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SEQUENTIAL SELECTION PROCEDURES—A DECISION
THEORETIC APPROACH'2

By SHANTI S. GUPTA and KLAUS J. MIESCKE

Purdue University and University of Illinois at Chicago

Let =, - - -, m be given populations which are associated with unknown
real parameters 6, - - -, 6, from a common underlying exponential family %
Permutation invariant sequential selection procedures are considered to find
good populations (i.e. those which have large parameters), where inferior

- populations are intended to be screened out at the earlier stages. The natural
terminal decisions, i.e. decisions which are made in terms of largest sufficient
statistics, are shown to be optimum in terms of the risk, uniformly in
(6y, - - -, 0x), under fairly general loss assumptions. Similar results with respect
to subset selections within stages are established under the additional as-
sumption that & is strongly unimodal (i.e. log-concave). The results are
derived in the Bayes approach under symmetric priors. Backward induction
as well as the concept of decrease in transposition (DT) by Hollander,
Proschan and Sethuraman (1977) are the main tools which are used in the
proofs.

1. Introduction. Let 7y, - .-, 7, be given populations which are associated
with unknown parameters 6,, ---, 6, € Q, where @ C R is an unbounded or
bounded interval. Let the goal be to find a subset (of random or fixed size) of
populations with large parameters. Sequential procedures will be studied in a
general framework which covers the control and noncontrol, elimination (screen-
ing) and nonelimination, truncated as well as open-sequential settings.

Assume that at every stage m € N = {1, 2, - - -} samples { X;jn}j=1,....», can be
drawn from =;, i =1, - - -, k, where n,, is a fixed common sample size. Let all the
observations be real-valued, independent, and have densities with respect to g,
the Lebesgue measure on 2 = R or the counting measure on 2 = Z (or any
other lattice on R). Finally, it is assumed that all these densities are members of
an exponential family & = {c(0)exp(8x)d(x), x € X }secq, Wwhere § = §; holds for
observations from #;, i =1, ---, k. Let Upp= Xij+ - -+ + Xin,,m be the sufficient
statistic for 6; at stage m with respect to the samples at stage m and let W,,
= Uy + --- + U, be the overall (up to stage m) sufficient statistic for 6;, i =
1, ---, k, m € N. For notational convenience, let U,, = (Ui, ---, Upn), V. =
Uy, -, Up), Won= (Wi, -+, Wi) =Us + --- + Uy, 0 = (6, ---, 6;) and
N.=n,+ ... + n,, m €N, in the following. Note that for every m € N, the
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density with respect to u, = u X --- X u of U, and W, are, respectively,
(1) ém)(u) = ?=1 cnm(ai)exP(oiui)dnm(ui)y ueE Q/ky e Qk’ and
gém)(w) = ?=1 CNm(oi)eXp(aiwi)de(wi): w E gk’ 0 e Qk,

where c.(6) = ¢(8)", and d, denotes the r-fold convolution of d w.r.t. u.

Next, an explicit definition will be given of what is understood to be a
(randomized) sequential selection procedure. Briefly, such a procedure can be
described as follows: At every stage, it decides either to stop (y), how many
populations to retain (¥), and which populations to select finally (), or not to
stop (1 — v), how many populations to retain (%), and which populations to
select for further examination at the next stage (). There is one restriction,
however, which is to be emphasized: Once a certain population has been elimi-
nated at one stage, it may never be selected at subsequent stages.

To make the definition more understandable, let us introduce the notation

Sn=1(s, -+, Sn) withs,, Cs,,_; C ... Cs,, for the situation at the end of stage
m — 1, if populations 7; with i € s,4+, have been selected at the end of stage r, r =
1, ---, m — 1. Thus, S, = s, = {1, ---, k} is the initial situation, S; = (s;, s3)

means that the populations with indices in s, have been selected at the end of
stage 1, and so forth. By identifying populations with their indices, selections
from {1, - - -, k} are to be understood in a natural way.

DEFINITION 1. (Sequential selection procedure (v, ®, @, ¥, ¥)). The defini-
tion is given by induction with respect to the stage number m = 1. The starting
conditionis S; =8, ={1, ---,k}and r, = k.

STAGEm. IfS, = (s, - -, sn), take additional observations from populations
m; with i € s,,, 1.e. observe U,,, when i € s,,. The decisions at this stage are based
on 5 different decision functions. It will prove to be useful to write them as
functions of V,, = (Uy, - --, U,,), but it is understood (and clearly indicated by
notation) that they depend only on the really observed U, with i € s,, p = 1,
.-+, m. The decisions are made according to the following scheme.

Either, with probability vs,(V,), the procedure stops, then, with probability
®, 5. (Vn), it decides that rm.1 € {0, 1, - - -, rn} populations are to be selected
from s,,, and finally, with probability ¥ ... ...s,(V=), it selects s,+1 C s, with
| Sm+1| = rm+1 (Where | - | denotes subset size); or, with probability 1 — vs_(Vn),
the procedure does not stop, then, with probability ¢, . .s,(Vn.), it decides that
rm+1 € {1, 2, - - -, rn} populations are to be selected from s,,, then, with probability
Jsm“;,msm(vm), it selects s+ C s, with |S,+1| = rm+1, and the procedure
continues at stage m + 1. This process is continued until it is stopped. The
procedure is said to be truncated at stage g if ys, = 1 for all possible S,.

