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SMOOTH OPTIMUM KERNEL ESTIMATORS OF DENSITIES,
REGRESSION CURVES AND MODES!

By HANS-GEORG MULLER
Universitat Heidelberg

Several criteria concerning the choice of kernels for the nonparametric
estimation of functions and their derivatives are discussed. A specific opti-
mality criterion is described which applies to kernels of compact support and
of different orders of smoothness. The solutions of the corresponding varia-
tional problems are explicitly given. Many kernels discussed previously are
obtained as special cases.

1. Introduction: criteria for the choice of kernels. Kernel estimates
for probability density functions introduced by Rosenblatt (1956) and Parzen
(1962) as well as for regression curves in the fixed design case introduced by
Priestley and Chao (1972) are in wide use by now. This is due mainly to their
attractive properties and computational simplicity. The estimation of derivatives
of these functions also has important applications (compare e.g. Johns and van
Ryzin, 1972, R. S. Singh, 1977).

Let » = 0, k > v + 1 be given, assume that », k are both even or both odd, and
define

M,,,k = {fe L2 ff(x)xjdx — _{?_l)yy! 0 S]< k, j;::: } }.

Let X, --- X, be i.i.d. observations with Lebesgue density f. Assume f € £*(I),
where I = [0, 1], [0, ) or (—o, ®). In order to estimate /) we consider

1 n x—X;
(1.1) fa(x): = e X P <b—n>
where b, is a sequence of bandwidths and the kernel ¢ is a bounded function,
Y EM,,. If v =0, this is the Rosenblatt-Parzen estimate.
Let

Yi=g(ti)+eia i=1"'n’

be noisy measurements taken from a function g € C*([0, 1]) at fixed points 0 <
h<ts<..-<t,<1, wheree,i=1,2 ... are i.i.d. random variables, E¢; = 0
(regression problem with a fixed design). An extension of the kernel estimate
defined in Gasser and Miiller (1979) and Cheng and Lin (1981) to the estimation

Received February 1983; revised November 1983.

! Research supported in part by Deutsche Forschungsgemeinschaft.

AMS 1980 subject classification. Primary 62G05; secondary 42C10.

Key words and phrases. Kernel density estimation, kernel regression estimation, estimation of
derivatives, choice of kernels.

766

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to

s

&4

The Annals of Statistics. MIKOIS ®

www.jstor.org
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of g™ is
(1.2) &n(t) =X Wi, (1) Y, where
1 fs‘ t—x
W, (t) = o % < b, ) dx
andsg=0,s,=1,t; £8; < tiy1,i=1 ... n. We assume

maX15i5n| S — si—ll = O(n_l) and ¥ € M,,,k.
For both estimates we require
(1.3) 0<b,—0, nb,—>® as n— o,

Kernels with compact support are advantageous from two points of view: there
are considerable savings in computer time, and if the density to be estimated has
compact support (which is always assumed for the regression function), estima-
tion using a kernel with noncompact support will always be disturbed by boundary
effects (Hominal and Deheuvels, 1979, Gasser and Muller, 1979). Another im-
portant characterization of a kernel is its smoothness, since it will be inherited
by the estimated curve. It is necessary to use a u times differentiable kernel, if
the estimate f,,, resp. g.,, is to be differentiated u times, u = 0. This is required
e.g. for Silverman’s testgraph method (v = 0, u = 2), devised to choose a good
smoothing parameter b, (Silverman, 1978). The number of vanishing moments
of a kernel also has an effect on the performance of the estimate. This was
pointed out by Bartlett (1963) and demonstrated in simulation studies by Schu-
cany and Sommers (1977) and Gasser et al. (1982).

Therefore, we construct a class of kernels with compact support for the
estimation of derivatives » = 0, exhibiting various degrees of smoothness u = 0
(implying that a generalized derivative of the corresponding order exists) and
various numbers (k — 2) of vanishing moments. The kernels to be constructed
are optimal in the sense that they minimize the variance of the uth derivative of
the estimate. In the following, kernels are assumed to have support [—1, 1] if not
stated otherwise.

