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ASYMPTOTIC PROPERTIES OF MINIMIZATION ESTIMATORS
FOR TIME SERIES PARAMETERS

By DANIEL MACRAE KEENAN
Brown University

1. Introduction. For a strictly stationary stochastic process in discrete
time, a second-order parameter associated with the process can be viewed as a
function of the spectral distribution function. Various authors (e.g. Whittle, 1953;
Walker, 1964; Ibragimov, 1967; Hosoya, 1974; Taniguchi, 1979, 1981; and Hosoya
and Taniguchi, 1982) have considered a certain estimator defined as a minimi-
zation solution of an integral expression. This work is concerned with estimators
which are solutions of integral minimizations of which the above are special cases
(analogous to the relationship of MLE to M-estimation). Asymptotic properties
are shown for these estimators with the establishment of probability one bounds
being the most novel contribution. The approach taken in this paper is to show
that such estimators have almost sure representations as integrals of kernel
functions w.r.t. the sample spectral distribution function and to invoke known
results for the latter-type estimators (Keenan, 1983). An application of the
results to the construction of a whole family of strongly consistent estimators of
the dimension of a parameter is given.

2. Background. Let {X;, —0 < i < o} be a strictly stationary stochastic
process with mean zero. We will assume throughout that

ASSUMPTION 1.
(2.1) Yonvg - wpg=—e | Ui | €(U1, U2y ++ o, Upg) | < @

forj=1,2,.---,k—1,k=2,3, ..., where ¢(vy, Ug, - -+, Up—1) is the kth order
cumulant of {X(0), X(v1), X(vy), - - - , X(vr-1)} (see Brillinger, 1975, Section 2.6).
In the case of a Gaussian process this condition is satisfied if

Yo V] | )] < .

The absolutely continuous spectral distribution function of the X, process
will be denoted by F(\), A € [0, 2r]. We will assume throughout that f(A) =
dF(\)/dX >0, A € [0, 2x]. For a sample {X;, X, - - -, X,}, the sample spectral
distribution is defined as

(2.2) =2y, 1<@) 0< 2" <\
n n n
where I,,()\) is the sample periodogram
(2.3) L(\) = (1/27n)| I, Xe7 )% X € [0, 27].
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Another empirical spectral distribution function is F¥(-), given by

(2.4) FX(\) = {#\3’s < \F.@2x)/n
where )\8-’)) = F;'(jF.(27)/n),j= 1,2, ---, n, and F,(-) is the piecewise linear
version of F,(-). The values {Af}')’, j=1, ..., n} can be viewed as approximate

order statistics from the spectral distribution F. The function F}(.), like the
usual empirical c.d.f. (in the ii.d case), assigns equal weight to n points, thus
making it highly compatible with linear operations. For example, minimization
estimators (defined below) constructed with respect to F} have the appearance
of traditional M-estimators with Af;,j =1, 2, - - -, n serving as the data. By an
approach analogous to that of Hosoya and Taniguchi (1982, Proposition 4.1 and
Section 5) one and two-step estimators (via Newton’s method) can be constructed.
A third estimator of F(-), a continuous version of expression (2.2), is F,(-)
defined as

A
(2.5) F.(\) = fo I.(¢) dt.

One general perspective is to view a (second-order) characteristic of spectral
distributions as a function defined on a class of spectral distributions. In this
paper we will consider such functions (and their estimators) as being defined on
a class of spectral distributions via an integral minimization (w.r.t. t € ® C R9):

2m 2w
L h(¢, t) dt + fo m(¢, t) dF ()

where h and m are specified functions (which allow such a minimum). The most
common (and important) example is where 0 is a parameterization of a family
of spectral densities, & = {f(-, 0), § € ® C R, of which f, the spectral density
of our process, is not necessarily an element, and h and m are functions of
f(-, 0) (e.g. expressions (2.11) and (2.16)); our results apply to this situation
although this setup is not an assumption. That is, we may wish to consider
integral expressions where h and m are not associated with a family of spectral
densities; estimation of the “moments” of the spectral distribution, which are
parameters associated with the expected number of zero-crossings of a process,
is such an example.