Our main interest is on permutation invariant sequential selection procedures
which treat all k populations symmetrically. More precisely, they are defined as
follows.
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_ DEFINITION 2. (Permutation invariant procedures). A procedure (y, ¥,
?, ¥, ¥) is called permutation invariant if for every m = 1, the 5 decision functions
at stage m are permutation invariant in the following sense. Let S,, = (sy, - - -,

Sm), V,, = v,, and permutation ¢ of (1, - - -, k) be fixed. For notational conven-
ience, let ¢(S) = (o(s1), - -+, 0(sn)), where o(s,) = {c(i)|i E s}, r=1,---, m,
and let o(v,,) = (o(wy), - - -, o(uy)), where o(u,) = (Uoyr, =+, Uiyr)s F =1, + - -,
m, Vv, = (ay, -+, Wn). Let a(s,,+1) have an analogous meaning. Then

Yos(Vm) = vs,(a(Vn)),
(2) ) Sarmﬂ;a(S,,,)(vm) = ‘prmﬂ;Sm(a(vm)),

Volsmirmn (S (Vi) = VYsnaiirmn,Sn(0(Vin)),

and the conditions for ¢ and ¥ are the same as for ¥ and y, respectively.

REMARK 1. The symbol ¢ is being used simultaneously for a permutation of
(1, ---, k) as well as for several other operations. There should, however, be no
confusion in the sequel, since the argument of o(-) always will indicate in a
natural way which operation is meant in the context.

Many procedures of the above type have been proposed in the literature. A
few examples for the noncontrol case will be given in Section 3. An example for
the control case is considered in Gupta and Miescke (1982a) where 2-stage
procedures are studied. Further references and examples can be found in Be-
chhofer, Kiefer and Sobel (1968) and Gupta and Panchapakesan (1979). In
contrast to noncontrol settings, in control problems (where 6,, - - -, 6, are to be
compared with a control value 6,), the empty set may be selected finally with the
interpretation that “no population is better than the control”.

A first step towards reasonable procedures is to find appropriate candidates
for decision functions ¥ and . The present paper is focusing on that point. It
will be shown that two natural versions y* and y* (cf. Definition 3) are optimum
under fairly general assumptions on the loss functions. Since cost of sampling
has no influence on these results, no assumptions in this respect are made
explicitly in the following. It should be pointed out, however, that in subsequent
steps, where v, ¢ and ? are considered, cost of sampling would play a crucial role
for finding optimum procedures.

ASSUMPTION (L1) (Loss structure).. For m = 1, let L,,(6, S,.+.) be a real-
valued loss which occurs at 8 € Q*, if at stage m the procedure stops at the subset-
configuration S,,+;. Let L, be permutation invariant and favoring parameters
with large values. More precisely, let

(33) Lm(oy O'(Sm+1)) = Lm(G’(O), Sm+1)a
for every permutation o of (1, - - -, k), and
(3b) Lm(oy Sm+1) = Lm(ey Sm+1)a
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if the following holds for one pair (i, j) with §; < 6;: For everyq € {1, ---, m +
1} with i € s, and j €& s, 5, = (s,\{i}) U {j}, and §, = s,, otherwise.

Assumption (3b) states that it is worthwhile in terms of loss to exchange the
roles of two populations in a sequence of selected subsets S,,41 = (51, - - -, Sms1)
if the better of the two populations is eliminated at an earlier stage than the
worse one.

The main purpose of this paper is to show that under fairly general conditions
the natural candidates for ¥ and y, Y* and ¥*, say, to be defined below, are
optimal with respect to the risk (expected loss) or the Bayes risk.

DEFINITION 3. (y* and ¥*). For every fixed m = 1, S,,, rns1 < | sm | and v,
=(uy, .-+, uy) ERM, let Y¥ ., s (v.) be equal to a positive constant for all
Sm+1 © Sm With | $p41 | = rmy1, which satisfy max{win, | i € $,\Sp+1} < minfw;, |j
€ Sm+1}, and let it be equal to 0 otherwise. Thus, s,,+1 C s, With | Sps1 | = Fps iS
selected if it is associated with the r,., largest values of w;, = uy + - -+ + Uim,

i € s, where ties are broken at random. Let y* = y* be similar.

2. Auxiliary results. Since by assumption (3a) the loss is permutation
invariant, every permutation invariant sequential selection procedure # =
(v, %, %, ¥, ¥) has a risk (expected loss) R(8, 2), say, at § € Q*, which is likewise
permutation invariant, i.e.

(4) R(6, &) = R(a(0), ), for every permutation ¢ of (1, ---, k).

