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OPTIMAL SIMULTANEOUS CONFIDENCE BOUNDS

By DANIEL Q. NAIMAN

The Johns Hopkins University

The notion of a “simultaneous confidence bound” is redefined by requir-
ing a bound on the expected coverage measure (ECM) instead of the coverage
probability. This is analogous to a criterion introduced by Spjgtvoll for
defining simultaneous tests of hypotheses. Bounds which minimize certain
width functionals, subject to a bound on the ECM, are characterized. For
bounds on a multilinear regression function over an arbitrary subset of
Euclidean space, the bounds which minimize weighted average width, among
all bounds with prescribed ECM, are expressed in closed form. As a special
case, we give a weight function relative to which Scheffé-type bounds are
optimal.

1. Introduction. Consider the multilinear regression model in which one
observes

(1.1) Y=Ab+e,

where A is a known n X k matrix, b is an unknown k-vector, and e ~ N, (0, ’l,),
with ¢ unknown. Assume that constraints on the predictor variables have been
specified and that one is interested in making inferences about the regression
function m(x) = x’b, for x restricted to a given subset X of R~

A typical approach is to construct simultaneous confidence bounds for the
regression function with coverage probability at least 1 — «, for some prescribed
constant «. Bounds are usually taken to be of the form

(1.2) J(x) = (x'b — p(x)S, x’bis + p(x)S), all x € X,

where by, is the least squares estimator of b, S? is the error sum of squares, SS.,
and p is a nonnegative function on X (which determines the shape of the bounds).
The coverage probability (CP) is defined to be the probability that the intervals
J(x) cover m(x) simultaneously, i.e.

CP = P(m(x) € J(x), all x € X).

In some situations, it may be appropriate to use a different notion of simul-
taneous confidence bound, where the coverage probability requirement is replaced
by a lower bound on the expected u-measure of the set where coverage takes
place, i.e.

Eufx € X|m(x) € J(x)},

for a given finite measure u. We refer to this as the expected coverage measure
(ECM) of the bounds with respect to u.
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For example, suppose {x;, i = 1, ..., N}, is the sequence of future points
where the bounds (1.2) will be used to give confidence intervals for the regression
function. At the time the bounds are to be constructed the sequence of points
{x;} may not be known; however, it may be reasonable to assume that x; are i.i.d.
random vectors with distribution u on' X, independent of Y. To measure the
degree of coverage, we could use the fraction of intervals {J(x;),i=1, ---, N},
that cover the regression function, and to control the degree of coverage we can
require that the expected value of this fraction

E(N—l 2511 I{m(xi)EJ(xi)l)’

be bounded below by 1 — «, for some prescribed «. The expected fraction
converges to

EP{m(x;) € J(x:)| Y} = ECM

as N — o, by the strong law of large numbers. The last equality follows from
Fubini’s theorem (see Lemma 1). Thus, a lower bound on the ECM is equivalent
to a bound on the expected long run frequency of coverage.

If X is a finite set we can take u to be the counting measure, and in this case
the ECM is the expected number of points in X where coverage takes place. In
this situation, requiring a lower bound on the ECM is analogous to the criterion
introduced by Spjgtvoll (1972) for defining simultaneous tests of hypotheses. He
suggested that instead of using a bound on the probability of at least one test
giving a false rejection, it may be more appropriate to bound the expected number
of false rejections. He argued that a lower bound on the expected number of false
rejections leads to a lower bound on the probability of no false rejections, while
a lower bound on the latter gives no information about the former.

In the confidence bound setting, when X is finite, Spjgtvoll’s argument may
be used to justify bounding the expected coverage measure instead of the coverage
probability since we have the inequality

CP=ECM + 1 — | X|,

which follows from the Bonferroni inequality. The argument does not carry over
to the case when X is infinite since the above inequality becomes useless. In fact,
if X is a connected set, p is continuous, and u is a probability measure, then a
lower bound on the coverage probability does lead to a lower bound on the
expected coverage measure since Markov’s inequality gives

CP=Phuix€X|mkx) €EJ(x)} =1) =< E u{x € X|m(x) € J(x)} = ECM.

