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A COMBINATORIC APPROACH TO THE KAPLAN-MEIER
ESTIMATOR

By DAviD MAURO
Trinity College

The paper considers the Kaplan-Meier estimator FKM from a combina-
toric viewpoint. Under the assumption that the estimated distribution F and
the censoring distribution G are continuous, the combinatoric results are used
to show that [ |8(z) | dFr ™(z) has expectation not larger than [ | 6(z) | dF(z)
for any sample size n. This result is then coupled with Chebychev’s inequality
to demonstrate the weak convergence of the former integral to the lattet if
the latter is finite, if F and G are strictly less than 1 on % and if 0 is
continuous.

1. Introduction. Suppose {X;, C;|i € _#} is a set of independent, real
valued random variables on some complete probability space (2, % P). Suppose
also that the C/’s and the X,’s have unknown cumulative distribution functions
G and F, respectively. If 6 is a known Borel measurable function on & such that
the expected value of 6(X;) (hereafter denoted E[8(X;)]) is finite, the statistician
often estimates this expectation by observing X; = x;, 1 =i < n, then constructing
the unbiased estimate

(1.1) Yry 0(x)/n = Ty 0(x) dF(x)

where F', is the usual empirical cumulative distribution function of X;. However,

under various circumstances (such as those described by Chen, Hollander and

Langberg, 1982), the statistician may be constrained to observe only the right

censored sample 1
= i _ 1 X< C,‘

Mi = mln(Xi, Ci), 51' = {0 Xi > Clj' ’

Since some X;’s may be censored (i.e. have associated indicator 0), alternative
estimators of F and E[6(X;)] must be employed.

One such estimator of F was introduced in 1958 by Kaplan and Meier. If M;,
is defined to be the ith order statistic of the n minima and if 4 is the indicator
associated with M(;), then the Kaplan-Meier estimator of F at x is given by

fl = limy=e ((n = D)/(n — i + 1))’ if x < My
FfM(x) =11 if x> M(n), (S(n) =1
1undeﬁned if x> Mgy, 6n=0.

The estimator FXM is not well defined if there are censored observations tied
with uncensored observations. While the convention under this condition is to
treat the censored observations as infinitesimally larger than the uncensored

l1<i<n.
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ones with which they are tied, this issue will be avoided by assuming that F and
G are continuous.

The estimator FXM is everywhere (P) a right continuous, increasing step
function having nonzero jumps at x if and only if x is an uncensored observation.
The magnitude of the jump at x, denoted dFX™(x) and referred to as the Kaplan-
Meier weight of x, is 1/n if x equals M(;, and x is uncensored. Otherwise, if x is
an uncensored observation, the Kaplan-Meier weight of x can be seen to depend
only upon the order of the censored and uncensored minima that are smaller
than x. It is also readily verifiable that (i) any two consecutive uncensored
minima have the same Kaplan-Meier weight, and (ii) the sum of the n Kaplan-
Meier weights is one or less than one as per whether 6, is one or zero.

These facts, in turn, spawn other properties as well as the useful recursion
formula
1 — Yt dF¥M(M
dF¥M(M,;) = Zn'“l_ it 1( @)

if 6(j)=1 and j=2.

Large sample properties of the Kaplan-Meier estimator have come under
study by various authors. Peterson (1977) has established its strong consistency.
Breslow and Crowley (1974) as well as Meier (1975) have established the weak
convergence of the estimator regarded as a stochastic process. Miller (1976) has
considered this estimator in the context of censored regression.

In the case of F and G having support in the right tail of &, properties of
J 6(2) dF™(2) have remained elusive. Susarla and Van Ryzin (1980) have shown
the strong consistency of the mean estimator [§» 1 — F(z) dz, where F is their
Bayes generalization of FXM and (A,) is a sequence of constants requiring
calculation. Gill (1983) has studied whole line properties of the Kaplan-Meier
estimator from a stochastic calculus stance, applying the results to ¢ functions
and positive random variable mean estimation.