It is not difficult to show for the mean square error (MSE), resp. integrated
MSE (IMSE)

MSE/IMSE(f,,,) = ci[nbZ*']™! f $*(x) dx

)
(1.4) + b2 < f @ (x)x* dx)

+ 0([nb;2,"+1]_1 + b?,(k_"))

with constants ¢, ¢, depending neither on the bandwidth nor on the kernel, but
on the function to be estimated (compare Deheuvels, 1977, and Miller and
Gasser, 1979). The same holds true for g,, (different constants), if we assume
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¢ € Lip([-1,1]),t;=1i/n,i=1 --. n and E¢? < . If the support of the function
to be estimated is limited, e.g. is [0, 1], there are boundary effects in the “boundary
region” R,:= [0, b,) U (1 — b,,, 1] (compare Hominal and Deheuvels, 1979, Gasser
and Miiller, 1979, Rice, 1983). In this case, a necessary requirement that (1.4) is
valid for IMSE integrated over the whole interval [0, 1] is that suitably modified
kernels are used for estimation in ¢t € R,,. For the unmodified estimate, as defined
by (1.1) or (1.2), (1.4) is valid for IMSE integrated over compact sets contained
in the open interval (0, 1).

From (1.4) one can compute the optimal bandwidth by determining the
minimum of the expression w.r.t. b,. The dependence of MSE/IMSE on the
kernel is then (up to some power) given by

f @ (x)x* dx

k=
Ty(¥) = < f ¥%(x) dx)

In general, this expression can be made arbitrarily small (Deheuvels, 1977). In
the case v = 0, k = 2, one can require the additional side condition ¥ = 0, which
was adopted by Epanechnikov (1969) to derive an optimal kernel. For k& < 5,
Gasser et al. (1982) derived some further kernels minimizing T under the side
condition of a restricted number of sign changes of the kernel function.

A related problem was discussed by Eddy (1980) in the context of finding
optimal kernels for the estimation of the mode by using the mode of the estimated

density:
k
T2(<P)=< f PV (y) dx) f @(x)x" dx

P E My, P(—1) =¥(1) =0.
It may be shown that again the corresponding minimization problem has no
solution. Instead, Eddy solves the problem of minimizing the variance w.r.t. the
kernel:

2v+1

3
under

f ¢ (x) dx = min under ? € My, ¢(—1) = ¢(1) = 0.

He presents the solution to this problem for k = 2, 4 as Theorems 3.1, 3.2.
Similar ideas of minimizing the variance are discussed by Ramlau-Hansen
(1983). Also, Gasser et al. (1982) consider the problem

f‘PQ(x) dx=min under YEM,,.

The resulting kernels have also been discussed by Deheuvels (1977). These
kernels minimize the variance of the estimate f, , resp. g, , but are discontinuous
at —1, 1 (if » = 0, k = 2, one obtains the rectangular kernel). Using these kernels,
estimated curves are not differentiable and indeed exhibit nasty jumps in practical
applications especially if derivatives are estimated and the number of observa-
tions is small.
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Assume f resp. g € £**#(1) for some u = 0 and let ¥ satisfy
(15) Y€EM,,N £4-1,1)), ¢V(-1)=¢Y(1)=0, j=0 .- p— 1

Then ¢ is (u — 1) times differentiable on IR and ¥“~? is absolutely continuous.
Therefore

1
nbi

PRER A <x ; Xi) resp.

n

1 o, " t—x
guit) = pris 21 Y: »[,_ <p(#)< b )dx.

1 n

(x) =

In the same manner as (1.4) we obtain by applying Lemma 2.1 below

E(f #(x) — f™(x))?
(1.6) = ¢{[nba*W*1] ! f P (x) dx + csb2* f PW(x)x* dx

+ 0([nbﬁ“’+“)“]"1 + b'zl(k—u))

(the same result holds for g%) or MSE integrated over appropriate intervals; see

the discussion following (1.4)).
The criterion which we will adopt for the choice of kernels is the minimization

of the variance term of (1.6) leading to the problem

(1.7) f ¢®W(x) dx = min under (1.5).

It is clear that the solution of this problem yields kernels with compact support
for any order of derivative » = 0 and different numbers of vanishing moments (%
— 2) and degrees of smoothness u = 0. Using the optimal bandwidth for f,,
according to (1.4) will make the variance in (1.6) dominate. The problem of
minimizing the variance of the first derivative of a density estimate is of interest
in empirical Bayes procedures (Johns and van Ryzin, 1972). Eddy’s problem is a
special case of (1.7) where v =0, u = 1.

