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EXTENDED OPTIMALITY OF SEQUENTIAL
PROBABILITY RATIO TESTS

BY ALBRECHT IRLE
Westfdlische Wilhelms-Universitat, Mtnster

The problem of sequentially testing two simple hypotheses for a stochastic
process is considered. It is shown that, for arbitrary distributions P, and P;,
the following optimality holds for an SPRT which stops on its boundaries: If
« and 3 represent the error probabilities of the SPRT and a competing test

-has error probabilities a’ = « and 8’ < 8 then E,g(D,) = E,g(D,) for any
convex function g satisfying some minor requirement, provided P,(7’ < ») =
1 for the competing test. Here D, and D,- denote the terminal likelihood ratios
under the SPRT and the competitor. An analogous statement holds for
expectation under P;, and several applications of this optimality result are
given.

1. Introduction and preliminaries. We consider the problem of sequen-
tially testing two simple hypotheses for a stochastic process. In the i.i.d. case,
Wald and Wolfowitz (1948) established the optimality property of SPRT’s, see
e.g. also Lorden (1981), and this optimality carries over to continuous time
stochastic processes having a log-likelihood ratio process of stationary and
independent increments as noted by Dvoretzky, Kiefer and Wolfowitz (1953),
see e.g. also Liptser and Shiryayev (1978), Irle and Schmitz (1981).

In this paper we treat a general model in the sense of Eisenberg, Ghosh and
Simons (1976), i.e. there are no assumptions on the distributions under P, and
P; of the observed stochastic process, and our basic result extends the optimality
of SPRT’s in the following way:

If « and B represent the error probabilities of an SPRT which stops on its
boundaries, and a competing test has error probabilities o’ < « and 8’ < 3, then

EOg(D'r') = EOg(DT)

for any convex function g satisfying some minor requirement, provided
Pi(7’ < ©) =1 for the competing test. Here D, and D, denote the terminal
likelihood ratios under the SPRT and the competitor; an analogous statement,
of course, holds for expectation under P;. This result and several applications
are given in Section 2 of the paper.

The general model of sequential testing with which we are concerned takes
the following form: ‘

Let (2, &) be a measurable space, T = N or T = [0, ) the time set and
()t an increasing sequence of sub-g-algebras of <7 Let P, and P; be proba-
bility measures on (Q, 7).
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A sequential test for P, against P, is given by a stopping rule
7:Q— T U {oo}
and a terminal decision function
P:{r < oo} — [0, 1],

which is &7, N {7 < c}-measurable.
Let ¥ be a sub-g-algebra of oZ Then a % -measurable random variable U
with values in [0, 0] is called a density of P, | & with respect to Py | & iff

Pi(C) = f UdPy+ P (CN{U=1o}) forall CE€ %
C
U is denoted by dP, | £ /dP,| %

Let D = (D,).cr denote the stochastic process with
D, =dP, | ,/dP,y| <.

To obtain a stochastic process with well-behaved paths in the continuous time
case, we make the usual assumption that the filtration ( 7).cris right-continuous
and complete with respect to (P, + P;)/2, and according to Jacod (1979), (7.2),
we may then assume that D has right-continuous paths with left limits. Further-
more D, = lim,_,., D, exists, Po(sup,D, = ©) = 0 and

D, = dP,| &£/dPy| &4 for all stopping rules 7.

Interchanging P, and P, we also consider the stochastic process D = (D,).er, D,
= dP, | &4/dP; | o4 with properties as above, and we may choose D = 1/D.

We will now briefly discuss the Doob-Meyer decomposition of submartingales,
as it will be used later; for this discussion we assume

(Al) P,| o and P, | &7, are mutually absolutely continuous for all ¢ < oo,

Let g:[0, ©) — R be convex. If g(D,) is integrable for all t € T, then g(D) is a
Py-submartingale and we may now consider the Doob-Meyer decomposition

g(D) = M + A*

with respect to Py, where M? is a local Py-martingale with E,M% = 0 and A¢is a
process with increasing paths; see e.g. Jacod (1979), (1.53), (2.18). Likewise, we
have the Doob-Meyer decomposition g(D) = M¢ + A¢ w.r.t. P;. If, in the case of
continuous time, D has uniformly bounded jumps Py-a.s., then we obtain the
Doob-Meyer decomposition for any convex g (without the above requirement
of integrability), as g(D) is then a locally bounded P,-submartingale, i.e. there
exists a sequence (7,), of stopping times such that 7, — o Pj-a.s. and
g(D)™™ = (g(D). ae)eer is uniformly bounded Po-a.s. (take 7, = inf{t:D, = n}).

Let us denote by ¢ the set of all convex g with g(x)/x — « for x — =, such
that the Doob-Meyer decomposition of g(D) exists. & is defined likewise.
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(1.1) LEMMA. Foranyg € ¥ and any stopping rule  with E,A% < o we have
Eog(D), = E;A¢ and E,D, = 1.

