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SPECTRAL FACTORIZATION OF NONSTATIONARY
MOVING AVERAGE PROCESSES

By MARC HALLIN

Université Libre de Bruxelles

We solve here the general nonstationary multivariate MA spectral facto-
rization problem, i.e. the problem of obtaining all the possible MA models
(with time-dependent coefficients) corresponding to a given (time-dependent)
autocovariance function. Our result (Theorem 8) relies on a symbolic gener-

~ alization (Theorem 1) of the classical factorization property of the character-
istic polynomial associated with stationary autocovariance functions, and is
obtained by means of a matrix extension of ordinary continued fractions. We
also give necessary and sufficient conditions for an autocovariance function
to be an MA autocovariance function and for a process to be an MA one
(Theorems 6 and 7).

1. Introduction. The usual approach to nonstationary problems, in time
series analysis, is to assume some suitable difference of the stochastic process
under study to be (second-order) stationary (in the univariate case; the idea is
somewhat more subtle for multivariate processes—a simultaneous differencing
of all the component processes being not always required—but essentially
amounts to the same).

Such an assumption is, of course, very convenient for practical purposes, since
it reduces any problem to the well-known stationary case. It is, however, exceed-
ingly restrictive. The only nonstationary processes satisfying this assumption are
indeed, in Box and Jenkins (1976)’s terminology, homogeneous nonstationary
processes; such processes are second-order explosive, and, if time ranges from
—o0 to 400, they even do not have a well-defined variance, which, in a second-
order theory, is quite a limitation.

As a consequence, processes with time-varying autocovariances—even the
simplest ones, such as periodical moving averages—are hopelessly excluded from
the analysis (periodic autoregressions can be treated by means of stationary
multivariate methods, Cf. Troutman (1979); periodic moving averages cannot).

The alternative—in a time-domain approach—would be the use of models
with time-dependent coefficients; and, since ARMA models with constant coef-
ficients proved to be very efficient in stationary problems, ARMA models with
time-dependent coefficients should also provide a very efficient framework for
nonstationary cases. This is, most plausibly, true for AR models: we showed in
Hallin and Ingenbleek (1981 and 1983) that—in the nonstationary case as well
as in the stationary one—AR(p) models describe the class of processes whose
autocovariance functions satisfy difference equations of order p (namely, the
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generalized Yule-Walker equations). As for the MA models, the very strong
argument in favor of their use (a process admits an MA(q) representation iff it
is g-dependent) is shown to hold also in the nonstationary case (Theorem 7
below).

The main statistical problem, in time series analysis, is the estimation, from
a finite length realization, of the coefficients of some adequate model for a given
process. Among several others, a well-known paper by Priestley (1965) uses a
frequency-domain approach, and a series of works by Mélard (1982) and Kiehm
and Meélard (1981) are based on a time-domain likelihood method for this
estimation problem; both are restricted to particular cases (evolutionary spectra
and linear/exponential models). However, a common feature of all the likelihood
methods is that they do not, strictly speaking, estimate the coefficients of a
model: more or less explicitly, they all provide an estimation of the process
autocovariance function, the “estimated model” being then any element of the
set (possibly restricted to a single element) of ARMA models associated with
this estimated autocovariance function. Accordingly, before starting with esti-
mation problems, the relationship between (nonstationary, i.e. time-dependent)
autocovariance functions and the possible models for them should be carefully
studied. The problem of obtaining the set of models corresponding to a given
autocovariance function is what we call here—in a time series analysis context—
the theoretical model-building problem; it is also known, in the engineering
literature, as the covariance factorization or (time varying) spectral factorization
problem.

In the autoregressive case, the links between an autocovariance function and
the corresponding AR model can be described by means of difference equations
(generalized Yule-Walker equations—cf. the above quoted papers).

Problems are much more difficult in the moving average case. In Hallin
(1981b), using continued fraction methods, we obtained a complete and explicit
solution for the univariate MA(1) problem. For lack of an adequate generalization
of continued fractions, we used another approach (Hallin, 1982a) in the MA(2)
case, but could not achieve as complete a solution as in the MA(1) case.

The present paper gives a complete, explicit and unified solution for the
general p-variate MA(q) model-building problem.

Section 2 presents the basic symbolic factorization property of the autocovar-
iance difference operator which is the nonstationary generalization of the well-
known factorization of the autocovariance characteristic polynomial.