For given X and u the main results of this article characterize the bounds of
the form (1.2) which minimize a given width functional of the form

f U(x, p(x))u(dx),
X

among all bounds whose expected coverage measure at least 1 — a. As a special
case, when I(x, t) = ¢, the results characterize the bounds which minimize average
width, and lead to closed form expressions for the optimal shape functions p.
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The characterization of optimal bounds is obtained in a more general setting
than the one described above. The function m to be bounded can be arbitrary
and it is assumed that we have an estimator m(x) of m(x), and a scale estimate
S such that (m(x) — m(x))/S has a known distribution for each x in X. This
generality allows for the characterization of optimal bounds in nonparametric
regression.

The problem of finding bounds which are average width optimal among
bounds with prescribed coverage probability is more difficult. Bohrer (1973)
proved optimality of Scheffé-type bounds, i.e., bounds for which

p(X) — {XI(A 'A)_IX}1/2,
when
X ={x|x"(A’A)x < a?;

the coverage probability is sufficiently large, and u is Lebesgue measure restricted
to X. Bohrer’s result does not give optimality of Scheffé-type bounds when the
linear model has an intercept parameter, in which case the design matrix contains
a column of 1’s and X is a subset of {x € R*| x; = 1}, for some j. In fact Naiman
(1982, 1983) has shown that Scheffé-type bounds are suboptimal for simple linear
regression over a finite interval. In this situation optimal bounds have yet to be
found and it appears that such bounds must be found numerically. Hoel (1951)
and Naiman (1982) showed that for certain bounds one can construct measures
relative to which the bounds are average width optimal.

Section 2.1 gives the general framework in which the results are obtained.
Bounds that generalize the ones in (1.2), by allowing for asymmetry and random-
ization, are intreduced. In Section 2.2 we give complete class theorems for
symmetric nonrandomized bounds. Section 2.3 gives sufficient conditions for
global optimality of nonrandomized bounds and Section 2.4 gives necessary
conditions. Examples are given in Section 3 and we also discuss the optimality
of some standard simultaneous confidence bounds. The results in Section 2 which
have analogues for one-sided bounds are given in Section 4.

2. Main results.

2.1 General framework. We proceed to introduce the framework for the rest
of this paper. Let (2, &) be a measurable (observation) space and assume that
we observe Y taking values in % Let (X, %) be a measurable space endowed
with a probability measure u. We use “a.e.” to mean “almost everywhere with
respect to u”. Let m be an unknown real-valued measurable function on X and
assume that we have an estimator m(x, Y) of m(x) for each x in X, where m is
real-valued and product measurable on X X % Also assume that we have an
estimate of scale S(Y), where S is a nonnegative measurable function on 2/ We
use m(x) to denote m(x, Y) and S to denote S(Y).

Let {P;, i € I} be a family of probability distributions on (%, ¥) for the
observation Y, and assume that for each x in X, the distribution function F, of



OPTIMAL SIMULTANEOUS BOUNDS 705

U, = (m(x) — m(x))/S, under P; doesn’t depend on i. From this point on,
whenever we refer to P;(A) for A in ¥ this probability will not depend on i, so
we denote it by P(A). Similarly, the expected value of a random variable U under
P; will not depend on i, so we denote it by E(U).

EXAMPLE 1. Multilinear regression. For the multilinear regression model
(1.1) we can take 2 = R"and Y =Y. X can be any subset of R* and for x in X
define m(x) = x’b, m(x) = x’b,, and S = (SS.)"2. The set of probability
measures {P;, i € I} is indexed by the set of all ordered pairs (b, o) in R* X
(0, ). Let || x ||4 denote {x’(A’A) 'x}'/2, for x in X; then if

Ux = (m(x) — m(x))/S,

U,/| x |4 has a t-distribution with » = n — k degrees of freedom, for every x in
X and (b, o).

EXAMPLE 2. Nonparametric regression. This example is a generalization of
the previous one. Suppose that X is a subset of R¥, and for some unknown
function m on X, in a given class T, we observe Y; = m(x;) + ge;, fori =1, -- -,
n. Assume that we have an estimator m(x) and an estimator of S of ¢ such that
(m(x) — m(x))/S has a known distribution for each x in X. We can take %' =
R", Y =Y, and the family of probability distributions is indexed by T' X (0, )
X ¥ where ¥ denotes a class of distributions of the random vector e.

Now we define bounds for the function m. Let p; be real-valued, product-
measurable functions on X X % for i = 1, 2. To simplify notation, we use p;(x)
to denote p;(x, Y). We make the following assumptions.

(a) pi(x) < py(x) for every x in X.