Here and in the sequel we assume that the risk always exists, a condition
which is met at least for every truncated procedure, where the action space is
finite. (4) can be rewritten as

(5) R(8, #) = X, R(a(0), Z)(R))7!, 0 € QF,

where the sum is taken over all permutations o of (1, ---, k). Thus for every
fixed 6 € Q% R(6, #) can also be interpreted as the Bayes risk for that prior
which gives equal mass 1/k! to every point ¢(8), o permutation of (1, -- -, k). It
will prove useful and interesting on its own to study the form of Bayes procedures
with respect to any permutation invariant prior 7, say, which is defined on
2 (Q*), the Borel sets of Q*. By doing this in the following, we will assume tacitly
that the loss as a function of § € Q* always is measurable and integrable properly.
In the Bayes approach, the parameter vector is viewed to be random, denoted by
O = (0, ---, 6,) in the sequel, which has the probability distribution . The
Bayes risk of a procedure & under a (permutation invariant) prior then is given
by

(6) r(r, 2) = E[R(O, #)] = f Q* R(0, &) dr(0).

When studying the form of Bayes rules, typically posterior expectations and
the technique of backward induction will be applied. To simplify the derivation



340 SHANTI S. GUPTA AND KLAUS J. MIESCKE

of the main results, some useful facts will now be presented and proved separately
for convenience.

To begin with, let us consider a fundamental property of multivariate distri-
butions which was called “property M” by Eaton (1967) and, more recently,
“decreasing in transposition property (DT)” by Hollander, Proschan and Se-
thuraman (1977). Let % (-) stand for “Borel sets of” in the following.

DEFINITION 4. (Decreasing in transposition property (DT)). Let A, B €
P (R). A function h: A* X B* — R is said to be decreasing in transposition (DT),
if for every fixed a € A*, b € B,

(7a) h(a, b) = h(s(a), a(b)), for every permutation ¢ of (1, ---, k), and
(7b) h(a, b) < h(a, (b)), if for some permutation ¢ and i, j € {1, .. -, k},
(@ —a)bi—b) =<0, ¢0¢)=j, o(j)=1i, and o(r)=r for r#i,j.

A family {Ps}sep+ of probability measures on % (A*) is said to be decreasing in
transposition (DT) if for every b € B*, P, has a density hy(a), a € A, with
respect to a permutation invariant sigma-finite measure » on % (A*), such that
his DT.

LEMMA 1. Let A, B € B (R). If a family {Py}bep* of probability measures on
B (A*) is DT, then the posterior family with respect to every permutation invariant
prior on % (B*) also is DT.

PrROOF According to Definition 4, let Py, have a density h;, with respect to »,
b € B*, and let p be a permutation invariant prior on % (B*). Then, at a € A*,
the posterior distribution has a density g, with respect to p, which at b € B* is
given by

8 8a(b) = hn(a)g(a), where g(a) =1 / L , he(a) dpo(e).

Since g(a) = g(s(a)) for every permutation ¢ of (1, -- -, k), it is easy to see that
g is DT. Thus, the proof is completed.

The next fact is more closely related to the setting of the sequential selection
problem under consideration.

LEMMA 2. Let m =1 be fixed and let T be a permutation invariant prior of O
on B (Q*). Based on the joint distribution of (©, W,,, W,..,), let P%, denote the
conditional distribution of W1, given W,, = w, w € 2 *. If the function d(x),
x € 2, is log-concave, i.e. if the basic underlying exponential family F is strongly
unimodal, then the family { P%,}we o+ is DT.

PROOF. Let d be log-concave. Clearly, this holds true if and only if in the
family 7, every density c(8)exp(6x)d(x), x € Z, is log-concave, 0 € Q. Since in
the discrete as well as in the continuous case, log-concavity of densities with
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respect to u is being preserved under convolutions (cf. Barndorff-Nielsen, 1978),
the function d,(x), x € Z, is log-concave for every r € N.

Let m = 1 be fixed and let 7 be a permutation invariant prior on %(Q*). The
joint (marginal) distribution of (U,,+;, W,) in view of (1) has the following
density with respect to .

9) 6™V (u, w) = f i (w)gi™(w)dr(6), u, we 2*

Therefore, the conditional distribution of W,,,,, given W,, = w, has the density
with respect to us,

(10) £z |w) =6z — w, w) /fk gy (w) dr(9), ze€ 2~

After inserting the exponential families (1) into (9) and (10), one gets
(11) £z | w) = ay (2)Bw(@)an, (W), z € 27,

where a.(x) = [or [ c.(0:)exp(0;x;) dr(6), x € 2%, r €N, and
Bw(z) = [k dn,, (2 — wi), zE€ 2~

Obviously, the functions «, are permutation invariant. Moreover, standard ar-
guments show that 8 is DT if and only if d,_,, is log-concave. Since the latter is
given, £V is DT and the proof is completed.

In the remainder of this section, it will be shown that the loss structure, which
is described in Assumption (L1), is preserved under certain operations. First a
slightly more general and closely related structure will be introduced for conven-
ience.

