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SEQUENTIAL DETERMINATION OF ESTIMATOR AS WELL AS
SAMPLE SIZE!

By ApAM T. MARTINSEK

University of Illinois

For certain point and interval estimation problems, sequential procedures
are proposed for choosing an estimator (from the class of trimmed means
with trimming proportion in a specified range) as well as a sample size on
which to base the estimator. It is shown that these procedures, which do not
require knowledge of the best trimming proportion or the asymptotic variance
of the corresponding trimmed mean, are asymptotically efficient with respect
to the procedure that uses the best trimmed mean (in the specified class) and
the best fixed sample size for that trimmed mean. .

1. Introduction. The problem of sequential estimation of the mean of a
sequence of independent, identically distributed (i.i.d.) observations, with un-
known variance and loss equal to a linear combination of squared error and
sample size, has been considered by (among others) Robbins (1959), Starr (1966),
Starr and Woodroofe (1969) and Woodroofe (1977) for the normal case; by Starr
and Woodroofe (1972) and Vardi (1979) for the gamma and Poisson cases
(respectively); and by Ghosh and Mukhopadhyay (1979), Chow and Yu (1981),
Chow and Martinsek (1982) and Martinsek (1983) in the distribution-free case.
In all of these papers the sample mean is used to estimate the population mean,
and sequential procedures are used solely to determine an appropriate sample
size.

It has been shown by Woodroofe (1977) that in the normal case the “regret”
due to using a certain stopping rule to determine the sample size when the
variance is unknown, rather than the best fixed sample size when the variance
is known, approaches % as the cost of error becomes infinite. Woodroofe’s result
has been generalized by Martinsek (1983), who shows that the “regret” can take
arbitrarily large negative values as the distribution of the observations varies
(even among symmetric distributions). That is, for some (nonnormal) distribu-
tions and large cost of error, it is better to use a sequential procedure when the
variance is unknown than to use the best fixed sample size when the variance is
known. In effect, the sequential procedure does better by being sensitive to
characteristics of the distribution other than the variance. A

The amount of improvement that can be realized through sequential deter-
mination of the sample size, even when one is restricted to using the sample
mean as estimator, is impressive. It seems reasonable to try to improve things
even further by not restricting attention to the sample mean, but instead to
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534 A. MARTINSEK

determine a good estimator (and an appropriate sample size for that estimator)
sequentially. After all, in general the sample mean is not necessarily the best
estimator of the population mean.

In this paper the problem of sequential determination of estimator as well as
sample size is considered in the following situation. Suppose that X;, X5, - - - are
i.i.d. observations from a population with distribution function F(x — ), where
F has a density f which is symmetric about zero and 6 is an unknown location
parameter. For any n, and any « € (0, ), the a-trimmed mean m,(«), based on
X, -, X,, is defined by

(1-1) mn(a) = (n - 2[007'])—1 E::[f,ﬁl.l Xn:h

where X,,; is the ith order statistic among X;, ---, X, and [ ] denotes greatest
integer. It can be shown that if F~}(a) and F~*(1 — «) are uniquely determined,
asn — o,

(1.2) n'*(mu(a) = ) —a N(0, ¢%(a)),

where
[ [ l
(1.3) o) = (1 — 2a)_2|2 J; 2% (x) dx + 2o[F71(1 — a)]zl .

(Cf. Huber, 1981, Theorem 3.2, pages 60-61; and Serfling, 1980, Theorem C,
pages 276-2717.)

Assume as in Jaeckel (1971) that we are interested in choosing an estimator
from the class of a-trimmed means with trimming proportion a € (ay, a;), for
some 0 < ap < a; < V2. In the results that follow, o and «; may be taken as close
to 0 and % (resp.) as desired. Assume further that there is a unique value of «,
say o*, which minimizes ¢%(«) over all a € (ap, o). The case when there is more
than one such minimum point is discussed in Section 4. For any o € («ay, «;) and
A >0, if n is large and we have convergence of the second moments in (1.2),

(1.4) AE[(ma(a) — 0)’] + n ~ Ac*(a)n™' + n,

the latter expression being minimized over n by a sample size no = A?¢() (in
practice, by one of the two integers closest to this number). Therefore, if A is
large, so that a large sample size is required to achieve a small risk under the loss
function

(1.5) Ln = A(an - 0)2 + n,

where 4, is an estimator of 6, the fixed sample size that minimizes (asymptotically)
the risk using the a-trimmed mean m,(«) as estimate is

(1.6) no(a) = A"%¢(a),
with corresponding minimum risk

(1~7) R(l/,no((‘() = 2A 1/26(0‘)-
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Since as A — oo,
Reng) ~ 24 V25(a) = 24 %6(a*) ~ Rt ngte®)

for all @ € (ay, 1), it is clearly best (among all trimmed means in the class under
consideration) to choose o = a* and sample size equal to ny(a*). However, in
practice one does not know either a* or o(a*), so that neither the best trimming
proportion nor the best fixed sample size for that trimming proportion is
available. One would like to construct a sequential procedure for choosing both
a trimming proportion and a sample size whose risk will be close to Ry for
large A.