The parametric setup (% = {f(-, 0), § € ® C R7) is the most important and
the remainder of this section is (primarily) concerned with it. An example which
can be kept in mind throughout, although it is not an assumption, is that of an
arbitrary linear process, possibly not having an ARMA representation,

X,, = 2?=0 a,~(0)e,,.j, {e,'} ~ lld (O, 0'2)

where the coefficients are functions of 6, a parameter of finite dimension ¢, and
consequently one can view the parameter as a function of the spectral distribu-
tion. In the Gaussian case, estimation has been via maximum likelihood (MLE).
Whittle (1953) showed that in this case, maximum likelihood estimation of a
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parameter 0 (a vector) is asymptotically equivalent to minimizing the integral

2m
(2.6) j(: [g(\, )] L(N) dX (W)
where
(2.7) g\, 0) = (2n/a®)f (X, 0)

with o2 being the innovation variance assumed to not depend on 6, and f(-, §) €
Z Walker (1964) generalized the results of Whittle by showing that in general
the least squares estimator (not assuming Gaussian, but a linear process generated
by i.i.d. noise) is asymptotically equivalent to the solution of the above minimi-
zation problem and gave conditions for asymptotic normality and consistency
(weak and strong) for the estimator; the estimator is asymptotically efficient
with asymptotic variance

1 f2”010g g(\, 0) 3 log g(\, 0) }’1
@8) 4r Jo a(6) a6y M -

We can consider the above minimization (expression (2.6)) as a special case
of the following: for a continuous function .

p: 0,271 XO - R

where 0 is a subset of R? and where M;(-) is defined as

27
(2.9) Mq(t) = J; p(£, t) dG(£)

with G a spectral distribution function, define 6 (F'), 8 (F,), and G(F,,) to be values
(if they exist) which minimize expression (2.9) with F, F,,, and F,, respectively,
substituted for G. The procedure is analogous to that of traditional M -estimation.

Ibragimov (1967) considered a different integral expression, one not associated
with the likelihood function, and provided sufficient conditions for consistency
(weak and strong) for é ™ a value which minimizes

27
(2.10) J; (—log fi(X, 8)I.(X) dA, (Ib)

where f,(-, 0) is f (-, ) normalized to integrate to one. Ibragimov is only assuming
weak stationarity and states that more stringent conditions need to be imposed
to obtain the usual asymptotic behavior. One specific result of this work will be
the obtainment of the asymptotic behavior of Ibragimov’s estimator. Ibragimov
(1967) showed that if f(\) is substituted for I,(\) in expressions (2.6) and (2.10),
then the resulting expressions reach their minimum at § = 6 (F). The p functions
for Whittle and Walker and for Ibragimov are, respectively,

(2.11) [g(£ )] and —log[fi(£, ¢)].

Asymptotic results will be derived for a family of p functions. For a linear (in the
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weak sense of martingale differences with constant conditional variance) process,
Kabaila (1980) (and Whittle (1962) for linear process generated by i.i.d. noise)
have shown both the asymptotic normality of estimators defined for a family of
p functions (w.r.t. F,,(-)) and the optimality (in the sense of efficiency) of the
(Whittle) estimator defined by expression (2.6). Table I (using Corollary 3.5
below) gives the asymptotic efficiency of Ibragimov’s estimator (expression
(2.10)) relative to that of Whittle, Walker, etc. (expression (2.6)) in the case of
an AR(1) model (X, = yvX,-, + e,). Because of Remark 3 (below) the only
parameter which need be considered is v (¢% and k, will have no effect on the
asymptotic variances in these cases).

TABLE 1
Ratio of asymptotic variance for estimator defined by expression
(2.6) to that by expression (2.10)

Y .1 .3 b 7 9 .95
9901 9174  .8000  .6711 .5526 6195

Hosoya (1979) and Taniguchi (1983) have shown second-order efficiency (in
different senses, respectively) of the minimization estimators defined by expres-
sions (2.6) and (2.12) in the case of a Gaussian linear process. It may be, however,
that criteria other than efficiency and/or processes other than linear (in its weak
sense) should be of consideration, in which case these more general estimators
may play a role.