DEFINITION 5. (Property 2 (m, A)). Let m=1and A € %4 (R) be fixed.
For every m + 1 disjoint subsets ¢, - -+, tp41 € {1, -+ -, R} Witht; U -+ U by =
{1, -+, k},let Tpyr = (t1, - - -, tms1), and let <, (a, Thni1), a € A%, be a real valued
measurable function of a. &, is said to have Property Z(m, A), if for every a €
A* and T, the following two conditions are satisfied.

(123) ym(ay OF(T‘m+l)) = _(/m(O'(a), Tm+1),
(T 1) = (o(ty), - - -, 6(tms1)), for every permutation o of (1, - - -, k), and
(12b) (@, Ts1) < Z(@, Trs),

if the following holds for one pair (i, j) with a; < a;: there exist integers a <f <
m + 1, such that i € tg, ] € t,, t. = (t.\{J}) U {i}, ts = (&\{i}) U {j}, and t, = ¢,
forq # a, B.

REMARK 2. The relationship between the assumed loss structure (L1) and
functions which have Property 2 (m, Q), m = 1, is of a fairly natural type. Let
m = 1 be fixed and let L,,(0, S,.+1) be the loss at 8 € Q* for Spi1 = (51, - - -, Sm+1),
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8§12 -+ 2 Spm41, at stage m. Let 7,(Sps1) = (51\83, $2\S3, + - -, $u\Spms1s Smar)) =
(&, - -+, tm+1) = T, say. Then ¢, - - -, t,, are the populations which have been
eliminated at stages 1, - - -, m, and £,,,, are the populations which are selected at

the end of stage m. Now, let £,(8, Trn+1) = Ln(8, Spt1), 0 € QF. Then it is easy
to see that L,, satisfies the loss assumptions (3) if and only if ., has Property
D(m, Q).

LEMMA 3. Let m =1 and A, B € #(R) be fixed, and let ., have Property
D(m, A). Let {h}vep be a family of densities with respect to a permutation
invariant sigma-finite measure v on %(A*), where h is DT. For every T, let

(13) Zn(b, Tri) = J;k Zn(a, Trii) ho(a) dv(a), b € B~

Then £, has Property 2(m, B).

PROOF. Letk0=0andk1, ey km+16{1, "',k} Withk1+ s +km+1=k
be fixed. For every T+1 = (b, -+ -, tms1) With || =k, r=1, ---, m + 1, and
everya€ Af let K,=ky+ --- +k,r=0,1,.--,m+ 1, and

(14) -%/l{(a,(a(]-)) Tty O'(k))) = —ym(ay Tm+1)7 k= (kly ) km+1),

for all permutations o of (1, ---, k) with ¢, = {e(K,—, + 1), -- -, o(K,)}, r=1, --
-,m+1.Let E={1, - .., k} and take the following auxiliary function %4: A* X
E* - R, where for every a € A%, %i(a, e) is defined by (14) if e € E* is a
permutation of (1, - - -, k), and where % (a, e) = 0, otherwise. Let %, be defined
analogously with respect to .. Then an equation analogous to (13) holds for
% and %.

Now let &, have Property & (m, A). Then, apparently, % is DT. Thus if h
is DT, by Theorem 3.3 of Hollander, Proschan and Sethuraman (1977), % i also
is DT. Therefore, ., has the properties (12a) and (12b) for all T',,, with | ¢, |
=k,r=1,..., m+ 1, and all b € B. Since this holds true for every k as
specified at the beginning of the proof, it follows that <, has Property
2(m, B). Thus the proof is completed.

REMARK 3. Eaton (1967) considered 1-stage procedures that select (in the
present notation) the k..., best, k,, second best, - - ., k; worst populations, where
ki, -+, k41 are fixed and predetermined with k + --- + k.1 = k. His loss
assumptions are analogous to Property 9(m, Q), where (12b), however, is
assumed to hold only for « = 8 — 1. Eaton’s (1967) main result states that the
natural rule is uniformly best in terms of risk, and it may be interesting to note
that his proof is essentially a combination of Lemma 1 and Lemma 3 of the
present paper. Further details are given in Remark 5.

LEMMA 4. Let m = 1 and A € B(R) be fixed. Let <, have Property
D(m, A). For every disjoint t,, -+, t, C {1, --., R} with t; U --- U t, =
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{1, ---,k}, let T, = (t1, - - -, tm) and
(15)  Lni(@ Tn) = min{ L@, (b, -+, tnosy Emy Emat))|
Zm U tAm+1 = tm, fm N £m+1 = g}y ae Ak-

Then £+ has Property 2(m — 1, A).

PROOF. Let a € A* and T, as specified in Lemma 4, be fixed. Then for
every permutation ¢ of (1, - -, k),

=gm—l(raﬁ(a-)y Tm)

= min{ym(a, O'(tly M) tm—l, Em, Em+1))| fm U fm+1 = tm, Zm N Zm+1 = g}

min{ Zn(a,(o(ty), -+, 6(tm-1), th, the)) | 5 U thir = o(tn),
th N tha = I}
gm—l(ar OF(Tlm))y

where the first equality follows from the invariance property (12a) of <. Thus,
.1 has the analogous invariance property.