Jaeckel (1971) has considered the problem of determining the best trimming
proportion from the data, using the following idea. For each n and a € [ap, a1],
one can estimate o(a) by

s2(e@) = (1 — 20)n~" Yl (X — ma(a))?
(1.8)
+ a[Xn‘[¢vn]+l - mn(a)]2 + a[Xn'n—[(m] - mn(a)]z}-

For each n, choose a trimming proportlon &, that minimizes s%(«) over all
o € [a, a1], 1.e., such that

(1.9) sa(&,) = Min =c=a,Sh(a).

Then, under mild conditions on F, as n — o,

(1.10) &, —p a*
and
(1.11) n'*(m.(&,) — 0) —a N(O, o*(a*)).

With this as well as the formula for n¢(a*) in mind, for sequential point
estimation of § with loss function (1.5), define

T4 = inf{n = 2:[Minco=e,Sa(@)] + n7' = A7'n%
(1.12)

inf{n = 2:s2(&,) + n7' < A7'n?¥,

and estimate § by mr,(ar,). It will be shown in Section 3 that this sequential
procedure is asymptotically risk efficient with respect to the procedure that uses
the optimal trimming proportion o* and best fixed sample size ny(a*), i.e., as
A — o,

Ry i/ Rev ey = 1,
under the assumptions that
f(x)=fo>0 forall x€&[F (a—eo), F7'(1 — ao + &0)],
(1.13) for some fy, &, > 0 (so that in particular (1.2) holds
for all o € [, a1]);
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f has a derivative on [F(ap — &), F 71 (1 — ap + )]

(1.14)
that is continuous a.e.;
¥ (a*) >0 (ie. 0¥ (a*) #0), where ¥ (a*)
(1.15)
denotes the second derivative of o%(a) at o
and
(1.16) E[|X,|'] <o forsome / >0.

In other words, the sequential procedure which estimates § by mr,(&r,) performs
asymptotically as well as the procedure using the optimal fixed sample size for
the optimal trimmed mean (in the class of estimators under consideration).

One can also discuss the problem of finding a confidence interval for # of
prescribed width 2d and coverage probability 1 — 3 (0 <3< 1). Based on (1.2),
if one uses the confidence interval

My () £ d,
where .
ko(a) = [d20%(a)2}p] + 1
and z,-; satisfies
21-8 _xZ
20(2;,-5) — 1 = (2m) 72 exp<—2—> dx=1-8,
—ep
then as d — 0, ky(a) — o and

P[0 (S mko(a)(a) + d] = P[B (S mko(‘,,)(a) + 21_,3 a(a)ko(a)_lﬂ]
= Pl(ko(@))"?| M) — 0] = 21-p0(a)]
— 1 — 3 (asymptotic consistency);

further, ko(«) is (asymptotically) the smallest fixed sample size that is asymptot-
ically consistent (when the confidence interval is based on an a-trimmed mean).
Since as d — 0,

ko(a) ~ d20%(a)zi_s = d20%(a*)23_s ~ ko(a™)
for all @ € (ap, ), the best choice of trimming proportion is a* (in the sense of
achieving, asymptotically, the smallest sample size that gives asymptotic con-

sistency). As in the point estimation case, in practice one does not know o* or
% (a*). However, for

Ts = inf{n = 2:[Mingge=a,sn(@)] + n7 < d*21%n}
(1.17)
= inf{n = 2:52(a,) + n7' = d%1%n),
it will be shown in Section 2 that under (1.13)-(1.16), as d — 0,

Pw (S de(&Td) + d] -1 - 6
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and
E(Ty)/ko(a*) — 1.

That is, the sequential procedure which determines both trimming proportion
and sample size by (1.17) performs asymptotically as well as the best fixed sample
size for the best trimmed mean.

It should be mentioned that for the case of symmetric distributions considered
here, Sen (1981) and Jureckova and Sen (1982) have investigated the performance
of sequential procedures using general M-, L- and R-estimators of location, rather
than the sample mean. However, even in their work the (robust) estimator is
decided on in advance, and only the sample size is determined sequentially.