PROOF. Let (7,). be a Py-localizing sequence of stopping rules for D and M,
i.e. (1,), is an increasing sequence tending to infinity Py-a.s. such that D™ and
(M#)™ are uniformly integrable martingales. Then

EOg(D)'r/\-rn = EOAfA-r,,’ EODTAfn =1

holds for all n.

The result follows from this by an argument as in the proof of Wald’s second
moment identity by Chow, Robbins and Siegmund (1979), Theorem 2.3. We just
remark that the condition g(x)/x — oo(x — ®) ensures the uniform integrability
Of (D-r/\r,,)n- D

2. Optimality of sequential probability ratio tests. We will now derive
the extended optimality of SPRT’s in the general situation as described in
Section 1. For constants a, b, 0 < a < b let us denote by ¥ (a, b) the set of all
convex functions g:[0, ©) — R such that g’(a) < g’(b) for some tangent slopes
in a and b.

(2.1) THEOREM. Let (7, ) be an SPRT with stopping bounds a < b, 0 < a <
1 =< b, and error probabilities a, B, such that D, € {a, b} Py-a.s. and P;-a.s. Then
for any sequential test (7', ¥’) with error probabilities a’ < a, B’ < B the following
holds:

Pi(7' <o) =1 implies
Ecg(D.’) = Eog(D,) forall g€ %(a,b),
Py(r' <o) =1 implies
E\g(D.') = E\g(D,) forall g€ ¥(a,b),
and all the inequalities are strict if (o', B’) # (a, B).
PROOF. Let g € ¥(a, b). We only consider the first inequality, since the

second is treated in a similar manner. It is obviously sufficient to show the
existence of u, v > 0 such that

Eog(D,) + ua + vB <'Eog(D,’) + ua’ + vB’.

Using convexity and the assumption g’(a) < g’(b) we easily obtain the existence
of constants u, v, ¢, d € R, u, v > 0, such that

g(x) + minf{u, vx} =cx+d forall x€ [0, o),
with equality for x=a, x=2b,
which implies a < u/v < b. By an argument used e.g. by Lorden (1981), we have

ua’ + v’ = Eymin{u, vD,} for any sequential test =/, ¥'),
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with equality for the SPRT (7, ¥). Now P;(7’ < ) = 1 is equivalent to E,D, =
1, and we thus obtain

Eog(D,)) + ua’ + vB’ = Ey(g(D,’) + min{u, vD,})
=c + d = E\(g(D,) + min{u, vD,})
= E.g(D,) + ua + v@8. 0O

The following examples show that the assumptions on the convex function g,
resp. on the competing test (7, ¢’), may not be omitted in general.

(i) Consider g which is linear on some interval [a;, b;], such that 0 < a; <a
< b < a,. Let (11, 1) denote the SPRT with stopping bounds a;, < b, and
error probabilities oy, 8;. Under the assumption D,, € {a;, b1} Po-a.s. and
P;-a.s. we then obtain Eyg(D,,) = Eog(D,), but a; < o and 8, < 8.

(ii) Let ¢ > 0 and define (r/, ¢’) by 7’ = inf{t € T:D, < ¢}; ¢’ = 0, thus o’ =
0, 8’ = P,(r’ < ). Consider g such that g(x) > 0 and g(x) — g(0) = 0 for
x — 0. It follows 8’ — 0 and Eog(D,-) — 0 for ¢ — 0, and thus for suitably
chosen ¢ > 0 we have o’ < a, 8’ < 8 and Eog(D,) < Eog(D,) for any
SPRT (7, ¥) as in (2.1), provided that Py(D- = 0) = 1.

To obtain a result which holds for any competing test we now use the Doob-
Meyer decomposition, and we assume validity of (A1) from now on.

(2.2) COROLLARY. Let (r, ?) be an SPRT as in (2.1). Then for any sequential
test (7', ¢’) with error probabilities o’ < a, 3’ < f

E)A% = EgA? forall g€ Y, b)N Y
E\A% = E\A¢ fordll g€ Y@@, bN E

and all the inequalities are strict if («’, 8').

PROOF. Again, consider only the first inequality. If E,A% = o then this is
trivially true. For EjA% < o we obtain from (1.1) EcA% = Eog(D,-) and EoD, =
1. Now obviously EcA¢ = Eyg(D,), and the result follows from (2.1). 0

Since the processes A¢, A% are increasing the following admissibility result
holds for an SPRT (7, ¥) as in (2.1):

There does not exist a sequential test (7/, ¢’) such that «’ < a, 8’ < 8 with
(a’, B’) # (a, B) and 7’ < 7 Py-a.s. or 7’ < 7 P;-a.s. Furthermore if A%, A% are

nonrandom for some g, g’, then the condition “r’ < 7 Py-as. or 7/ < 7 Pr-a.s.”
may be replaced by

“Pfr’ <t}) = Po({r<t}) fa. t or Pi({r' <t}) =Pi({r=st}) fa t.”