(b) (pi(x), p2(x)) is independent of U,, under P;, for each x in X and i in I.
The pair (p;, p2) defines (randomized) bounds for the function m, which take
the form

(2.1) (m(x) + p1(x)S, m(x) + p2(x)S),

for x € X. For the remainder of this paper, we use (p;, p2) to refer to the bounds
defined in (2.1), for p; satisfying (a) and (b).

For any (pi, p2) and for any x in X, let C(p;, p2)(x) denote the event that
coverage occurs at ¥, i.e., that the interval (2.1) covers m(x). Define X(pi, p2) to
be the (random) subset of X where coverage takes place. Thus x is in X(p., p2)
if and only if C(p1, p2)(x) occurs.

The expected coverage measure (ECM) of a bound is defined as

(2.2) ECM(p1, p2) = Eu{X(p1, p2)}.

The following lemma, whch will be used in the sequel to characterize the
optimal bounds, gives an alternative expression for the ECM of a bound.
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LEMMA 1. For any bound (py, ps)

ECM(py, p2) = LP{C(pl,pz)(x)iu(dx)

= LE{Fx(pz(x)) = Fo(p1(x))}u(dx).

Proor. By Fubini’s theorem

ECM(ps, p2) = E{L Ilc<pl,p2)<x);l-t(dx)]

=LE[I¢c<p,,p2>(xn]u(dx)=L15{C(p1,p2)(x)}u(dx).

For any x in X, by the independence of (p;(x), p2(x)) and U, we have
P{C(p1, p2)(x)} = P{m(x) + p1(x)S = m(x) = m(x) + p2(x)S}
= P{p:(x) = U, = p;(x)}
= E{P(p:(x) = Us = p2(x) | (p1(x), p2(x)))}
= E{F.(p:(x)) — Fe(p1(x))}. D

The lemma gives us an interpretation of the expected coverage measure which
could prove useful. Let x be a random point in X distributed according to u. The
expected coverage measure of a bound is the probability that coverage occurs at
the point x.

2.2 Complete class theorems. Let M denote the space of all measurable
functions on X. A functional L on M is said to be order-preserving if for every f
andgin M, f < g a.e. implies L(f) < L(g). If L is an order-preserving functional
on M, and « is a fixed constant in (0, 1), our goal is to find a bound (p;, p2)
which satisfies ECM(py, p:) = 1 — «, and which minimizes L{E(p; — p1)}.

For any two bounds (p;, p;) and (g1, g2) and for arbitrary x in X, we say that
(p1, p2) dominates (g1, =) at x if

E{p:(x) — p1(x)} = E{gz(x) — q1(x)},
and v
P{C(p1, p2)(x)} = P{C(q1, g2)(x)}.
We say that (pi, p2) L-dominates (g1, gz) if
L{E(p; — p1)} = L{E(q2 — q1)}
and
ECM(p,, p:) = ECM(q, ¢2).

The next lemma follows from Lemma 1, and is useful in that it allows us to
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eliminate certain bounds from consideration on the basis of their pointwise
behavior (in x).

LEMMA 2. If (p1, p2) and (q1, q2) are bounds such that (p;, p.) dominates
(g1, g2) a.e. then (p1, p2) L-dominates (q1, g2). O

The main results of this section are the following complete class theorems.

THEOREM 1. Suppose that for a.e. x in X, F, has a unimodal density f, with
respect to Lebesgue measure with mode 6(x), where 0 is a measurable function on
X. Then for any bound (q:, q2) there is a nonrandomized bound (p;, p2) such that
p1 =< 0 < p, a.e. and (p,, p2) L-dominates (qi, q2).

Proor. For any (q;, q.) define

(x) if qi(x) > 0(x)
p1(x) {ql(x) if qi(x) < 0(x) < g2(x)
qi1(x) + 0(x) — ga(x) if go(x) < O(x),

and

q2(x) if qi(x) = 0(x) < qa2(x)

g2(x) + 0(x) — qi(x) if qi(x) > 0(x)
Dp2(x)
0(x) if go(x) < 0(x).

It is trivial to verify that p, < 6 < p,, (p1, p2) is a well-defined bound, and
p: — p1 = @2 — q. Furthermore P{C(p:, p;)(x)} = P{C(q:, g2)(x)} whenever
f. is unimodal so that (p;, p,) dominates (q:, g2) a.e. By Lemma 2 it follows
that (pi, p;) L-dominates (g1, q2).

