Wijsman (1967) in the proof of the Cartan property.
Here we shall give a totally different proof by using Theorems 2.1 and 2.2. As in
number 3.4 we may suppose G = GL(p).

Let 2 be as in number 3.7, with p = n, but interchange the definitions of H
and K. That is, G = H X K, H= GL(p), K = O(p), and the action is X — CXT",
C € H, T € K. A maximal invariant under the action of K is S = XX’. We have
to show that S is a topological representation of 2/K. Let L be the group of
p X p lower triangular matrices with positive diagonal elements. Then L X K
acts continuously and transitively on the left of 2" by X - TXT', TE L, T €
K. The isotropy subgroup of L X K at X = I, is trivial. Therefore, there is a one-
to-one correspondence between 2° and L X K given by X = TT' (this also
follows from a Gram-Schmidt decomposition). That this correspondence is a
homeomorphism follows, for instance, from [4], page 97, Lemme 2. The action
of Kon & induces an action of K on L X K which is transitive on K and trivial
on L, so that L is an obvious topological maximum invariant. Finally, there is a
homeomorphic correspondence between T'€ L and S = TT' € PD(p).

By number 3.7 the action of G on 2 is proper. Theorem 2.2 applies because
the function f in that theorem is proper since G = H X K is a product group. The
action of H on 2/K is (3.1), and by Theorem 2.2 it is proper.

3.9. Canonical correlations. Let n observations be taken on a p-variate
population. If the observations are represented by row vectors, then the obser-
vation matrix is X: n X p. Partition it as X = [X;, Xo], Xi: n X p;, p1 + P2 =D,
where it may be assumed that rank X; = p;, i = 1, 2. To obtain the canonical
correlations as a maximal invariant the relevant group is G = O(n) X GL(p;) X
GL(p,) and the action is defined by X; — I'X;C/, T € O(n), C; € GL(p,),1 =1, 2.
Here GL(p,) X GL(p,) acts properly on 2 by numbers 3.3 and 3.4, and therefore
G acts properly on 2 by number 3.7.



402 ROBERT A. WIJSMAN

3.10. GMANOVA (cf. Kariya, 1978). In its canonical form 2 consists
of pairs (X, S), X € M(m, p), S € PD(p), and X is partitioned as X = (X;),
i=1,2,j=1,2,3, X;: m; X pj with m; + my = m, p; + p, + ps = p. The group G
consists of three subgroups: G; consists of all m X p matrices F partitioned in
the same way as X, with Fi, = 0, F13 = 0, Fp3 = 0, and action X - X + F. G,
consists of p X p block-upper triangular nonsingular matrices A with action
X — XA’, S - ASA’, and G; consists of block-diagonal orthogonal matrices
I' = diag(Ty, Ty), with I';: m; X m;, acting by X — I'’X. It is readily seen that
G = (G2 X G3)Gy, with G; normal in G. The action of G, is proper by a combination
of numbers 3.1 (or 3.5), 3.2, and 3.3. A topological maximal invariant under G is
(X*, S), where X* is obtained from X by setting X;;, X,;, and X,; equal to 0.
Then G; and Gs act on (X*, S) as they did on (X, S). The group G; is a closed
subgroup of GL(p) and therefore the action (3.1) with C replaced by A € G, is
proper. Thus, G, acts properly on (X*, S) by number 3.2, and G, X G acts
properly by number 3.7. By Theorem 2.1, G acts properly on 2.
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