In Section 4 of this paper, it is shown that the censored data analogue of (1.1)

(1.2) L1 0(M) dFM(M) <—=- f 6(z) dF §M(z)>

converges (P) to the correct value if support for F and G can be found in the
right tail of # and if 0 is continuous. Sections 2 and 3 (which require neither
the support nor the continuity constraints) respectively establish the main
combinatoric result and the bound on the expectation of (1.2).

2. Combinatoric aspects of the Kaplan—Meier weight function.
Begin with the establishment of some notation and definitions.

DEFINITION 2.1. The modified Kaplan-Meier weight of a real number x is

X (1 -zt dFIMM) if x =M and b =0
dFEM(x) = 10 if x> Mgy
dF¥M(x) elsewhere.

Besides being defined at every real x, this weight function differs from dFX™ in
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that positive mass is assignd to M(,) whether or not that observation is censored.
In particular, dF¥M(M,) can be found by calculating dF¥™(M,) under the
pretense that M(,, is uncensored. This, in turn, implies that the sum of the n
modified Kaplan-Meier weights is 1. (Equivalently, dFX™ can be considered the
weight function of a modified Kaplan-Meier estimator FX™ whose value if 6., =
0 and x = M, is defined to be 1.)

DEFINITION 2.2. For 1 < i < n, let Y; denote X; and Y., denote C;. Let
{67]1 = j = (2n)!} be the set of permutations of the first 2n positive integers.
Then

O'j(Q) = {w (S QI Y,i(l) < Y,,.i(g) < ... < Y,,i(gn)}.

Since the ordering of the 2n Y,s is fixed on each ¢/(Q), dFEM(M,) and
dFEM(M,) are constant on ¢/(2). For the sake of notational convenience, these
will be denoted W;(¢’) and W;(o”), respectively.

Now consider the (2n), n-tuples whose distinct entries are elements of
{1, 2, - - -, 2n}. Arbitrarily label them 1 through (2n),.

DEFINITION 2.3. If the yth such n-tuple is (¢, t3, ts, -+, ts), then S, =
{o/]a’(t)) =1, 6/(tz) =2, - - -, 0'(t,) = n} and S,(Q) = {¢’(Q) | o’ € S,}.

Simply put, S,(2) is a set of subsets ¢/(Q) of Q such that the positions of the
C/s vary from subset to subset, while the positions of the X;’s remain fixed.

EXAMPLE. Suppose n = 3. Suppose the yth such 3-tuple is (1, 6, 4). Then S,
= {o/| d/(1) = 1, ¢/(6) = 2, ¢/(4) = 3} = {(1, 4, 5, 3, 6, 2), (1, 5, 4, 3, 6, 2),
(]-y 4’ 6: 3y 5y 2)’ (1’ 6y 4, 3: 5’ 2)y (1’ 5: 6’ 3’ 4’ 2)’ (1’ 6’ 5’ 37 4’ 2)}- Further,
Sy(Q) = {{wl Y <Y, <Ys<VYs<Ys< Yz}, {wl Y i<Y:; <Y, <Y3<Ys< Yz},
{w|Y1< Y.< Ys<Ys< Ys < Yz}, {w|Y1< Ys < Y.< Ys< Y5 < Yg},
W] Y1<Y;<Ye<Ys<Yy<Yol{w|YVi<Ye<Ys<VY3<Y,<Yo}}

Clearly, | Sy| = n! and {S, |1 < y < (2n),} partitions {¢’ |1 < j = (2n)!}.

Sufficient notation now exists that the main combinatoric result can be easily
stated. The proof (by induction) will follow a small body of lemmas and propo-
sitions dealing with the two weight formulae.

THEpRE_M 2.1. For each y, 1 <= y = (2n),, and each i, 1 < i < n,
Yoies,Wi(a’) = (n — 1)!.