Now suppose (q1, g2) is any bound satisfying q; < 0 < g, a.e. Define q;(x) =
E{pi(x)} fori=1, 2, so that (q;, g») is a nonrandomized bound. Trivially E{p.(x)
— pi(x)} = Efq, (x) — q;(x)} for every x in X. Since F, is convex on (—o, 6(x)]
a.e., Jensen’s inequality gives F,{p;(x)} < E[F.{q:(x)}] a.e. The concavity of F,
on [f(x), o) ae. implies F.{p:(x)} = E[F,{g:(x)}] a.e. It follows that
P{C(p:1, p:)(x)} = P{C(q1, q2)(x)} a.e. and by Lemma 2 (p;, p;) L-dominates
(g1, g2). O

One consequence of the next result is that in cases when the density is
symmetric, the symmetric bounds form a complete class.

THEOREM 2. Suppose f, is unimodal and continuous with mode 6(x) for a.e. x
in X. For any nonnegative function g on X, there exist functions p, and p, on X
satisfying
(a) pi=6=<psa.e.,
() p—p1=gae,
and
(¢) fi(p2(x)) = f(p:1(x)) for ae. x in X.

If measurable functions p; can be found satisfying (a), (b), and (c), then (p;, p2)
is a bound which L-dominates all bounds satisfying (b).
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PrROOF. The first claim is elementary. For the second, if f, is unimodal it is
easy to see that conditions (a) and (c) imply that the integral

| o as
I(u)

where I(u) = (pi1(x) + u, pa(x) + u), is maximized in u at u = 0. If (g1, g2)
satisfies (b) it follows that P{C(p;, p2)(x)} = P{C(q:, ¢q2)(x)} a.e. so (pi1, p2)
dominates (qi, g2) a.e. and the conclusion of the theorem follows from Lemma 2.

0

REMARK 1. When f, is symmetric about 6(x), condition (c) states that the
bound is symmetric about 0, i.e., Y2(p; + p2) = 0 d.e.

REMARK 2. It is clear from the proof of Theorem 2 that if (p;, ps) is any
bound which fails to satisfy condition (c) then there exists a strict improvement
to (p1, p2), i.e., a bound (g1, g2) with equal ECM and with a width function g, —
g, which satisfies g, — q1 < ps — p; a.e. and ¢; — q¢; < ps — p; on a set of positive
u-measure. We will use this fact in the proof of Theorem 4.

2.3 Global optimality (sufficient conditions). The main result of this section,
Theorem 3, gives sufficient conditions for global optimality of bounds when the
functional L to be minimized is of a certain form, and under some mild regularity
conditions. We list the relevent assumptions here.

AssuMPTION (D). U, has a continuously differentiable and unimodal density
f. for a.e. x in X, with mode 0(x), where 6 is a measurable function.

For the remainder of this article we restrict our attention to nonrandomized
bounds. We use B to denote the class of bounds (p;, p2) such that p; < 6 < p
a.e. and ECM(p,, p2) > 0.

AsSUMPTION (L1). The functional L is of the form

L(h)=fxlx(h(x))u(dx),

where I.(-) is a nonnegative product-measurable function on X X [0, ») and
l.(-) is twice continuously differentiable for a.e. x in X.

ASSUMPTION (L2). I.(-)=0,and l}(.) =0, for a.e. x in X.

The problem is to find a bound (p;, p2) minimizing

L(p: —p1) = le(pz(x) — p1(x))u(dx),

subject to ECM(py, p2) =1 — a.
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ExaAMPLES. We can take [ (t) = t, so that L(p, — p:) is proportional to the
average width of (p;, p»). More generally, we can consider average squared width,
or width to any power ¢t = 1. We can also multiply any of these functions by an
arbitrary weight function w(x). In Section 3 we give an example that leads to
optimality of Scheffé-type bounds.

The following condition on a bound (p,, p.) will be shown in Theorems 3 and
4 to be necessary and sufficient for global optimality.

CONDITION (O). For some ¢ = 0 and for a.e. x in X either

p1(x) = 0(x) = pa(x),

or

f:(pi(x)) = cli(p2(x) — p1(x)) for i=1,2.

THEOREM 3. If (p., p2) satisfies Condition (0) for some ¢ > 0, then for any
(q1, g2) in B satisfying ECM(q:, ¢:) = ECM(py, p;), we have L(p, — p1) <
L(g: — q1).