Additionally, let a pair (i, j) be fixed with a; < g;, for which there exist o < g
< m with i € t; and j € t,. Let T = (£, - -, tw) with t, = (t\{j}) U {i}, ts =
(t:\{i}) U {j}, and ¢, = t, for ¢ # a, B. Two cases are considered separately.

CASE 1: < m— 1. Since in this case t, = tn, it follows that for all disjoint
tm, tm+1 Wlth t U tm+1 = tM)

gm(ay (tly M) Zm—ly fmy £m+1)) = gm(ay (tly M) tm—l, fm, £m+1))
holds, and therefore ~,_1(a, T.) < %uala, Ty).

CASE 2:8=m. Let t,,,, m+1 be disjoint w1th t, U fer =tm. Ifi € fm, let t,,
= (t \{L}) U{j}and tpe1 = tme1, and if i € tpir, let Tper = (Ems1\Mi}) U {j} and
tm = tn. Then in either case,

L@, (Fry -+, Bty By Ema1) < Zanl@, (b1, -+, tmety Emy Emsr))

where ,,, Ens1 are disjoint with Z, U Zn+1 = tn. This implies <, -:(a, T, <
“.-1(a, Ty), and thus the proof is completed.

REMARK 4. If a special sequential selection problem is given under certain
restrictions concerning the sizes of subsets to be selected (i.e., if there are side-
conditions with respect to ¥ or @), then an analogous result to that of Lemma 4
can be proved in essentially the same way. The minimum in (15) has then to be
taken additionally subject to these restrictions and some obvious changes have
to be made in the proof.

3. The main results. In this section, permutation invariant sequential
selection procedures which are truncated will be studied, i.e. procedures which
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stop no later than stage g, say. Results which as well hold true for untruncated
procedures will be so indicated. The loss is assumed to satisfy Assumption (L1)
given in Section 1. To begin with, consider the risk function for procedure & =
(’Yr SO’ ‘ﬁ’ ¢7 \Z) atg e Qk-

RO, ) = ¥ ¥s,,, Li(6, Sin1)E,
(16) . { :;;1 [1 - ')’Sm(vm)]saIsm+1|;Sm(Vm)\Zs,,,ﬂ;lsmﬂhsm(vm)

X Y5, (V)P 1sntis Vi) ¥sioistsian s (Vi) }
where the second sum is with respect to S;y1 = (s, - - -, 8i+1) with s;4; C 5, C - - -
Csi={1, --,k}and s; # &, and where v5, = 1.

The Bayes risk with respect to a permutation invariant prior r on Z(Q*) will
be studied in the sequel according to the rationale given at the beginning of
Section 2. It is assumed that the Bayes risk (6) exists. As has been pointed out,
this condition is met if 7 has a finite support. By standard techniques the Bayes
risk can be seen to be of the following form. For notational convenience, let
E'V= denote the conditional expectation, given V,,, m =1, - - -, g. Then

r(r, 2) = Elys,(V) 2o @i (Vi) X Suuyioton, Yoars,(VOEVIL(O, S)]
+ (1= 75,(V1) 2ia1 ris, (V1) Doicantat=n Pagirys,(V2) X -+
X EVrilys (Vi) B @ i50(Vi)
A7) X Zsscimtimt=rnmerirpersSn (V) BV Ln(©, Spas)]
+ (1 — vs,(Vn))
X 2 Pri5n(Vim) TemaContsnl=rmns Vamesimonssn(Vim) X -+
X ENer[Zr o +€;,05,(Vo)
S tat=rgs Hrosrons (VO EVALAO, Spul] -] -1,

Both (16) and (17) hold for untruncated procedures which stop almost certainly
in finitely many steps, provided of course that the Bayes risk exists. One simply
has to take ¢ = « in (16) and to omit the last factor in (17) which is associated
with stage q.

The first main result is with respect to the final decision and is the following.

THEOREM 1. Let @ = (v, ?, ?, Y, ¥) be a permutation invariant, ‘truncated
or untruncated, sequential selection procedure, and let @* = (y, @, @, y*, ¥).
Then under the assumptions concerning the loss and distributions which have
been made at Section 1,

(18) R, #*) < R(9, &), forall 6 € Q-
Moreover, if @ is truncated, R(0, #) < » for all § € Q*.

PROOF. Let m = 1 be fixed. Since, at stage m, W, is sufficient for § € Q*, in
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(17) for every S,.+1,
(19) EVn[L,(0, Spi1)] = E'Wr[L,,(0, Sni)l,

can be seen to hold almost surely, since the Lh.s. of (19) is a measurable function
of W,,.

In view of (1), under © = 0, § € Q*, W,, has a density with respect to up,
gim(w), w € 2 * which is DT. Let r be a permutation invariant prior on %(Q*)
for which the (truncated or untruncated) Bayes risk r(r, &) exists. Then, by
Lemma 1, the posterior distribution of O, given W,, = w, w € 2%, also is DT.