It is clear that the stopping rules T4 and Ty defined above require a great deal
of computation (the computational scheme described by Jaeckel, 1971, page 1542,
is repeated for each n until one stops). This may seem impractical; however, as
Efron (1982, pages 2-3) points out, we are now in an “era of cheap and fast
computation” in which such procedures are certainly feasible. Theorems 1 and 2
below assert that, in addition to being feasible, these procedures compensate for
ignorance of the best estimator (among a certain class of estimators) as well as
ignorance of the best fixed sample size for that estimator, at least asymptotically.

2. Interval estimation. The performance of the sequential procedure for
determining estimator as well as sample size in the fixed-width confidence
interval problem is given by the following theorem.

THEOREM 1. Assume X;, X,, --. are i.id. with distribution function
F(x — 0), where F has a density f that is symmetric about zero. Assume further
that there is a unique a* € (g, a;) (where 0 < oy < a; < Y%) which minimizes
o*(a) defined by (1.8). If T, is defined by (1.17) and (1.13)-(1.16) hold, then as
d—0,

2.1) P0 € mr(ar) £ d} — 1 — B,
(2.2) Ti/ko(a*) = 1 a.s.

and

(2.3) E(TJ)/ko(a*) — 1.

The proof of Theorem 1 depends on a series of three lemmas, the first of which
deals with uniform integrability of positive powers of d*T. It clearly suffices to
prove Theorem 1 for the case § = 0, and this will be assumed without loss of
generality throughout the rest of this section.

LEMMA 1. Under the assumptions (1.13), (1.14) and (1.16), for every p > 0,

{(d?T,)P:d < 1} is uniformly integrable.

ProOOF. Ford <1 andé >0, if K> 0 is sufficiently large, by Theorem 4.3 of
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Jureckova énd Sen (1982); ,
P[Ty > Kd™*] = Plsfxa2(a0) > [Kd?]d’212 — 1]

< P[sfka2(a0) > 20%(ao)]

< CO)([Kd™?) ™ < C(6)K™".
Hence for all 6 > 0, as K — o,

- P[T;>Kd™] = O(K™'™)
uniformly ih d. This proves the lemma.
The proof of Theorem 1 requires almost sure convergence of s%(&,) to o(a*)

(as opposed to the convergence in probability proved by Jaeckel, 1971). Lemma
2 gives this convergence with a rate that will be needed below.

LEMMA 2. Under the assumptzons (1.13) and (1.14), for every 6 > 0, as

n— o,

(2.4) nYP7 5P, caza, | S2(@) — dX(@) | = 0 a.s.

PROOF. For a € [, o], define

. 2
tz(a)=(1—2a)_2{ -1yl [F-1<——~‘ )]

n+1

A e

As in the proof of Lemma 2 of Jaeckel (1971),

(2.5)

(2.6) SUPgaza, | t2(a) — 0%(@) | = O(n™') as n — .
Since F! is bounded on [ao — €9, 1 — o + €],
SUP cy=aza SUP[eqriizn—{egnl | (Xnsi — Ma(@))? = [F'(@/(n + 1)1 |
= SUPuy=aza,SUP(cqnizizn—{agn] | Xnii — Mn(a) — F7'(i/(n + 1)) |
| X = mala) + F7H(E/(n + 1)) |
< {SUP(egnimizn—tagnl | Xni — F71(1/(n + 1)) | + SUPsy=asa, | Mala) |}
2.7) - {SUP(agnizizn—tegn) | Xnii — F2(@/(n + 1)) | + SUPayzaze, | Mala) |
+2 SUP(ayni<izn—teguF (/(n + 1))}
= O(1){sup(pnizizn—agn) | Xni — F7'(@/(n + 1)) | + SUPsg=aza, | Mala) |}
+ {SUP(agnizizn—fagn] | Xni — F7(@/(n + 1)) | + SUPcgzaze, | Male) |1
By a slight modification of Theorem 6 of Csoérgo and Révész (1978) and the law
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of the iterated logarithm for the Kiefer process, for every 6 > 0, as n — o,
(2'8) Sup[won]siSn—[non] I Xn:i - F_l(l/(n + 1)) I =as. O(n_(1/2)+6)-

Because m,(a) is the average of X, for [an] + 1 < i < n — [an], it follows
immediately from (2.8) and the symmetry of F that

Suptv()StvElvl l mn(a) l

(2.9) = SUPuymas, | (7 = 2[an])™ DI (X — F70/(n + 1))] |

=as. O(n_(l/2)+6) as n — oo,

By (2.7), (2.8) and (2.9), since s%(«) and t*(a) are certain averages of the
(Xpi — mn(a))? and [F1(i/(n + 1))]? (respectively) and (1 — 2a) ™2 < (1 — 2a;)7%,
it is straightforward to show that as n — o, :
(2'10) Sup(VOSwStn Isﬁ(a) - tZ(a) I =as. O(n_(1/2)+6)-

Combining (2.10) with (2.6) finishes the proof.