ProOOF. Using Lemma 1 and Taylor expansion, we have

0=< ECM(ql, q2) - ECM(pl’ p2)

= L {Fi(q2(x)) — Fi(q:(x))} — {Fe(p2(x)) — Fi(p1(x))}u(dx)
= fx {Fi(q2(x)) — Fy(p2(x))} — {Fe(qi(x)) — Fi(p1(x))}u(dx)

= J; {fe(p2(2))(g2(x) — pa(x)) + Yofi(ra(x))(g2(x) — pa(x))?

— L(pr@))(q1(x) = pi(x)) = Yafi(ri(x))(q1(x) — pi1(x))*}u(dx),

where r; is between ¢; and p; for i = 1, 2. Since (p;, p2) and (qi1, g2) are in B we
have r, = 6 < r; a.e., so that f;(r:(x)) = 0 < f/(r;(x)) a.e. It follows that

J; {fe(P2(x))(g2(x) — p2(x))} — {fe(p1(x))(q:(x) — p1(x))}u(dx) = 0.

Using Condition (O), the nonnegativity of /] a.e. and the fact that ¢ is positive
we obtain

(2.3) J; Li(p2(x) — pr(x))f(ge(x) — qi(x)) — (p2(x) — p1(x))ju(dx) = 0.

By Taylor expansion, for some u(x) between py(x) — p;(x) and g,(x) — ¢, (x)
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a.e., we have

L(gs — 1) — L(p2 — p1)

= L {l:(g2(x) — q1(x)) — L(p2(x) — p1(x))}u(dx)

= Llé(pz(x) = p1 (@) {(gz2(x) — q1(x)) — (p2(x) — p1(x))}

+ 17 (w(x){(g2(x) — qi(x)) — (p2(x) — pr(x))}u(dx).

Using (2.3) and the fact that [/ is nonnegative a.e., we conclude that
L(gs — ¢1) — L(p, — p;) is nonnegative. 0

2.4 Global optimality (necessary conditions). The main result of this section,
Theorem 4, which is a converse to Theorem 3, gives necessary conditions for
global optimality of bounds. We continue to make the assumptions (D), (L1) and
(L2).

The proof of Theorem 4 uses the following elementary lemma for (real) Hilbert
spaces.

LEMMA 3. Let g and h be elements of a (real) Hilbert space H, with inner
product denoted by (,). Suppose that for every k in H, (g, k) > 0 implies (h, k) =
0. Then there exists a nonnegative constant ¢ such that h = cg.

PROOF. The claim is trivial for g = 0, so assume g # 0. Write h = h; + h,,
where (g, h;) = 0 and h, = cg for some real constant c¢. For any v > 0, if we let &
= —h, + vg then (g, k) = v(g, g) > 0 and it follows that 0 < (h, k) = —(hy, hy) +
v(hy, g). If we let v — 0 we see that (h;, h;) <0, so that h, =0 and h = h, = cg.
It follows easily that ¢ = 0.0

We use L% to denote the Hilbert space L*(X, u), || h | to denote the norm of h,
and (hy, h.) to denote the inner product for functions in L2

THEOREM 4. Let (p;, p2) be any bound in B and suppose that the following
conditions hold:
(a) [ is strictly increasing and 1,(0) = 0 for a.e. x in X.

(b)  p1, P2, f-(p2(+)) and I.((p2(+) — p1(+))) are in L.
() There exists a constant C such that for all h in some L* neighborhood of p;

L (h(x) = p2(x))*fi(h(x))u(dx) | = Clh = p:l?

and

L (h(x) — p2(x))*l7 (h(x))u(dx) | = Clh — pz||*
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If (p1, p2) is optimal in the sense that L(p, — p1) < L(q; — q,) whenever
ECM(q;, q2) = ECM(p., p2), then (p1, p2) satisfies Condition (O).

PRrOOF. Define

g(x) = f(p2(2))]ipyy>o00;
and
h(x) = l;(p2(x) — D (x))I{pg(x)>0(x)l~

We proceed to show
(2.4) (g, k) >0 implies (h, k) =0,

for all k in L2 From this, Lemma 3, and assumption (b), it follows that h = cg
a.e. for some ¢ = 0. By (a) and Remark 2 of Section 2.2, f,(p:(x)) = f.(p2(x)) a.e.
so (pi1, p2) satisfies Condition (Q).