Whittle and Walker considered a linear process for which the innovation
variance ¢> was assumed not to depend on the parameter (vector) 6. Hosoya
(1974) pointed out that this is not always the case and proposed instead the
minimization of

27
(2.12) J; {log f(& 6) + [f(& 0)]7'L.(£)} dE (H)

rather than expression (2.6). Hosoya (1974) and Taniguchi (1979) derived the
asymptotic distribution of this (quasi-maximum likelihood) estimator under
regularity conditions. Hosoya and Taniguchi (1982) consider minimization
of expression (2.12) for the situation where a family of parametric spectral densi-
ties {f(£, 0), 0 € © C RY are fitted for a linear process with spectral density
{f(£), £ € [0, 271}, not necessarily in the parametric family.

For ease of interpretation, we will also refer to expressions (2.6), (2.10), and
(2.12) as (W), (Ib), and (H), respectively. We can include expression (H) in the
general results by considering p functions of the form

(2.13) 0:[0,27] X OX R > R
with
(2.14) \ p(& 8, y) = h(§ )y + m(g, t)
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and Mg(t) in (2.9) is replaced by

(2.15) Mq(t, g) = J; o(£, t, g(£)) dG(£)

where g is the derivative (generalized) of G. Expression (H) can be written with
p given by

(2.16) p(&, 8, f(£)) = log[f (& ONF(E + [f(& O

An equivalent (and informative although not as notationally convenient)
representation of the integral expression (i.e. (2.15)) to be minimized (w.r.t. t) is:

27
a(d) + [‘L‘ m(X\, t) an()\)]

(where a(f) = %1’ h(£, 6] d¢£) and minimization of the bracketed term, although
typically w.r.t. dF,(-), having been extensively studied (e.g. expression (2.6)).

Therefore, for a whole family of p functions (again, not necessarily associated
with a family of spectral densities, %) we will define estimators (of a parameter
6) as minimization solutions of the integral of p w.r.t. F,(-) and show various
asymptotic results for these estimators.

Expressions (W), (Ib), and (H) are integrals with respect to the continuous
estimator

2.17) F,\) = fo I.(¢) d¢

rather than w.r.t. F,(-), given by expression (2.2). Under the assumptions on the
process given above, the difference between the integral of a function of bounded
variation with respect to F,(.) and F.(), respectively, is O,(n™") (by Theorem
5.10.2, Brillinger, 1975, and Markov’s Inequality). This is not a rate fast enough
to pass properties via strong approximation from one to the other; probability
one bounds will be established for estimators defined w.r.t. F,(-) and F(.).

3. Strong consistency and asymptotic normality.

ASSUMPTION 2. 0 is a subset of R, p is a function of the form of (2.14) such
that h(¢, t) and m(¢, t) are continuous functions which are of bounded variation
(in £) with supiee | m(-, t) ||, < ®, supses || (-, t) ||, < ®, and sup;ece | M(27, t) |,
< o where || - ||, is the total variation norm. It is assumed that

has a unique minimum at ¢, (to be referred to as 8(F)) € int © with p continuous
(in t) in a nbhd of o, N;, such that for any 6 > 0 sufficiently small there exists
a nbhd of t, such that off that neighborhood, | Mr(t, f) — Mr(t, f)| > 6. We are
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not assuming that the true spectral density, f, is in a family parameterized by ©.

Let || - ||~ be the sup norm
| H |» = suposa<e«| H(A)|

where H(-) is a function on [0, 2~].

Lemma 3.2 below shows that under the assumptions stated above for the X,
process, the minimimization estimator is strongly consistent. The following
lemma is a slight restatement (i.e., discrete analogue) of a result due to Brillinger
(1969, Corollary, Theorem 4.2).

LEMMA 3.1. If {X,)n-—w is a strictly stationary process satisfying assumption
(1), then
|Frn=Flle—0 w.p.l.

PROOF. Same proof as in Brillinger (1969) (Corollary to Theorem 4.2) except
that reference to Theorem 4.2 is replaced by Theorem 5.10.1, Brillinger (1975).

LEMMA 3.2. If {X;, —» < i < o} is a strictly stationary process with mean
zero satisfying Assumption 1 and p is a function satisfying Assumption 2,
then there exists a solution T, (i.e. My (t, 1) has a minimum at T,) such that
O(F,) =) T, > to (= 0(F)) with probability one.