LEMMA 3. Assume (1.13), (1.14) and (1:15). Then for every 6 > 0, as n — o,

(2.11) n** = (mu(&,) — ma(a*)) -0 as.

ProoF. From Lemma 2,
si(a,) — d*(a*) as.as n— o,
and hence as in the proof of Lemma 3 of Jaeckel (1971),
a, — a*  as.
Moreover, for any 6 > 0, as n — oo,
0 < o* (@) — o*(a™®)
(2.12) = 0%(Gn) — sa(dn) + sh(an) — sh(a®) + si(a*) — o*(a™)

02 (@) — si(an) + si(a*) — ¥ (a*) =5 o(n~VPT),

IA

By Taylor’s theorem (c%(a) has continuous second derivative because f has
continuous first derivative), for some &, between a* and &,

o2 (&,) — o%(a*) = a¥ (a*)(@n — a*) + ¥ (@) (@, — a*)?/2
(2.13)

= 0'2"(&:1)(&71 - a*)2/2-

Letting n — o in (2.13), since ¢?'(a,) — o' (a*) > 0, from (2.12),

2

(&n - a*) “as. O(n_(1/2)+6)7

(2.14)

a, — a* =, o(n V%) as n — oo,
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Write
. mn(&n) - mn(a*)
(2.15) .
= [(n — 2[a.,n])! — (n — 2[a*n])™!] Zl’;‘lh‘in'ﬂl X + (n — 2[a,n])" 'V,
where
T e X+ T Xy, i [Gan] < [a*n]
V=<0, if [a,n] = [a*n]

—ylad o X — X Xy i [den] > [a*n).
From (2.14), as n — o,
|(n = 2[&nn])™ = (n — 2a*n))™|
(2.16) ~ 2|, — a*| (1 = 2a&,)7}(1 — 2a*)"'n7}
= 2(1 = 201) 7| @n — a*| 07! =, 0(nTHATR),

Also, by symmetry of F and (2.8), as n — o,

2.17) | B Xl = | B (X = FH(0/(n + 1)) |
=a. O(n1/2+6/2).

It follows from (2.16) and (2.17) that the first term on the right-hand side of
(2.15) is (almost surely) o(n~%4*%). As for the second term on the right of (2.15),
clearly as n — o,

(n = 2[a,n])™'| V| ,
= 0(1)(n = 2[laun])™'n| an = a* | {SUPgnisizn—tegn | Xni — F71@/(n + 1)) |}

= O(n—1+1—(1/4)+(6/2)—(1/2)+(6/2)) =, O(n—(3/4)+6),

finishing the proof.

REMARK. In the proof of Theorem 1 below, it will suffice to have
n2(ma(&,) — mu(a*)) - 0 as.as n— .

It thereforg would be enough to require, for some k > 0, that ¢%(«) possess a
continuous (2k)th derivative with
d¥(a@*) = d¥(a*) = ... = ¢ V(a*) =0, ¢ (a*) >0,
since this would give a.s. convergence of &, to a* with rate n=/#** for every
6 > 0. Almost sure convergence of '
n VTV, (G,) — ma(a*), 6> 0,

to zero would then follow as in the proof above. Note that some rate of
convergence of &, to a* is required; without it (i.e., with only the almost sure
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analogue of Jaeckel’s Lemma 3), one would have only
nY9(m,(&,) — m,(a*)) = 0 as., for every &> 0,
which is insufficient in the present case.