We proceed to prove (2.4), so fix k in L? and assume (g, k) > 0. For u > 0
define

X, ={x € X|p2(x) + uk(x) >0(x) and pa(x) > 6(x)}

and

[pa(x) + uk(x) if x€ X,

92u(®) = )0 (x) if x& X,

(p1, g2,) is in B, and

ECM(p:1, ¢2.) — ECM(p1, p2) = L {Fx(p2(x) + uk(x)) — Fx(pz(x))}iu(dx).

Using Taylor expansion,
F.(p2(x) + uk(x)) = Fo(pa(x)) = uk(x)f:(pa(x)) + Y2 uk(x)?f}(ryu(x)),

a.e., where ry,(x) is between p2(x) and g2,.(x). By (¢)
ECM(py, g2..) — ECM(p1, p2) = u L k(x)f.(p2(x))u(dx) + O(u?),

asu— 0%, Since
1imu-——>0+IXu (x) = I{pz(x)>6(x)l(x)

for every x in X, Lebesgue’s dominated convergence theorem gives

limu_,o+fx k(x)fx(pz(x))u(dx)=ka(x)g(x)u(dx)>0-

For sufficiently small u > 0 it follows that
ECM(ps, g2..) > ECM(ps, p2).



712 D. Q. NAIMAN

By the optimality of (p;, ps) it follows that
0 = L(p1, g2u) — L(p1, p2)

= L., L(g2u(x) — pi(x)) — L(p2(x) — p1(x))u(dx),

for u > 0 sufficiently small. Using Taylor expansion, and (c) we have
0=u L Li(pa(x) — p1(x))k(x)u(dx) + O(u?)

as u — 0. By (b) and the dominated convergence theorem it follows that

0<u f h(x)k(x)u(dx) + Ou?),
X
as u — O* and this implies (h, k) = 0 which was to be shown. O
3. Comments and examples.

REMARK. It is interesting to note that for f and L fixed, even though we have
introduced the probability measure u to define the ECM of a bound, the family
of optimal bounds defined by Condition (O) depends only on the support of the
measure u.

For the examples of Section 2.1 we now characterize the globally optimal
bounds.

EXAMPLE 1. Multilinear regression. (See Section 2.1.) For this example the
density function f, is given by

) = KN xR+ &/ xa) /)07,

for each x in X, where K, = T'(%(v + 1))/{r/*T'(Var)T'(%2)}.

Suppose Ix(t) = w(x)t where w is nonnegative and measurable on X, so that
L(p1, p2) is proportional to the weighted average width of (p,, p.). We have l4(¢t)
= w(x) for all x in X. It is a simple matter to verify that Condition (O) is
equivalent to the statement that for some ¢ = 0 and for a.e. x in X, either p;(x)
= 0 or p»(X) = p;(x) = a(x), where

(2.5) a(x) = | x [a{(cw(x) [ x [|4) 7%+ — 1}/,

Note that for fixed «, a globally optimal bound is not uniquely determined
since we can vary the constant ¢ and the set where p;(x) = p,(x) = 0. However
if w is continuous then it is easy to check that the optimal continuous bound is
uniquely determined by «. In fact p,(x) = —p; (x) = a(x) if cw(x) || x |4 < 1, and
pi(x) =0 for i =1, 2, otherwise.

Analogous statements hold in the variance-known case, when S is replaced by
o in the definition of the bounds, and f, is a normal density for each x in X. The
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function a(x) is replaced by

a(x) = || x [a[-2 logfew(x) [ x [|4}]*>

An important case is when w(x) « || x4, since the condition for optimality
states that p2(x) = p;(x) = C || x |4, for some C = 0, and the bounds (2.1) are of
the Scheffé-type. Thus we have proved an optimality property of Scheffé-type
bounds.

Constant-width bounds, i.e., bounds (p;, p,) for which p, — p; is a constant
function, were first introduced by Gafarian (1964) for simple linear regression
over a finite interval. These bounds are known to minimize the maximum width
among all bounds with equal coverage probability, and it can also be shown that
they minimize maximum width among all bounds with ECM = 1 — a. It is of
interest to ask whether constant width bounds can be optimal in the sense of
minimizing weighted average width for some weight function w, among all bounds
with equal ECM. For any constant a = 0, we can solve the equation a(x) = a for
w, where a(x) is given by (2.5), to obtain the weight function relative to which
the bound with p; = a is average width optimal. In contrast to the situation for
Scheffé-type bounds, the weight function depends on the number of degrees of
freedom and the constant a, so that it is not possible to make general statements
about what weight functions correspond to constant-width bounds.