PrOOF. Fort€ 0

| MFn(t’ In) - MF(t9 f)l

27 27
= ‘ J; p(&, t, 1.(£)) dFa(£) —j; p(& t, f(£) dF(E)‘

< ‘ J; m(¢, t) d[Fu(§) — F(E)]‘

2r
[—21 h<%,t>]— f h(z, t) dF
n n 0

and since h and m are continuous functions of bounded variation (in £) and
F.(-) — F(-) is a right continuous, bounded function, we have by Lemma 7.2.2B,
page 254, Serfling (1980),

| Mg (t, I,) — Mgp(t, f)|
< h(2m, t)| Fo(27) — F2x)| + Im(-, O) o | Fn = Fll» + 0(1).
By Lemma 3.1 and the assumptions of the Lemma, we have
(3.1 supiee| Mr,(t, 1) — MFp(t, f)| —p— 0 w.p.1.
and the remainder of the proof is analogous to Theorem 1, Taniguchi (1979).

+
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REMARK 1. If 0 is compact and p is continuous in ¢ and t along with bounded
variation in £ and a unique minimum exists at ¢, then Assumption 2 (and
consequently the assumptions of Lemma 3.2) is satisfied. However, often a
compactness assumption is not appropriate, but the bounded variation conditions
of Lemma 3.2 are satisfied (e.g. expression (2.6) in the AR(1) case). Hannan
(1973) has given conditions for the existence of the asymptotic MLE when the
parameter space is only required to be in a bounded set.

REMARK 2. The preceding Lemma and the flavor of Theorem 3.4 are moti-
vated by Theorems 1 and 2, Taniguchi (1979) in which convergence in probability
of time series analogues of minimum Hellinger distance estimators is considered.

COROLLARY 3.3. In the statement of Lemma 3.2, F and F‘n, given by expres-
sions (2.4) and (2.5), respectively, may be substituted for F,,.

ProoOF. For F} the proof is the same except that in gonjunction with Lemma
3.1 above, Lemma 3.4 Keenan (1982) is applied. For F, the proof is the same
except that reference to Lemma 3.1 is replaced by Corollary, Theorem 4.2,
Brillinger (1969). 0

THEOREM 3.4. If {X;, —o < i < »} is a strictly stationary process with mean
zero satisfying assumption 1 and p satisfies assumption 2 such that

(1) am(¢, t)/ot and 3°m(§, t)/otdt’ are of bounded variation (component-wise)
in £ forallt,

(ii) there exists matrix-valued functions g, and g, with

‘ <a3m<s, t))
dtatat’ /;,

I (azh(s, t))
atot’ J;,

for t in a neighborhood of 6 (F') where

< (&1(8))js>

(3.2)

< (8(8);,, 1=j, / =k

i,

27
f gi(£) di < » (element-wise), i=1,2;
0

and

(iii) the matrix B is nonsingular where B is given by

B f ShiE, ) f ’m(t, t) 1
(3.3) FYET dt + b 360t ywir dF(E)I
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then
n'?[0(F,) — 6(F)]

(3.4) am(t, t)

Ot | t=om

= nl/zAnB—L{O(n—l) + J(: d[F (E) F(E)]}

where the components of the matrix A, — 1 w.p.1. and the O(n™!) term does not
depend upon the realization.

PrROOF. The proof is analogous to Theorem 2 of Taniguchi (1979) with
Lemma 3.2, above, giving the almost sure convergence.

COROLLARY 3.5. Under the conditions of Theorem 3.4 we have n**[0(F,) —
6(F)] is asymptotically normal with mean zero and variance Q given by

™ (o, 6(F))

’ —II- o am
Q= 2x(B’) 1 o 27 — a, 0(F)) ot

(3.5) (a, 0(F))

f f P (e 007 %

where fxx and fxxxx are the 2nd and 4th order cumulant spectra, respectively.

atl (a7 0(F))]fXX(a) da

0(F)fxxxx(a, B, —a) da dﬂ}B’l

PrROOF. Apply Theorem 5.10.1, Brillinger (1975), to expression (3.4). 0

NoTE. Corollary 3.5 will still hold if in expression (3.2) 9°m(¢, t)/9£dtat’ is
replaced by d’>m(¢, t)/dtdt’ and the assumption is made that *m(¢, t)/dtat’ is
continuous in £ and ¢.

_ COROLLARY 3.6. In the statements of Theorem 3.4 and Corollary 3.5, F} and
F,, may be substituted for F,.