According to Remark 2, for 8 € Q* and S,.+; let Ths1 = Z,(Sme1) and
4,0, Trv1) = L,,(0, S,+1). Then, as noted there, ., has Property < (m, Q). Let

(20) L (W, Trs1) = EWn=Y[£(O, Tri)], wE 2

By Lemma 3, &, has Property & (m, 2°). Therefore it is easy to see that for
every fixed s;, -+, sy and rp4 < | S|, (20) is minimized subject to Sy,+1 C S
and | $41 | = P'ms1, for those s,,+; which are associated with r,,,; of the largest w;,
i € s,. Since now ¥*, _ s (W) gives equal mass to all such subsets and no mass
to others, it follows that r(r, #*) < r(r, £).

Let € Q* be fixed and let 7 be the prior which gives mass 1/k! to all points
a(8), ¢ permutation of (1, - - -, k). Then by (5) it follows that r(r, &) = R(6, &)
and r(r, 2*) = R(0, #*). Therefore, (18) holds, and the last statement in
Theorem 1 follows directly from (16).

In the remainder of this paper, four applications of the basic result given in
Theorem 1 will be studied.

APPLICATION 1. Procedures with vector at a time sampling. Assume that at
every stage m, samples of size n, are drawn from all populations, until the
procedure stops and makes a final decision. Thus, for every m = 1, the complete
vector U,, is observed and ‘7’r,,,+1;s,,. = 1(0) if rp+1 = (#)k, for every S,,. Then, as
an immediate consequence of Theorem 1, the following holds.

COROLLARY 1. For every permutation invariant procedure, no matter which
stopping rule is used, in the truncated as well as in the untruncated case, the
natural final decision y* always is uniformly optimal in the sense of (18).

A great variety of procedures for several goals and loss functions which fit
into this framework are covered by Bechhofer, Kiefer and Sobel (1968); most of
their procedures have the restriction n; = n, = . .. and do not eliminate (vector
at a time sampling). In all of their proposed procedures, the natural final decision
rule is taken as the “terminal decision rule”. The results stated above confirm
that this is optimal in the sense of (18), uniformly in § € Q*.

EXAMPLE 1. Barron and Gupta (1972) have proposed a procedure to find a
subset of normal populations (with unknown means and a common known
variance) which contains the best population with a probability no less than a



346 SHANTI S. GUPTA AND KLAUS J. MIESCKE

given P*. The procedure is of the sequential type, uses vector at a time sampling,
but does not make the natural final decisions. Instead, populations are marked
“rejected” or “accepted” at various stages according to a specified rule until all
populations are marked, at which time the procedure stops. In view of the results
stated above, such a procedure can be improved in terms of the probability of a
correct selection, and thereby retaining the P*-condition, by simply replacing
the finally selected populations by a subset of populations of the same size, which
are associated with the largest overall means.

APPLICATION 2. g-stage procedures with fixed subset-size at each stage. As-
sume that the number of stages g, say, is predetermined, and that the size of the
subset to be selected at stage m, R,..., say, is fixed in advanced as well, m =
1,.-,q. Thus, k=R = --- 2 Rgs1, v5,= --- = vs,, =1 — vs, = 0 and Pg,;s,
=...=%¥g.s,_,=1land Pg ;s = 1. In this case it can be shown that the natural
procedure is uniformly optimal provided % is strongly unimodal.

THEOREM 2. Let @ = (v, #, ¢ y, ) be permutation invariant, where v, ¥
and @ are given as specified above, and let #* = (v, ¥, @ y*, y*). If the basic
underlying exponential family % is strongly unimodal and the loss satisfies the
assumption (L1), then

(21) R(8, #*) < R(6, ), forall € QF

i.e. P* is uniformly optimal in the given subclass of procedures.

PROOF. (backward induction). Let 7 be any fixed permutation invariant
prior on g«?((lk)~which has a finite support. Consider (17) for any procedure &
= (v, ¥ P ¢, ¥), where v, ¥ and ¥ are given as specified above. Clearly, the
Bayes risk r(r, &) exists.

We start at stage g, the final stage. Here, by Theorem 1, the corresponding
component of ¢* is optimal. Let S, = (sy, - - -, s;) with |s;| =Ry, ---, | 84| = R,
and s; 2 --- 2 s, be fixed. According to Remark 2, let (¢, ---, ;) = T, =
Fa-1(8). Then, after having inserted the corresponding components of ¥ and y *
into the last line of (17), and after having replaced E'V+- by E!'W+-1 (the reasons
are the same as were used for (19)), the last factor in (17) which is associated
with stage g can be seen to be of the form

S%—l(wq—h Tq) = Elw‘l_l[S%—l(wq, Tq)]’ Where
(22) Lyer(w, Ty) = min{ (W, (ty, - - -, to-1, tay tgr1)) | b N tgur = B,

tg U fger = to, | fgr1] = Rena), W E 2%,

and where &, is defined by (20). The crucial point is that the component of y*
for stage ¢ remains optimal even if the component of { at stage g were allowed
to make use of V,, the complete vector of all samples.