For other functions I, (see the examples in Section 2.3) we can characterize
the optimal bounds using condition b of Theorem 4 (resp. Theorem 5), but closed
form expressions for the optimal bounds have not been obtained. The defining
equation is harder to solve because p(x) appears on both sides of the equation
when [4 (t) depends on t.

In Example 2 (Nonparametric regression) of Section 2.1 we obtain optimal
bounds of the same form as above when the distribution of U, has either a
normal distribution or a t-distribution. If the distributions are asymptotically
normal or ¢, we obtain approximations to optimal bounds for large samples.

4. Summary of results for one-sided bounds. We define one-sided
bounds for m as follows. Let p be a nonnegative product measurable function on
X X 2. To simplify notation, p(x) is used to denote p(x, Y). We assume p(x) is
independent of U,, under P;, for each x in X and i in I. p defines (randomized)
bounds for the function m which take the form

(2.1) (=, m(x) + p(x)S), for x € X.

For any one-sided bound p and for any x in X, let C(p)(x) denote the event
that coverage occurs at x, that is, that the interval (2.1’) covers m(x). Define
X(p) to be the subset of X where coverage takes place, and define

ECM(p) = Eu{X(p)}.

The proofs of the results below are similar to the corresponding results for
two-sided bounds.



714 D. Q. NAIMAN

LEMMA 1’. For any bound p
ECM(p)=LP{C€p)(x)}#(dx)=LE{Fx(p(x))}u(dx)- O

Let M™ denote the space of nonnegative measurable functions on X. If L is an
order-preserving functional on M™, and « is a fixed constant in (0, 1), our goal is
to find a bound p such that ECM(p) = 1 — @, which minimizes L{E(p)}. For
one-sided bounds, we have obvious analogues to the notions of domination and
L-domination given in Section (2.2). Furthermore, Lemma 2 holds for one-sided
bounds and this leads to the following result.

THEOREM 1’. Suppose that for a.e. x in X, F, has a unimodal density f, with
respect to Lebesgue measure with mode 0(x). If p is any bound satisfying p = 6
a.e., then E(p) defines a nonrandomized bound which L-dominates p. 0.

For the remainder of this section we consider only nonrandomized bounds.
For the results corresponding to Theorems 3 and 4 we define B to be the set of
(nonrandomized) bounds satisfying p = 6 a.e. We introduce the following condi-
tions.

AssUMPTION (L1’). The functional L is of the form

L(h)=le(h(x))u(dx),

where [.(-) is a nonnegative product-measurable function on X X (—o, o) and
L.(-) is twice continuously differentiable for a.e. x in X.

AssuMPTION (L2’). 1;(t) =0, and I} (t) = 0, for t = 0(x), for a.e. x in X.

CONDITION (O’). For some ¢ = 0 and for a.e. x in X either
p(x) = 0(x)

or

f:(p(x)) = cli(p(x)).

THEOREM 3’. If p satisfies Condition (O’) for some ¢ > 0, then for any q in
B* satisfying ECM(q) = ECM(p), we have L(p) < L(g). 0O

THEOREM 4’. Let p be any bound in B* and suppose that the following
conditions hold. ‘
(a) [ is strictly increasing and 1. (0) = 0 for a.e. x in X.

() p,f(p(-)) and I.(p(-)) are in L*.
(¢) There exists a constant C such that for all h in some L? neighborhood of p

L (h(x) = p(x))*fi(h(x))u(dx) | = Clh—pl?
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and

’L(h(x)—p(x)’)zlé’(h(x))u(dx) =Clh-pl*

If p is optimal in the sense that L(p) = L(q) whenever ECM(q) = ECM(p),
then p satisfies Condition (O’). 0

5. Concluding remarks. We have introduced a definition of “simultane-
ous confidence bound” which replaces the requirement of a lower bound on the
coverage probability by a bound on the expected coverage measure. This is
analogous to a criterion introduced by Spjgtvoll for defining simultaneous tests
of hypotheses. In this setting we have derived optimal simultaneous confidence
bounds and we see that careful consideration of the desired definition of a
simultaneous confidence bound may lead to bounds which are better solutions to
the problem at hand, and which may be easier to find.
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