Let us remark that the admissibility result of Eisenberg, Ghosh and Simons
(1976) in this situation only yields the nonexistence of a sequential test (v, #’)
with the properties o’ < a, 8’ <8, (o/, ') # (o, 8) and 7’ < 7 Pp-as.and 7' =7
P,-a.s., but of course their result applies to more general tests (7, ¥).
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For a further discussion we now consider the case of continuous time, and
additionally to (A1) assume

(A2) Py| o4 = P,| 4, thus Dy = 1 Py-a.s. and Pl-a.s.,_ and P,| &7, and
P, | o/, are orthogonal, thus Py(D.. = 0) = 1 and P,(D. = 0)=1.

(A3) D has continuous paths Py-a.s. and P;-a.s., so that the same is true for
D =1/D.

In this situation we can apply (2.1), (2.2) to any SPRT and, as discussed in
Section 1, for any convex g we obtain the Doob-Meyer decomposition for g(D)
and g(D). Moreover, D may be represented in the following way: There exists a
local Py-martingale with continuous paths and Y, = 0 such that

D =exp(Y - 'A(Y, Y)),

see e.g. Jacod (1979), V1.1, where (Y, Y) denotes the previsible increasing process
associated with Y under P,. From the orthogonality of P, | %7, and P, | A one
may infer (Y, Y)e. = o Ps-a.s. and P;-a.s., see Jacod (1979), VIIL1, and Kabonov,
Liptser and Shiryayev (1979), and furthermore an easy application of Ito’s
formula yields

E(Y,Y), <o and E(Y,Y), <o

for any SPRT.
We will now show that a special choice of g leads to the increasing process
(Y, Y).

(2.3) COROLLARY. Let (7, ¥) be an SPRT as in (2.1). Then for any sequential
test (7', P') with o’ < a, B’ < B we have
EY,Y), ZE(Y,Y),, E(Y,Y), =E(Y,Y),,
and both inequalities are strict if (a, 8) # (a’, 8’).
PROOF. Consider g(x) = 2x log x for x > 0, g(0) = 0. By (2.2) it is sufficient
to show that
E)Af =E(Y,Y), and E,A%=Ey\Y,Y),

for any stopping rule o.
Define an increasing sequence of stopping rules (7,), by

7, = inf{t:(Y, Y), =nor D, & (1/n, n)},

then 7, < o and 7, — © (n — ®) Py-a.s. and P;-a.s. Now for any stopping rule ¢
by (1.1)

E0A§/\1n = EOg(Da/\r,,) = El(2Ya/\‘r,, - (Y’ Y)a/\'r,,)
= 2E1(Y11/\-r,l - (Y) Y)a/\-r,,) + E1<Y, Y)d/\'r,,-

As a consequence of Girsanov’s theorem we have E(Yonr, = (Y, Y)op,,) =0, see
e.g. Elliott (1982), 13.14, 13.19, which yields EyA%),. = E(Y, Y)on.,, and by
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monotone convergence (n — )
EA2 = E(Y, Y)..
For the second relation we use D = 1/D = exp(—Y + %(Y, Y)) and obtain
E,A%), = Eg(D)on, = Eo{Y, Y)orr, — 2Yons,) = Eo(Y, Y)onr,,

from which the assertion follows.

Now (2.3) yields the well-known result on the optimality of the SPRT for
sequentially testing about the drift parameter of a Wiener-process since in this
case we have (Y, Y), = vt for some constant ¥ > 0, and it also includes as a
special case the result of Liptser and Shiryayev (1978), Theorem 17.8, on the
sequential testing of two simple hypotheses for certain Ito processes.

Note that in the i.i.d. situation, this choice of g(x) = 2x log x yields optimality
in the sense of Wald and Wolfowitz for an SPRT which stops on its boundaries.

For a different application, consider the situation where we have a family
(Py)eer of probability measures with densities

dP,| 4,/dPo | o, = exp(8Y, — (6°/2)(Y, Y).),

for a local Py,-martingale Y, with continuous paths, Y, = 0. For 6, < 6, let (7, ®)
be an SPRT for testing P, = Py, and P, = P,,.
Considering g(x) = x”, ¥ > 1, we easily obtain the following:

Foreach 6<#6, or 0>, thereexists r(f)>0 suchthat
Eyexp(r(0)(Y, Y),)) = Esexp(r(0){Y, Y),)

for any (r/, ¢’) with o’ < @, 8’ < B and strict inequality holds if (e, B) #
(a’, B’). Although exponential cost structure is not of particular interest by itself,
this yields the following admissibility for an SPRT (7, ¥):

There does not exist a sequential test (7/, ¢’) such that ¢’ < a, 8’ <8, (o’, )
# (a, B) and 7’ < 7 Py-a.s. for at least one 6 < 6, or § = 0. “r" < 7Pp-a.s.” may
be replaced by “Py(r’ = t) < Py(r = t) f.a. t” if (Y, Y) is nonrandom, as it is e.g.
the case for Gaussian processes with common covariance kernel and mean value
function dm(t).
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