In the next section, an explicit solution of (1.7) will be derived. These kernels
are polynomials of degree (k¢ + 2u — 2) and are therefore simple to use and
implement.

2. A hierarchy of smooth optimal kernels. The solution of (1.7) requires
several steps.

LEMMA 2.1. Let —o<a<b< xand u = 0 be given.
(a). For any function ¥
(2.1) $YEM,,N £*a, b]) and
(2.2) PVa) =PYb)=0, j=0---p—1
imply that ¢ € M+, k+,.
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(b). For any function ¢ € M+, r+, N £ ([a, b]) there is exactly one function
¥ € £*([a, b]) which satisfies ?*) =  and (2.2). Then ¥ also satisfies (2.1).

PROOF. (a). Integration by parts;
(b). Define iterated integrals of ¢ by Yo:= ¢, Vi(x) == [iy;a(t) dt, 1 < j =< p,
and define ¢ := y,,. Obviously ¢ =y, ¥Y)(a) = 0,

1 b
Ga—j=! f (b — x)*7™Y(x) dx

=0,j=0..-p— 1.
Let @ satisfy (2.2) and #* = . Then for all j = 0

b . N
N A J! f v
(P J = Jtu
J; (x)x’ dx G+l Y(x)x/** dx

and therefore ¢ is unique.

PAb) = -5 (b) =

LEMMA 2.2. The unique solution of the problem [ y*(x) dx = min under
VEM, ki N £ ([a, b)) is a polynomial of degree (k + u — 1). If [a, b] = [-1, 1],
the degree is (k + u — 2) and the coefficients of the polynomial are given by

(=) 2k + v+ 2 W)k + p + DR — v)(k+p — i)
oo k—v\[k+v+2u k+p.—i<k+u+i>
] 2(k+u)+1 1 1 ! 1
HE+ v +p+1)2 < 5 )< 5 )( . ) . !

k+ u+ ieven

(23) v =

0 k+ u + i odd.

PROOF. The side conditions determine a polynomial  of degree (k + u — 1)
uniquely. This polynomial is the unique solution, since for any other function
lp E MV+Myk+M n %([a, b]):

f Y(x) dx = f P(x) dx + 2 f Y)W = () dx + f (¥ = ¥)(x) dx

>f$2(x) dx.

If [a, b] = [—1, 1], the polynomial is of degree (k + u — 2), since any solution of
the problem is symmetric if (k + u) is even, and antisymmetric if (k + u) is odd.
This may be seen by symmetrization or antisymmetrization of a possible solution
and application of Cauchy-Schwarz inequality. The coefficients of this polyno-
mial under the side condition ¢y € M, , N £ ([—1, 1]) are given in Gasser et al.
(1982), Theorem 1, based on a Legendre expansion. Replacing » by (v + u) and k
by (k + u) yields (2.3).

LEMMA 2.3. Let v, k, u, j, m be nonnegative integers satisfyingv + 2 <k, v, k
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both even or both odd, and (k +j — 1)/2 = m.
a. Let k + j be even. For odd X satisfying 1 = A\ <k + j — 1 we have

1 Q2i + k +j)! _
20+ A ((2i + k+)/2)(m — )12i)!

Y2y (-1)° 0.

b. Let k + j be odd. For even X satisfying 2 = A\ < k + j — 1 we have

1 Qi+ 1+k+j)! _
2A+1+A(2i+1+E+)/Dm -2+ 1!

S (—1)F 0.

Proor. a. ForO=p<(k+j—2)/2<m:
iP

2i+1)2i+3)--- Q2i+tk+j-1)

Yo (1)

Qi+ k +j)!
@i+ k+7)/2)(m — i)1(20)!

2(k+j)/2

S (1P (7)) =0

m!
and therefore
T2 (1)

) (2i+1)(20+3) -+ - (20+ A —=2)(2i+ A+ 2)(2i+ X +4) - - (2i+laz+j—1)(2i+lfe+j)!=

(204+1)(2i+3) - - i+ k+j—1)((2i+k+j)/2)! (m—1i)!(2i)! 0

which implies the result. Proof of b. is analogous.

THEOREM 2.4. The unique solution of (1.7) is a polynomial of degree
(k + 2u — 2), restricted to [—1, 1]. The coefficients of this polynomial P, ,, are
given by

_1)r2 WE+ ) (b= —i
N 2krwy+1| BTV vrapy, ”—’>v<_f>|

0 k + i odd

O=si<k+2u-2.