PROOF. In the proof of Theorem 3.4, reference to Lemma 3.2 is replaced by
Corollary 3.3. In the proof of Corollary 3.5, reference to Theorem 10.5.1, Brillinger
(1975) is replaced by Theorems 10.5.1 and 10.5.2 Brillinger (1975) in the case of
F', and by 'the same argument as in Keenan (1982) (Theorem 3.5, in particular
expression (3.11)) in the case of F}. 0

REMARK 3. For a linear process (i.e., a linear filtering of i.i.d. noise with
variance ¢ and 4th order joint cumulant k,), the 4th order cumulant spectra in
expression (3.9) factors as

fxxxx(a, B8, —a) = (k4/(27l'04))fxx(a)fxx(ﬁ)

and thus for minimization estimators deﬁ_ned for p such that p(§, t) = m(¢, t)
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(i.e. h(&, t) = 0), as in expression (2.6) (Whittle) and 2.10 (Ibragimov), the latter
integral in expression (3.5) is zero (under the conditions of Theorem 3.4),
reflecting the well known fact (see Kabaila, 1980) that expression (2.6) (Whittle)
gives the most efficient estimator within this class.

This work is concerned primarily with estimators defined w.r.t. F,(-)
and F%(-). Theorem 3.4 gives more than just the asymptotic normality of our
estimators; it states that, (w.p.1) along each realization, the difference be-
tween our estimators and the true value can be represented by integrals w.r.t.
[F.(-) — F(-)]. The asymptotic normality could have been established by using
results of Kabaila (1980) and Theorems 10.5.1 and 10.5.2, Brillinger (1975).
Under a weak form of linearity (and stationarity), Kabaila (1980) proves asymp-
totic normality for estimators which minimize integrals defined w.r.t. F,(-).
However, for numerical computation, one ordinarily uses estimators defined
w.r.t. to F,(-). In the next section, probability one bounds are established for
estimators defined as the minimization solution of integrals w.r.t. F,(.) and
F%(-). The method uses Theorem 3.4 above and probability one bounds for
| Fr. — F|l» and || F — F || established in Keenan (1982). This same bound has
not been proven for || ¥, — F || (see also Malevich, 1965) and it does not appear
that it can by this method be established for estimators defined w.r.t. ,(-) (see
comments at the end of Section 2).

4. Probability one bounds. For the following theorem an additional as-
sumption will be made concerning the kth order cumulants of the X, process.
The assumption is assumption 7.7.2 of Brillinger (1975), page 264. We will
assume that C;, is finite for all & € N where C;, is defined as

Cr = Evl,v2,~~~,vk_1 | c(vy, vg, -+, Up-1) |

where ¢(vy, Ug, - - - , Up—1) is the kth order cumulant of (X(0), X(v,), - - - , X(vr_1)).
We will also assume that .

ASSUMPTION 3.

(4.1) Yi-1 (X, ColCoy -+ Co)(ZY/LY) < o
for Z in a neighborhood of zero, where the inner summation is over all indecom-
posable parj:itions v=(v1, -+, yp) of the table
" 1 2
3 4
2L -1 2L
with »; having n; > 1 elements, j = 1, - - - , p. In the case of a Gaussian process,

this condition is satisfied if

o= | (V)| < oo

THEOREM 4.1. If, in addition to the conditions of Theorem 3.4, assumption
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(3) is satisfied, then

n'2| 6;(F,) — 6:;(F)|
(2Q;log n)2  ’

where Q; is the (i, i)th element of the matrix Q given by expression (3.5) and the

subscript | indicates the ith component of the q-dim. vector. Expression (4.2)
similarly holds with F, replaced by F}.

(4.2) lim sup,_.« =1 wpl, i=1,..-.,q

PrOOF. In Keenan (1982), Lemma 4.1, it is shown that, under conditions
presently satisfied, n'/?|| F, — F| is O((log n)"?), w.p.1, and that integration
w.r.t [F,(-) — F(-)] of a function of bounded variation maintains that same rate.
By Theorem 3.4, since the components of A,, converge to one w.p.1, it suffices to
establish :