This theorem states that the sum of the modified Kaplan-Meier weights
(associated with observation M;) taken over the orderings of an arbitrary set S,
in the partition of {¢/|1 < j = (2n)!} is (n — 1)!. That this sum is invariant to
S, should, in fact, be expected if the random variable 3%, 0(X;) dFXM(M,) is to
have expectation equal to E[#(X;)] in our distribution-free context (the proofs of
Lemma 3.2 and Theorem 3.1 will bear this out.) In fact, Lemma 3.2 and its
application in the proof of Theorem 3.1 will hold true under any censored data
weight function that satisfies Theorem 2.1.
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Theorem 2.1 can be illustrated via the last example: select i, 1 < i < 3, calculate
the modified Kaplan-Meier weight of M; for each element of S,(Q) and note that
the sum of the six weights is (3 — 1)! = 2.

LEMMA 2.1. Select y such that on any o/(Q) in S,(Q), X, is the pth smallest
and X, is the (p + 1)th smallest among the Yy’s (that is, ¢’(p) = u and ¢’(p + 1)
= v). Then T.ics, Wu(o?) = Soics, Wolo?).

PRrOOF. Partition S, into four sets:

s'={s’€8S,|M, =X, and M, = X, on ¢/(Q)}
s’={¢s'€S,|M,= X, and M, = C, on ¢/(Q)}
s*={o' € 8,|M,=C,and M, = X, on ¢/(Q)}
s*={c’'€S,|M,=C,and M, = C, on ¢/(Q)}.

For any permutation ¢’ in s?, M, and M, are consecutive and uncensored in
the ordering of the n minima on ¢’(Q2). Hence, W,(¢’) = W,(d’), giving

PROPOSITION 2.1.  Y,ies Wo(o) = Y icq W,(a).

Now let g be the bijection from s? to s® such that on g(¢/)(Q), the ordering of
the Y,’s is identical to the ordering of the Y,’s on ¢/(Q) but for a reversal of C,
and C,. Then the configuration of censored and uncensored minima which
precede the uncensored M, on ¢/(Q) is identical to the configuration of censored
and uncensored minima which precede the uncensored M, on g(¢’)(2). Thus

W.(o)) = W,(g(e)), giving
(2-1) EajEsz Wu(aj) = Eaje.sz Wu(g(al)) = Eajess Wu(aj)o
Moreover, M, is neither C, nor C, on o’(Q) for ¢’/ in s2 U s°. Hence Y ic W, (o’
= Yiee W,(a’) = 0, which together with (2.1) gives
PROPOSITION 2.2. Siicsust Wa(o?) = Soicstuss Wo(a?).

Finally, consider the following partition of s*:
st={oc' €Es*|Mu=C, on ¢(Q)}
si={c/€s*|Mn=C, on ¢/(Q)}, s3=s*—st—ss
Then
(2.2) Soicsug Wulo?) = Joiedusg Wo(a?) = 0.

Now extend the domain of g to include si. It is easily seen that g is bijective
from s? to s3. Further, if ¢/ is in s1, the configuration of censored and uncensored
minima which precede M,) = C, on ¢/(Q) is identical to the configuration of said
minima which precede M, = C, on g(¢’)(Q). Thus

Zafes{ Wu(aj) = ZajEsf Wv(g(aj)) = ZGJ.ESQ Wv(aj)~
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By (2.2), then, we have
PROPOSITION 2.3. Yicst W.(0’) = Yoicst Wo(a?).
The lemma closes with the combining of Propositions 2.1, 2.2 and 2.3.

PROOF OF THEOREM 2.1. Suppose that y is arbitrarily fixed, 1 <y < (2n),.
With no loss of generality, suppose X; < X; < --- < X,, on ¢/(Q) in S,(Q), with
X; being the p;th smallest score among the Y,’s. Then it suffices to prove the
initializing claim.

(i) Sres, Wile’) = (n = 1)!
and the conclusion to the inductive hypothesis

(i) if Yoies, Wie)=(n—1)!forl<i<m—1<n—1,then Yocs, Won(a?)