PROOF OF THEOREM 1. Since Ty = d~'z,-4, Ty — ® a.s. as d — 0. Hence
from Lemma 2, as d — 0,

(2.18) min, <.=.,57,(2) = st,(ar,) — o*(a*) as.,
and

(2.19) min, <=, S7,-1(a) = st-1(ar,-1) — o%(a*) as.
But )

star) + T7' < d?21%Ty
and
st1(ar,-1) + (Ta — 1)7' > d%32(Ty — 1),
so from (2.18) and (2.19), as d — 0,
d*%1%,Ty — o6*(a*) as.,

which proves (2.2). (2.3) is now immediate from (2.2) and Lemma 1 (with p=1).
As for (2.1), it follows from Jureckova and Sen (1982) that

{n2(mn(a*)):in = 1}

is uniformly continuous in probability, i.e., for all ¢, n > 0, there exist » and
¢ > 0 such that, for any n > »,

P{| m,(a*) = mn(a*)| < en™'2 for all n’ such that |[n’ —n| <cn}>1—1.
From this result and Lemma 3,
{n*(mn(an)):n = 1}

is uniformly continuous in probability. But then from (1,11), (2.2) and Anscombe
(1952), as d — 0,

(2.20) ‘ Ty/*(mr,(ar)) =4 N(O, a*(a*)).
Hence, because d*T; — 2?_s0%(a*) a.s.,
P{0 € my,(ar) + d) = P{TY?|m,(ér,)| < dTY?
— 2®(21po(a*)/o(a*)) — 1 =2®(z;—y) —1=1— B,
proving (2.1).

3. Point estimation. The next theorem summarizes the performance of
the sequential procedure which estimates § by mr, (ar,).
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THEOREM 2. Assume X,, X,, --- are iid. with distribution function
F(x — 0), where F has a density f that is symmetric about zero. Assume further
that there is a unique a* € (ay, a;1) (wWhere 0 < ay < oy < Y2) which minimizes
o2(a) defined by (1.3). For the loss function (1.5), if T4 is defined by (1.12) and
(1.13)—(1.16) hold, then as A — o,

3.1) Ta/no(a®) -1 a.s.,
(3.2) E(T4)/no(a™) — 1
and
(3.3) Riy 10/ Retngtan = 1,
where
Ri, 1, = AE[(mr,(ar,) — 0)°] + ET4.

By the same arguments as in Sectiop 2, it can be shown that
Ta/no(a*) -1 as.as A— oo
and
(3.4) {(A72T4)P:A = 1} is uniformly integrable for every p > 0.

Hence (3.1) and (3.2) are immediate. Moreover, one has the analogue of (2.20)
when 6 = 0 (which will be assumed without loss of generality throughout the
remainder of this section),

(35) TY*(m,(r,) —4 NO, 0%a®) as A — o.
Again, the argument is the same as that leading to (2.20). In addition to (3.5),
certain uniform integrability results will be needed. The first of these deals with

uniform integrability of negative powers of A~'/2T,. Frequent use will be made
of the fact that 74 = A (this follows immediately from the definition of T').

LEMMA 4. Under the assumptions (1.13), (1.14) and (1.16), for every g > 0,

(3.6) {(A™V2Ty)™%:A = 1} is uniformly integrable.

ProOF. By Lemma 1 of Chow and Yu (1981), it suffices to show that for
every q > 0, for some v € (0, 1), as A — oo,

P(T4 < yAY?) = 0o(A™"?).
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Forn 1 and o £ a £ ay, because X, janjs1 S ma(ay) S Xh:n-,.‘[pnl,
o (Xnifognier = Mnla1))? + 01 (Kninfapn ~ mala))?
S 200 (Xniani+1 = Xnin-fan)?
= 40 [ Xnjont+t = (Xnsjani+1 + Xnineiom) /2]

+ dar[Xnin-ton) = (Xnsganirr + Xnintan) /212
= 401 (Xnifamr — Mal@))? + 401(Xnofom) = ma(a))?
< 4ol = 2a)%%(a).

Also, for oy < a = ay, clearly

(3.8) Sresth s (s = ma(an))? S L, (Xns = ma(a))?

It follows from (3.7) and (8.8) that for n = 1 and & € [ay, &),

(3.9)  si(an) = (1 = 200)7%(1 = 200)%(1 + da1ag")s2(@) = Koo, 53(a).

By the definition of T4 and (3.9), if v € (0, 1) is close enough to zero so that
YK ey = 0%(01)/2,

P(TA = 'YAI/2) = P{minAV"’sjswl”“’j._Q(minaos:xs«,3/2(01)) = A—.lj

(3.7

(3.10) < P{mingiegjs,av2sf(an) < A7 (v24) Kooy}

< 304EY P(sHen) £ o%(a)/2).

By Theorem 4.3 of Jureckova and Sen (1982), for 6 > (%2)(q + 1) = 1, there exist
C(8) € (0, ) and a positive integer M(3) such that for j = M(6),

(3.11) P(| s}(e) = %) | > o*(e)/2) = C(8)j ™.
Hence if A = (M(3))?, by (3.10) and (3.11),
P(T4 s vAY?) = C(8) 257?;/12}3?1 175 < C(5)([YAY?] + 1)A~1+973

< 6(6)7A1/2—(1+6)/8’
It follows that for every g > 0, as A — oo,
| P(Ts = yA'?) = o(A™),
proving the lemma.