As mentioned in the proof of Theorem 1, ., has Property 2(q, 2) by
Lemma 3. From Lemma 4 and the subsequent Remark 4 it follows that &,_; has
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Property 2(q — 1, ). Lemma 2 states that the conditional distribution of W,,
given W,_,, is DT. Therefore, another application of Lemma 3 implies that o
has Property 9(q — 1, Z).

Let us assume now that the components of the Bayes rule have been deter-
mined for stages m + 1, - - -, g for a fixed m € {1, - - -, ¢ — 1}, and that they have
been inserted, together w1th the associated components of v, ¥ and @, into (17).
LetS,,=(s1, -+, 8n) With | 81| =Ry, -+, | $m| =Rnand s; 2 - Qsmbeﬁxed
Similarly as before, let now T, = Z,-1(S,) = (t1, -+, tm) and assume that the
mth line of (17) has been reduced to, say,

E'vm_1[28m+1gsm,lsm+n|=R,..+1 ¢8m+1;Rm+1,Sm(Vm)
° S%m(wmy (tl’ R} tm—ly sm\sm+1y Sm+1))],

where <7, has Property 2 (m, Z).

Under these conditions, apparently, ¢ * R,.1,S, 18 Optimum. Moreover, it can be
concluded exactly in the same way as it was done for stage g, that for the optimum
decision function, (23) is a function Lns(W_i, T), say, where -1 has
Property 2(m — 1, Z). Therefore, the proof of Theorem 2 can be completed by
induction.

(23)

REMARK 5. All results derived so far hold true if at some of the stages the
corresponding sample sizes are taken to be zero. In the present setting, if one
takes ny = - - - = n, = 0, then the problem reduces to that one which was studied
by Eaton (1967), and Theorem 2 reduces to the main result of Eaton (1967) (cf.
Remark 3). Clearly, in this case the assumption of strong unimodality is not
needed in the proof of Theorem 2.

ExXAMPLE 2. Let 7y, -- -, 7, be normal populations with unknown means 6,,

., 0, and a common variance. Then at the end of every stage m the optimum
procedure selects from the populations which have survived so far (i.e., from =,
i € s,,) the R,.., populations which are associated with the largest overall means.

Somerville (1974) has proposed a 2-stage procedure in this setting with R; =
1, which differs from the optimum procedure in the second stage. Instead of the
overall means, the means of the corresponding observations from stage 2 only
are used. Somerville (1974) states that “intuitively the procedure. . . is inferior
since it ignores information obtained in the first stage.” Theorem 2 now confirms
this statement and, moreover, it determines the optimum procedure explicitly.
This does not diminish the value of Somerville’s (1974) results, since they can
be used now as approximations for the optimum procedure. The principle here
thus is the same as has been used in Example 1: the risk of a procedure using
optimal components dominates, uniformly in § € Q* the risk of procedures which
are modified with respect to these components. On the other hand, lower bounds
for, say, the probability of a correct final selection, are usually much easier to
compute for such nonoptimal procedures, as was mentioned by Somerville (1974).
Results in this respect can also be found in Gupta and Miescke (1982b).
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APPLICATION 3. g-stage procedures with fixed subset-size at stage q. Assume
that the number of stages, q, say, is predetermined and that the size of the subset
sq+1, to be selected finally at stage g, is fixed in advance. The proof of the next
result is the same as the first part of the proof for Theorem 2 and therefore
omitted.

COROLLARY 2. Let @ = (v, ¢, @, y, §) be permutation invariant, where y
and ¥ satisfy the conditions stated above. Let P’ = (v, @, @, y* '), where J’ is
the same as y except for stage q — 1: here ¥’ has the same component as y*. Then
under the same assumptions concerning the loss and & as in Theorem 2, R(9,
P')< R0, P), forall 6 € Q"

EXAMPLE 3. Gupta and Miescke (1983) have studied 2-stage procedures for
the problem of selecting a best population (if it is sufficiently “good”). Under the
same assumptions concerning the loss and the distributions, they have shown
that permutation invariant procedures for which the selected subsets at stage 1
as well as the finally selected population are associated with the largest corre-
sponding sufficient statistics, form an essentially complete class within all
permutation invariant procedures. This result can now be seen to be a conse-
quence of Corollary 2. The techniques, on the other hand, which have been used
by Gupta and Miescke (1983), are more similar to Eaton’s (1967) methods of
proofs.

APPLICATION 4. Bayes truncated procedures under i.i.d. priors. Assume that
the number of stages is admitted to be at most g, say. Thus vs, = 1 for all S,.
Let 7 be an i.i.d. prior, i.e. let Oy, - - ., O, be independently identically distributed
a priori according to a distribution p on £ (Q), where r = p X -.. X p. Let the
basic underlying exponential family ¥ be strongly unimodal, and assume that
the loss satisfies assumption (LL1) as well as the following.