=(n-—1)!

PROOF OF (i). By hypothesis, p; — 1 censoring variables precede X; in the
ordering of the Y)’s on ¢’(Q) in S,(22).

Case 1. If there exists ¢’ in S, such that M= C; on ¢/(Q), then X, Xo,
..., X, must be the (n + 1)th through (2n)th smallest of the Y.’s, respectively.
Hence the X/’s are consecutive on ¢’(2) and thus on all elements of S,(Q). By
Lemma 2.1, then,

EajESy Wl(dj) = ZajESy Wz(dj) = = ZGjESy Wa(a’).
Since
(2.3) e, Wie) =1 and |S,| =n!

each of the above summations must be (n — 1)!.

Case 2. Suppose there exists no ¢’ in S, such that M, = C; on ¢/(2). Then,
for each ¢’ in S,, Wy (c¢’) = W, (o”).

Since p; — 1 censoring variables C; precede X; on any ¢/(2) in S,(Q), then on
exactly (p, — 1)[(n — 1)!] such sets o/(Q), C; precedes X;. The Kaplan-Meier
weight of M, = C,; on these sets is thus 0.

On the remaining n! — (p; — 1)[(n — 1)!] elements of S,(Q), M; = X, is the
p:th smallest minimum, preceded by p; — 1 censored minima. The Kaplan-Meier
weight of M, is therefore 1/(n — p; + 1). Hence

Yoies, Wi(a) = [n! = (p1 — Dl(n = DN][1/(n = p1 + D] = (n — 1)!
PROOF OF (ii).

Case 1. Suppose m = n. Since Y7 Yoies, Wi(d’) + Yoies, W..(c’) = n!, the
inductive hypothesis gives the result.

Case 2. Let m < n. Let y’ be such that on any ¢/(Q) in S,’ (), X; is the pith
smallest score of the Y,’s for 1 <i < m and X,,, Xmn+1, - -+ , X, are consecutive.
Define a bijection h from S, to S, such that, if the C/’s are ordered in a given
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way on a’(Q) in S,(Q), then those variables are ordered in that same way on
h(a’)(2). The order of the Y}’s less than or equal to X,, on ¢/(?) in S,(Q) is thus
identical to the ordering of the Y}’s less than or equal to X,, on h(s/)(Q), giving

(2.4) Yoies, Wi(o)) = Yoies, Wie’) for 1<i=<m.
By the inductive hypothesis, therefore,
(2.5) Yoies, Wie)=(m—-1) for 1<i=m-1.
However, by Lemma 2.1,
Yoies, Wm(o)) = Taies, Wmir(0?) = -+ = Toics, Wala?).

The ab~ove summations must thus be (n — 1)! by (2.3) and (2.5). Hence
Yoes, Wanla’) = (n — 1)! by (2.4).

3. An application. Theorem 2.1 is here used in proving
THEOREM 3.1. E[|0(X;)|] = E[X~, | 0(M;) | dFEM(M;)].

LEMMA 3.1. If ¢? and ¢" are in S,, then [ |0(X;)|I(c%(Q)) dP equals
J16(X)11(s"(Q)) dP. .

The proof of this lemma is a matter of the independence of the Y,’s, the
respective common distribution functions of the X;’s and the C;s, and Fubini’s
theorem. Details are omitted.

LEMMA 3.2. Let u and v be arbitrarily selected integers, 1 < u, v < n. Then
E[|6(X.) | dFi™M(M,)] = E[|0(X.) | dFF™M(M,)].