) n 1/2 f21r am, ©
s lim sup,_. <2—Q,,l—o;r—z> o (& 0(F)bY d[F,(&) — F(§)
4.3

<1 w.p.l

where b® is the ith column of B~!, B given by expression (3.3). By the
same proof as in Theorem 4.4, Keenan (1982), it follows that expression (4.3)
holds if m(£, 6(F)) is a function of bounded variation in ¢ (Q; substituted for A,
(Om’ (&, 6(F)))/(0t) for h,(£) everything remains the same and the proof is done
componentwise). As in Keenan (1982, Corollary 4.5), the result follows for F,
replaced by F¥. 0

Klimko and Nelson (1978) and An, Chen, and Hannan (1982) have also
considered probability bounds for estimators of time series parameters. Generally
speaking, when the parameter depends on only a finite amount of the process
(e.g., autocovariance of a fixed lag), law of the iterated logarithm results are
typically available (see Phillipp, 1967, or the above two references). However, if
this assumption is not made on the parameter, i.e. it can depend on the entire
process, then Theorem 4.1 may still give a general law of the “uniterated”
logarithm for estimators of such parameters. Spectral parameters typically are
of this form.

5. An application to the estimation of the dimension of a parame-
ter. Various authors have proposed methods for estimating the dimension of a
parameter. In the case of autoregressive processes (of finite order), Akaike (1974)
and Hannan and Quinn (1979) have proposed, respectively, choosing the value
of K which minimizes

(5.1) In ¢% + 2K/n
(5.2) In % + 2Kc In In n/n

where ¢(>1) is an arbitrary constant, ¢% is the residual variance from fitting an
AR(K) model for K < q (given), and n is the sample size. The In In n is a result
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of an application of a law of the iterated logarithm result, which was possible
because of the autoregressive assumption (or more generally because of the
determination of the parameter by a given finite dimensional joint distribution
in the time domain (e.g., Hannan, 1980, extends expressions (5.2) and (5.3) to
ARMA models)). Schwarz (1978) has proposed a general method which in the
autoregressive time series setting reduces to expression (5.2) with In In n replaced
by In n:

(5.3) In 6% + 2Kc In n/n.

Below, we propose an estimator which does not depend on the parameter being
determined by some finite dimensional joint distribution in the time domain. We
will exploit the “uniterated” logarithm result of Theorem 4.1, in a manner
motivated by Hannan and Quinn (1979).

Let ©® C R? be a compact subset with Y, j =1, 2, .*., g, being an increasing
sequence of compact subsets (0Y) C @Y*Y) with @ = @. The dimension of a
subset A C R? is defined as the dimension of the affine hull (in R?) of A. Typically,
we will have dim (0Y) equal to j. For example, if © is the parameter space of an
AR(q), then 09 is that of an AR(j),1 =j <gq.

oV =f{a=(a, ---,a)| a€0,a,#0,a#0, @41 = --- =a, = 0}.
ASSUMPTION 4. The function p is given by expression (2.14) where h(§, t)

and m(§, t) are continuous functiens (in £ and ¢) of bounded variation (in £) on
[0, 27] X @ and

2w
Me(t, f) = JO‘ p(¢, t, f) dF(£)
has a unique minimum on 0, denoted by ©(F), which is an interior point of 0.

Denote by §Y(F), a value in ®¥ such that
Min,eor Mr(t, f) = Mp(0V(F), f).

DEFINITION. The dimension of 8(F) relative to {8Y)}%, is defined as
K, = dim(6(F)) = Min{l < K < q| 0(F) € 0%},
THEOREM 5.1. If the conditions of Theorem 4.1 in addition to Assumption 4
and the condition that '
Mp(69(F), f) < Mp(6Y""(F),f), 2=j=Ko.
are satisfied, then for )2¢ cbrresponding to the
(5.4) Min;<x<,{Mr (0°(F,), 1) + 2KC(n""log n)},
K converges almost surely to K, = dim(8(F)) where C and §%(F,) are given by
expressions (5.6) and (5.5), respectively.