ASSUMPTION (L2). Foreverym € {1, ---, q} and every S,.+1, let L,,(8, S,n+1)
be a function of only those 6; with i € s,,+1, § € Q.

THEOREM 3. If, under the assumptions stated above, there exists a Bayes
procedure, then there exists also a permutation invariant Bayes procedure of the
form —@B = ('YB, SoB’ SoB’ 'I/*’ ¢*)'

PROOF. (backwarq induction). Let the assumptions of the theorem hold,
and let 2 = (v, ¢, ¢, ¥, ¥) be any procedure with r(r, ) < «. In view of
Theorem 1, we can assume that ¥ = ¢* holds. We will improve & backwards
stage by stage with the help of (17), thereby constructing a Bayes rule of the
form . First, some auxiliary considerations with respect to ¥ and y* will be
made. '

Letme{l, ...,q}and S,, = (sy, ---, Sm) With s, 2 ... D s, be fixed. It is
easy to see that under the i.i.d. prior 7, the conditional distribution of O, given
W.. = w, is equal to the product of the conditional distributions of 6;, given W;,,
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=w,i=1 ---, kb, w € Z* Therefore, under the assumption (L2) and
in view of (19), it follows that for every S,+1 = (s1, - - -, Sm+1) With $p41 C sy,
E'V»[L,.(©, S,.+1)] depends only on those W,,, with j € s,.+1. This implies that
not only the component of y* for stage m but also that one for ¥ depends only
on those W;,, with j € s,,. The latter has the obvious minimizing property and
can be chosen to be permutation invariant. Inserting both optimum components
into (17), the factor of ys (V) if m < g — 1, or the integrand of EWVerif m=gq,
respectively, is seen to be of the form

(24) . /gm—l(wm’ Tm) = min{EH’m[Lm(ey Sm+1)]|sm+1 g sm},

where T,, = Z,-1(S,) according to Remark 2. By the reasons given above,
M m_l(Wm,~Tm) depends only on those W;, with j € s,, = t,. By using the
function &< ,,, which is defined by (20), it follows that

Myys(W, Tr) = min{ Zo(W, (t1, -+, tmsy tmy b)) | b N s = B,
(25) .
tm U tm+1 = tm}’

where in the proof of Theorem 1, it has been shown that <, has Property 2 (m,
). Therefore, from Lemma 4 it follows that _#,,_, has Property Z(m — 1, Z).

Now consider stage gq. Assume that y* as well as 5 have been inserted into
(17). By the auxiliary results derived before, the last factor in (17), which is

associated with stage g, for every S, = (5, - -+, &) and T, = F,-1(S,) is of the
form
(26) M qs(Woor, Tg) = BV llgo(W,, T)),

which depends only on those W, ,_; with j € §,. This follows from the analogous
property of _#,-, and from the fact that under the i.i.d. prior the conditional
distribution of W,, given W,_; = w, is equal to the product of the conditional
distributions of W,,, given W, ;.. = w;, i=1, ---, k, w € Z* Since #,_, has
Property 2(q — 1, &), # ,-, has the same property by Lemma 2 and Lemma
3.

Assume now that the Bayes procedure has been determined for the stages m

+1,m+2,---,qforafixedm€{l, --., g — 1}, and that it has been inserted
into (17). Let S,, = (s1, -+, sm) be ﬁxe~d. Assume further that for every S,.+; =
(~81, ccy Smy sm+1) WIth Sm+1 g Sm and Tm+1 = %(Sm+l), the resulting factor Of

Ysroirmns(Vim) in (17) is, say, # (W, Trms1), which depends only on those W;,
with j € s,+1. Finally, assume that .#Z,, has Property 2 (m, ).

Under these assumptions, the component of J* for stage m clearly is optimal
(Bayes). Moreover, exactly the same arguments as have been used with respect
to ¥ and ¥*, hold true now with respect to ?5 and ¥* at the same stage. For the
optimum components, the resulting factor of (1 — vs,(V,)) in (17), denoted
henceforth by A, me1(Wm, Th) with T, = 9,,-1(S,), has the same properties as
My—1(W,,, Tr), defined by (24), was proved to have.

Finally, the optimum (Bayes) stopping rule vp at stage m decides in terms of
the smaller of the two functions .#,,_; and .#,_,, and can be chosen to be
permutation invariant. Inserting it into (17), the mth line of (17) turns out to be
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of the following form.
2m Mpy-s(Weyy Tr) = EVrr[ 4], _(W,, Ton)]
where

o1 = min( Mp_1, Mm_1).

From #,,_, and #,,_,, #',_, inherits Property Z(m — 1, Z') as well as the
property that .#,_(W,, T,,) depends only on those W;,, with j € s,,. Therefore,
by Lemma 2 and Lemma 3, .#,,_, has Property 2(m — 1, 2'). By analogous
reasons as have been used with respect .Z,_,, #,_,(W,_,, T,,) depends only on
those W, ,,—; with j € s,,.

Since, apparently, we have arrived now at stage m — 1 at exactly the same
situation which was assumed at stage m, the result follows by induction.
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