The next two lemmas together will give the moment convergence correspond-
ing to (3.5).

LEMMA 5. Assume (1.13), (1.14) and (1.16). For every p > 0,
{| T2 RIale"Tal X0 i 1P 2 A 2 1} is uniformly integrable.

i=[a*Ty]+1
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PrROOF. Define Y;= (X; V F Y (a*)) A F7(1 — a*). The Y, are independent,
bounded, and have mean zero, so by (3.4) and Lemma 5 of Chow and Yu (1981),
for all p > 0,

(3.12) {|]A7Y4 ¥T4 Y;|?: A = 1} is uniformly integrable.

Furthermore, from Lemma 4 and (3.12), by a Holder’s inequality argument, for
allp>0,

(3.13) {| T22 Y14 Y|P : A = 1} is uniformly integrable.
Consider
Tade i Xr — X4 Y

Clearly, this difference consists of a random number Mr, , of terms whose
absolute value is no larger than

| F~(a*) — Xrperye |
plus a random number M7, , of terms whose absolute value is no larger than
[F7'(1 = a*) = Xrery—terra |-
It follows from the proof of Theorem 2 of Sen (1959) that for every g > 0, as

n— o,

(3.14) SUP(agnisizn—taon EL | B4 X — F7H(i/(n + 1)) |9} = 0(1)

(cf. Lemma 4.2 of Jureckova and Sen, 1982). Define M, to be the number of X,
among the first n, lying between F~'(a*) and X,,.(o#nj+1, and M,, , to be the number
lying between F~'(1 — a*) and X,,.n—(,n). For 6’ € (0, 1), on the set

M, , > n'} N A X < F7Ha™)),
by the Mean Value Theorem we have for some & between o* and
([a*n] + n*)/(n + 1)
(assuming n = (1 + a*)Y™) so that a* < ([a*n] + n'™)/(n + 1)),
n'f(F~(a))n™

(3.15) = nY{F7(([e*n] + n'™%)/(n + 1)) — F~'(a*)}

= nAF (([e*n] + n'7)/(n + 1)) = Xugarment-+1}-
It follows from (1.13), (3.14) and (3.15) that for 8’ < Yo, as n — o,
(3.16) Pl{M,, > n'"} 0 {Xpjerr < F(a*)}] = 0o(n™)
for all g > 0. By a similar argument
(8.17)  P[{M,, > n'"} N { X, = FHa*)}] = 0o(n™9) forall ¢ > 0.
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Hence, since M,,, < n, for all ¢ >0,
E[(n*7M,,)] =1+ n"P(M,, >n""%) =1+ o(n®9)
(3.18)
=0(1) as n— .

For any r > 0, if A is sufficiently large and s > 2, taking ¢ = rs in (3.18) and
applying (3.4) and Hoélder’s inequality,

E(T43 ™M1, )] = Ziwaw EIG" ' M,,) Tir,=]
< i BV M, PIPC TV (Ty = )
= 0(1) S3avs P V5(T, = )
< O(AI/Z) + A6-V/s 27=[A1/2] j—é(s—l)/sE(s—l)/s(A—1T%)
= O(A"2) + O(A6~V/sg~(-D/s+1/2)
= 0(AY?) as A — oo.

By an argument similar to that in (3.19), using (3.14) instead of (3.18), for every
r>0, :

(3.20) E{| TY*(Xryperrgen — FHa®) |7} = O(AY?)

as A — oo. Therefore, for any 6’ € (0, ), for all p > 2/(36’), from (3.19), (3.20)
and Lemma 4, by Hoélder’s inequality, as A — oo,

E{| TZI/QMTA,/ (FHa*) = Xrgjwrra+) |7}
= E{| T2" T4 'Mr,, T{*(F ' (a*) — Xryerrgen) |7

= EV(T3%)EP{(T5- My, ))

- BV TYHFHa*) — Xrpperrg+) | %)
— 0(A1/3)E1/3(Tz3p6’)
= O(A~PY/D+13) = o(1).

(3.19)

(3.21)

Similarly, it can be shown that for p sufficiently large,
(3.22)  E{| TxV*Mr, f F(1 = a*) = Xrurpiery) [P} = 0(1) as A — o.