PrOOF. By continuity and compactness, we have that there exists a (not
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necessarily unique for j < K;) §9)(F,) € 0Y),j=1,2, ..., q, such that
(5.5) Min,eoi[Mp,(t, I)] = Mg, (0V(F,), I,).
Since @Y’ C 0U*D), we have for 1 < K <g¢q
Mz (09(F,), 1) + 2KCn™log n
= Mg (0V(F,), 1) + 2Cn""log n

+ 25 {=[Mp,(0V"(F,), I,) — Mg, (8V(F,), I,)] + 2Cn~"log n

with [Mg (09"2(F,), I,) — MF,(0V(F,), I.)] being nonnegative. If (j — 1) = Ko,
then by Taylor’s theorem and the fact that 6(F) is a relative interior point of
0,7 =Ko, Ko+ 1, - - -, q, we have (for n sufficiently large)

Mg, (0V"2(F,), L) — Mg, (09(Fy), I,)

My,

30 (0’ In)|0=0}p) (00_1)(Fn) - 0(j)(Fn))

0’M, 6, I,)
3090’ o—;

where 6 is an interior point on the line segment between §Y™"(F,) and 6Y(F,).
By the assumptions of the theorem,

oM
% F,,(a, In)|0=oti?, =0

+ % (0970(F,) — 09(F,))’ (0972(F,) — 0Y(F,))

for n sufficiently large; applying Theorem 4.1 to [0Y™(F,) — 6(F)]
and [0Y)(F,) — 8(F)], we have for (j — 1) = K,

0 < lim supn—«(n/2C log n)[Mg,(0YV~"(F,), I.) — M, (0V(F,), )] <1 wp.l

where

*Mr(0(F), f)
0090’

and [| |] represents the matrix of absolute values. For (j — 1) < Ko, with

probability one

Mg, (0970(F,), L) — Mg, (09(F,), 1)
—nse Mp(@YUF), f) = Mp(09(F), f) > 0

and by expression (3.1), this convergence does not depend on any uniqueness
requirement of % (F,) and 0¥ (F) for K < K,. Therefore, the asymptotic
minimum is reached at K, with probability one. 0

:I(Q%{z’ ) 91%2),'

(5-6) C = 2(9%{29 tt 91%2 l:

In the case of ® being the parameter space for a Gaussian autoregressive
process of order Ky < ¢, and maximum likelihood estimation is used, then for p
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given by expression (2.6), expression (5.4) reduces to
(5.7) d% + 2KC In n/n

in comparison to expressions (5.1), (5.2), and (5.3), where ¢% is replaced

by In ¢%. The reason is that expression (2.6) was chosen for minimization
rather than expression (2.12); the latter is asymptotically equivalent to
(—2 log likelihood/n).

Using the estimator proposed by Ibragimov (expression 2.10), expression (5.4)
reduces to

Minlsksq[— g’:_r S, log f1<2—::—§ , 0"”(F,,)>I,.<2—Z—§)J + 2KC In n/n.

If {X;]| —o0 < i < o0} is a linear process of infinite order
(5.8) X, = Yo aj(0)en, fe} ~iid(0, 6%), ao =1

where the coefficients are functions of § € 09, then expression (5.4) gives a
whole class of strongly consistent estimators (one for each p function) for the
true dimension of 8.

REMARK 4. In practice, C is unknown, but because of Lemma 3.2, there exists
a strongly consistent estimator, C, (i.e. substitute §@(F,) for 6(F) in expressions
(3.3), (3.5), and (5.6)), of C and, therefore, if we replace C by C, + 5, for some
fixed, known constant 6 > 0, Theorem 5.1 is still valid. To illustrate the
calculation of C, if (the simplest case) ¢ = 1, the p function is that of Hosoya
(expression (2.16)), and the process is given by expression (5.8), then

2w 9 2 2w 62

where
&£, 0) = | X5 a;j(0)e¥ |

Note that in this case C is scale invariant.

Within this family of dimension estimators, it may be possible to define
measures of optimality and to choose p functions which are optimal (possibly
more so than maximum likelihood) in estimating the dimension of the parameter.
For example, in a rather specialized instance, Taniguchi (1980) has shown that
order selection of Akaike’s information criterion gives asymptotic minimum mean
square error of prediction.’

6. Summary. An application of Theorem 4.1 gives probability one bounds
for the estimators of Whittle and Walker (expression (2.6)), Hosoya (expression
(2.12)), and Ibragimov (expression (2.10)). An application of Theorem 3.4 gives
conditions for asymptotic normality of Ibragimov’s estimator (expression (2.11)).
Conditions for almost sure convergence (Lemma 3.2) of the above estimators are
given which don’t require the parameter set to be compact or contained within a
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bounded set. In conclusion, probability one bounds, asymptotic distributions and
almost sure convergence have been established for a class of estimators defined
via integral minimization.
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