PROOF.
E[16(X.) | dF¥M(M,)] = f |6(X,) | dE¥M(M,) dP

= Y& Yoies, f 16(X.) | I(s/(Q)) dFEM(M,) dP
= T Yoies, Wu(o?) f 16(X.) | 1(c’(Q)) dP
(since dF¥™(M,) is constant on /()

= Y& f 10(X.) | 1(c7(2)) dP Yoies, Wu(a")]

(by Lemma 3.1)

[ .
=3z f 10(X.) [ 1(s%(@)) dP Soes, Wuw)]
(by Theorem 2.1)
= f |6(X.) | dFE™M(M,) dP = E[]0(X.) | dFEM(M,)].
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Before proceeding with the proof of Theorem 3.1, the reader is urged to keep
in mind that | 6(M;) | dFEM(M;) and | 0(X;) | dF¥M(M;) are two different things.
The former is always observable. The latter is not observable if and only if
M; = M, and M; is censored.

PRbOF OF THEOREM 3.1. Select t,1 <t =< n. Then

E[10(X,)|] = E[|0(X,) | %1 dFXM(M;)] = 221 E[]0(X.) | dFEM(M,))
= YL, E[16(X,) | dF¥™(M,)] (by Lemma 3.2)
= nE[|6(X,) | dI:’fM(Mt)},
giving (1/n)E[| 0(X;) |] = E[| 0(X.) | dF¥™(M,)]. By the arbitrariness of ¢, then,
(1/n) &1 E[160(X:) |] = S E[|0(X}) | dFEM(M))).

However, the X;’s are identically distributed. The left side of the above equality
is thus E[|0(X;) | ], giving

3.1) E[16(X1) ] = &1 E[16(X;) | dFFM(M)).
Moreover, 0 < dFEM(M;) < dFEM(M;) everywhere (P). This implies
E[10(Xy)|] = &1 E[]6(X:) | dF-M(M;))
The latter expectation is, though, Y%, E[|0(M;) | dF¥M(M;)] since X; = M; if

and only if dFEM(M;) does not equal zero.

4. THEOREM 4.1. Suppose T is a continuous function on % such that
E(I'(X;)) < «. Suppose that the suprema of points of support of F and G are .
Then

L1 D(M;) dFEM(M;) —p E(T'(X1)).

PrOOF. Select ¢, § > 0. Select real b such that E(| T'(X))I(b< X; < ) |) <
£6/6. Since b < o and T is continuous, it is fairly easy to show
b

(4.1) Tk T(M)I(—o < M; < b) dFM(M;) —,. f I'(z) dF(2).

Hence it so converges in probability, giving
P(| £ T(M)I(— < M; < b) dFEM(M,)

(4.2) b
- I T'(z) dF(z)| < ¢/3) > 1 — §/2

for all n greater than some positive integer Ny. Further, we have
e0/6 > E(|T(X)I(b< X, < x)])
= E(X% | T(M)I(b < M; < ») | dFEM(M;)) (by Theorem 3.1)
=z E(| Tk T(M)I(b < M; < ) dFM(M)) |).
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This is true for any n. By Chebychev, then, for any n,
P(| X, T(M)I(b < M; < ©) dFEM(M;) | < ¢/3)
(4.3) 21— E(| Xk T(M)I(b < M; < ®) dFFM(M;) |)/(¢/3)
>1-4/2.

Thus, by (4.2) and (4.3), for n > N,,
b

P(| 3 T(M) dFEM(M) — f I'(z) dF(z)| <2¢/3) > 1 — .

But ¢/3 > 8¢/6 > E(|[T(X))Ib < X, < ®)|) = |[ECX)D)Ib< X; < ®))| =
| f5 T'(2) dF(z)|. So, for n > Ny,

o

P(| Zi-: T(M:) dFM(M) — f I'(z) dF(z)| <e)>1—4.

5. Final comments. It is felt that the results of this paper could be
extended to the case of noncontinuous F and/or G. The combinatoric arguments
would be virtually identical in spirit to those given, but would necessarily include
the messy bookkeeping chore of accounting for ties.

Also, it is noted that (i) Theorem 4.1 holds for any function I" (continuous or
not) such that (4.1) holds for any finite b, and (ii) Lemma 3.1, Lemma 3.2 and
result (3.1) hold in the absence of absolute value signs.
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