It follows from (3.13), (3.21) and (3.22) that for p sufficiently large (and hence

for all p > 0),
{| T2Y? 22‘[;£‘}t§i]1 Xr,.i|?: A =1} is uniformly integrable,

proving the Lemma.

LEMMA 6. Under the assumptions (1.13)—(1.16), for everyp >0,as A — ©
(3.23) E{| T{*(mr,(ar,) — mr,(a®)) [P} = 0.
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Proor: It suyffices to prove this for p sufficiently laigé. Proceeding as in
(2.9), using (3.14) and densen’s inequality, for p = 1, as n = o,
SUPy=aza, Bl | 0V 21ikn(a) |7}
= 8UBususe B 1 = 2an))™ T, n(X,y = F(/ (0 + 1) |7}
= SUDipmase, Bi(R — 2an])™ T [0V Xos = F7G/ (0 + 1)) 1)
< suptaom‘sis,l—[amllj{ | V(X — F7G/(R + 1)) |7} = O(1):

Also, ds ifi (2:7), using (3.14), (3.24) and Héldet’s ihequality, fof p = 1, as
n— oo,

(3.24)

‘ Shpaosd‘s«lsup[nb'nlsisn—[('vori}E{nP/2 I (Xn:i - mn(a))2 - [F_l(i/(ri 'i' 1))]2 IP}
(3.25) ‘ o ;
= 0(1).
Therefore, by Jens.e,n;s ip’equality, forp=1,as n— o,

SUP.gsase B2 | 71 Sl (Xt = mia))? — n7t Bl [F74i/(n + 1) |7

o = O(1)8UD,yzain ™ Tiferh ) E{n?2 | (Xs — mal@)? = [FX(i/(n + 1)2|7)
320 < O(1)8UPuyzezeSUBLqnsisn—teon IR | (X — rr’z,.(oz))2 = [F7'(@/(n + V)PP |7}
= 0(1):

Similarly, from (3.25}; for p=1asn— o,

. . 2 |p
A Kngeipes — mal@)? — a[w(M*—l)} } = O(n")

(3.27) Sﬁpaoséx5¢r1E ‘l

n+1
and
S.upaOSaS(vl
3.28) » | ) — 2|
G B | aXuion - mae? - a[F*(———” “"’”)] | = o,
| ‘ n+l :

It follows from (3.’26)—(3.258) that forallp = 1, as n — 05,
8UPagsiza, B 83(c) — £%(a) [P} = O(n~2),

where t%(c) i8 defih;éc:i by (2.5). Since

o SUBGysasiy | £2(d) — 0(a) | = O(n ™),

(3.29) S, ' )

SUPoysasa, E{| $3(a) — 0%(a) [P} = O(n7P?) forall p=1.

It follows jmh}ediatgly frdm (3.29), (2.12) and (2.153) that as n— o,

(8.30) E{|n"Ya, — a®) |7} = 0Q1) forall p= 1.
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As in the proof of Lemma 3, write
ma(@,) — ma(a*)
(331) = {(n—2an)" = (n = 2a*n) ™ T Kui — F7i/(n + 1))
+ (n — 2[a,n])"'V.
By (3.14), (3.30), Jensen’s inequality and Hoélder’s inequality, for any p = 1, as

n— oo,
En2|{(n — 2[a.n)™ = (n = 2[a*n])™} TED, (Xus — F76/(n + 1)) |7}
< O()Ef| &, — o*|?| (n = 2[a*n])™ Tk, n2(Xo — F7'0/(n + 1)) |7}
(3.32) < O(E"{| & — a*|*}(n — 2[a*n])™2
(S B n (X — F7(/(n + 1)) | %))V
= O(n ") (SUP{uymizizn—togn BY | V4 (X — F71G/(n + 1)) |#})Y2 = O(n~/4).

Similarly, one can show

(3.33) E{] (n = 2[@.n]) V|7 = O(n™>").
Therefore, from (3.31), (3.32) and (3.33), forallp =1, as n — o,
(3.34) E{| n"*(mn(@,) — ma(a®) [P} = O(n™""),

E{| n¥(ma(é) — ma(a®) [P} = OQ1).
Proceeding exactly as in (3.19), using (3.34) instead of (3.18), for all p = 1, as

Ao,
(3.35) E{| T¥*(mz,(ar,) — mr,(a*) |} = O(AV?),
and hence from Lemma 4, if p > 4, as A — o, by Ho6lder’s inequality,
E{| T¥*(mr,(ar,) — mr,(a*) |} = O(AV)EVX(T7?)
= O(AV*™"®) = 0(1),
finishing the proof of Lemma 6.