Proor. By Lemma 2.1, 2.2, the solution is a unique polynomial of degree (k
+ 2u — 2). If u = 0, the coefficients are given in Lemma 2.2. If 4 > 0, by Lemma
2.1, 2.2, it is sufficient to show that the coefficients (2.4) of P, , satisfy the
requirements

(a) P:/:lk),y. = Lytp,k+p,0
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and
(b) PP, (-1)=PY,. (1) =0, 0<j<p
(a): To he seen by some simple algebra. (b): Let y{’’ be the coefficient of x' of
the polynomial Pf’ ,:’ w»J =0.As Pf,f,:m is always symmetric or antisymmetric, it is
enough to show that 352+ 27 49 =0, 0=<j<up.
If (k +j) is even ((j + v), (k — v) are then even, too), it is equivalent to show
(k+2u-2-j)/2 (=D*(k + 20 + j)!1(k + 2p — 2i — ) -0
= k+2y—2i—j)'<k+2i+j)'

(2i)!(2i+j+u+1)< 2 2

Define m := (k + 2u — 2 — j)/2. As 0 < j < yu, the assumptions of Lemma 2.3 a.
are satisfied. The case that (k + j) is odd is treated in the same way using Lemma

2.3b.
Polynomial kernel functions discussed previously are special cases of (2.4) and

TABLE 1
Smooth optimum kernels (u = 2, 3) for important values of parameters v and k.
v k M ' Kernel on [~1, 1]
15
0 2 2 —(1-2x2+x*
16(1 x% + x*)
35
0 2 3 = (1- 322+ 3x4 — x°
32(1 x x* — x°%
. 105
2 — 2 4 __ 6
0 4 64(1 5x° + Tx* — 3x°)
315 2 4 6 8
0 4 3 gl—2‘(3—20x + 42x* — 36x° + 11x°)
0 6 2 ﬁ (15 — 140x2 + 378x* — 396x° + 143x8)
2048
3465
0 6 3 —— (3 — 35x% + 126x* — S+ 143%% — 10
1096 ( 35x 6x 198x° + x® — 39x%)
105
2 Putuiedly S 3 _ 45
1 3 16 (—x + 2x° — &%
31
1 3 3 315 (—x + 3x® — 3x5 + &)
32
1 5 2 % (=5x + 21%% — 274° + 11%7)
: 465
1 5 3 35? (—5x + 28x% — 54x° + 44x" — 13x°)
31
2 4 2 -555‘ (=1 + 9x% — 15x* + 7x%)
34
2 4 3 ﬁ (=1 + 12x% — 30x* + 28x° — 94%)
256
2 6 2 3—541—62§ (—5 + 84x% — 270x* + 308x® — 117x8)
: 045
2 6 3 45— (—1 + 21x% — 90x* + 154x° — 117x® + 33x1)

1024
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therefore share the same optimality property. These include:
Rectangular kernel (v =0, k = 2, u = 0)
Epanechnikov kernel (v =0, k=2, u = 1)
Deheuvels: Legendre kernel of order j(v =0, k = 2j + 2, u = 0)
Eddy: » = 0, any &, u = 1 (explicit solutions: k = 2, 4)
Ramlau-Hansen: v = 0, any k&, any u (explicit solutions: k& = 2, 4)
Gasser et al.: any v, any k, u = 0, 1 (explicit solutions).

Table 1 (based on (2.4)) contains some smooth optimum kernels (u = 2, 3).

Kernels for v = 0, k = 2, 4 of this table have also been explicitly computed by
Ramlau-Hansen. Lemmata 2.1, 2.2 show that (1.7) has a unique solution also in
case that the kernels are assumed to have asymmetric support. This allows the
construction of smooth modified kernels needed for estitnation within the bound-
ary region R, (see discussion following (1.4)). These kernels are polynomials of
degree (k + 2u — 1) and constitute a unique modification of kernels (2.4). In case
that the support of the function is e.g. [0, 1], using these kernels within R, will
make (1.4) and (1.6) hold for MSE integrated over the whole interval of support
[0, 1]. '

Acknowledgement. I wish to thank the referees for their comments which
led to a considerable improvement of the presentation.
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