PROOF OF THEOREM 2. As remarked above, the proofs of (3.1) and (3.2) are
exactly analogous to those for (2.2) and (2.3) of Theorem 1. To prove (3.3), write

(3.36) Riy, 13/ R ooty ~ {AE[(mr,(a1,))%] + ETa}/ (2420 (a)).
From (3.2), as A — o,
ET./(2A26(a¥)) — Y,
and it suffices to show
AV E[(mr,(ar,)?)/o(a*) — 1.
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From (3.1) and (3.5), as A — oo,
AV o) (ma, (G,))
= (AY*6(a*) TV TY*(mr,(ar,))/0(a*)} —4 N(O, 1).

Hence it is enough to show convergence of the second moments in (3.37). But
uniform integrability of all positive powers of

TY*(mr,(a*))

follows from Lemma 5 and (1 — 2a*)™! < (1 — 2a;)7}; one then has immediately
the uriform integrability of all positive powers of

T}{Z(mTA(&TA)),

via Lemma 6. Finally, from Lemma 4 and H(’)lder’é inequality, all positive powers
of

(3.37)

AV @) (ma,(ar,) = (AV'e(a*) TR TY (mr,(r,) o (a*))

are uniformly integrable. In particular, the second moments in (3.37) converge
to E(x?) = 1, completing the proof.

4. Further remarks. One can extend the results of this paper to the case
when there is more than one o € (ao, a;) which minimizes ¢%(«), using a
suggestion of Jaeckel (1971). Define

o* = infl{a’ € (ao, a1) : d¥(a’) = MiN <oca, 02(@)},
and let ¢, be any sequence of positive constants such that ¢, — 0 and n"/?*"c,
— © as n — oo, for some ¢ > 0. For each n, choose &, to be the smallest
o’ € (ap, a) for which
s2(@’) = {minggeaza,S2(a)}(1 + cp).

Then &, — o* a.s. as n — o, and if we define

T, = inf{n = 2:52(a,) + n7! < d%i%n}
and

Ty = inf{n = 2:s%(&,) + n™! < A™'n?,
the conclusions of Theoréins 1 and 2 still hold. The proofs given in Sections 2

and 3 go through with slight modifications. For example, in the proof of Lemma
1 one should now choose K large enough so that

[Kd™3d%12% — 1 > 26X (a0)(1 + c,);
in the proof of Lemima 3, &, and m,(&,) — m,(a*) will converge (to o* and 0,
réspectively) at somewhat slower rates; similarly, the convergence rates in the
proof of Lemma 6 will be somewhat slower. The proofs of Lemmas 2 and 5 will

be unchanged, while Lemma 4 will be even easier (since the new procedure takes
more observations).
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There are a number of distributions, among them the Cauchy, the logistic, the
t distribution with various degrees of freedom, and the Tukey contamination
models, for which the asymptotic variances of the trimmed means are minimized
over all a € [0, Y] by some a* € (0, 12). Therefore, if one takes oy and «; close
to 0 and Y, respectively, one can in many cases achieve performance that is
asymptotically the same as for the optimal trimming proportion using the optimal
fixed sample size (among the class of all trimmed means). Moreover, by taking
ap = 0 and a; = %, one would hope to do reasonably well even when the best
choice of trimming proportion is really 0 or % (i.e., when the sample mean or
sample median is the best trimmed mean).

It would be of interest to develop fully efficient adaptive sequentlal estimation
procedures, along the lines of Beran (1974), Sacks (1975) and Stone (1975) for
the nonsequential case. Instead of determining sequentially an estimator and
sample size which are asymptotically efficient with respect to a particular class
of estimators (the trimmed means with trimming proportions in a certain range),
it would be nice to have ‘asymptotic efficiency with respect to the best fixed
sample size for a fully efficient estimator (one whose asymptotic variance is equal
to the inverse of the Fisher information). Such a procedure might be based on
estimates of the variance of a (nonsequential) fully efficient adaptive estimator,
made at each stage until a certain inequality obtained. The procedure would then
stop and estimate 6.

Finally, the results of this paper apply only to the case when the distribution
of the observations is symmetric about the parameter §. For asymmetric distri-
butions it also makes sense (maybe even more sense) to select the estimator as
well as the sample size sequentially: one would hope that the data would give a
good ideéa of the direction and magnitude of the skewness. Unfortunately, adap-
tation (or some extension of it) for asymmetric distributions is a very difficult
problem, one that has not yet been satisfactorily solved even in the nonsequential
setting.
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