In the third section, we introduce the theoretical model-building problem, and
show how it brings about a matrix generalization of the concept of (positive
definite) continued fractions: M-fractions. Section 4 is entirely devoted to the
study of the convergence and positive definiteness of M-fractions, which consti-
tute the mathematical setting required for Section 5. Finally, Theorems 6, 7 and
8 of Section 5 present the main results: a characterization of nonstationary MA
autocovariance functions, a generalization of a theorem by T. W. Anderson
bearing out the usefulness of time-varying MA models, and the explicit solution
to the general MA theoretical model-building problem. Section 6 gives an illus-
tration of these results in the univariate MA(1) and MA(2) cases; Section 7
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briefly discusses the potential application of the results and their connections
with related papers in the engineering and applied mathematics literature.
Throughout this paper, we use the following notation:

zZ=1{0,%1,=%2 ...}, N=1{0,1,2, ...}
kZ =10, £ k, = 2k, ...}

C stands for the set of complex numbers. Unprimed vectors refer to column
vectors, primes denote transposes. M = (Y; --- ¥,,), where the ¢;’s are m X 1
vectors, is the square matrix whose columns are ¥; -+ ¥p; | M| = |Y1 -+ ¥m |
is the corresponding determinant. Oy, stands for the k& X [ null matrix, and 1,,x
for the m X m unit matrix. E denotes mathematical expectation.

2. A factorization property of moving average autocovariance oper-
ators.

2a. MA processes and MA models. Let {¢;; t € Z} denote a real, p-dimensional,
second-order white noise:

E(eu) = Op)(l’ E(suef,) = 6uulp><pa u, v € Z.
Let A;;(j=0, ---, q) be real p X p matrices, and
(1) At(L) = At() + AtlL + ...+ Athq, t e Z

(L denotes the lag operator) a linear difference operator of order ¢ and dimension
p (hence, A, and A, have to be of full rank). Consider the p-variate process {z;;
t € Z} generated by

(2) 2 = At(L)Ct = At()et + At18t_1 + ... + Atqet_q, te %z

(in a quadratic mean sense, i.e. the variance of 2, — A,(L)e, is zero): z, is a p-
variate moving average process of order g(more briefly, an MA(q) process), and
(2) is a model for z; (an MA(q) model); A;(L) will be called the model difference
operator. z, is generally nonstationary, although time-dependent models may
generate stationary processes (see Hallin, 1981b, for an example).

Notice that the concept of an MA model or operator bears an intrinsic
indetermination: let indeed (O;; t € Z) be an arbitrary sequence of orthogonal p
X p matrices: the model

AtoOter + AnOiieey + - + Atht—qet—q = At(L)OtCt

cannot be considered distinct from (2),Isince {Oe.; t € Z} is still a second-order
white noise. We shall say that A,(L) and A;(L)O, are equivalent MA model-
operators, defining equivalent MA models.

2b. The autocovariance difference operator. Let T'y; = E(z,z}-;); of course, Ty;
vanishes for j > ¢. The matrices I';; are what we call the process autocovariances
attime t(j =0, 1, 2, - . -) (we use the terms autocovariance, autocovariance matrix
and autocovariance function, which we find convenient, instead of discriminating
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between autocovariances and cross-covariances); they are the blocks of the co-
variance matrix I' of the process. I' is an infinite symmetric band matrix, with
bandwidth not greater than 2p(q +.1)—1; as a block matrix, it has rows of the
form

(3) .- 0T ;+q,qr,t+q—1,q—l e 1—‘,t+1,1]:‘t011t1 e I1t,q—111tq0 e tEZ

and hence a “block-bandwidth” of (2q + 1) blocks.
A difference operator of order 2¢ (and dimension p) can be associated with I':
the autocovariance difference operator T',(L)

(4) Ft(L) = I1;+q,qLO + F;+q—1,q—1L + ..
+ T L9 + Tyl + Ty L + ... + T, L*, t€E€ Z.

In the case of stationary processes z;, generated by time-independent models, the
autocovariance and model difference operators take the form of matrix polyno-
mials

I'(L)=T,+T,,L+T,sL*+ ... + T{L "+ oL+ --- + T, L™
and
A(L)=Ay+ AL+ ... +A,LY
satisfying the well-known factorization property
(5) I'(x) = A(x)A’(1/x)x?, x€E€ C

(A’(-) denotes the polynomial obtained by transposing the matrix coefficients
in A(-)) or, in a more classical form,

'1/x)x?=A1/x)A’(x), x € C.

(5) cannot be expected to hold straightforwardly in the nonstationary case;
however, a Yule-Walker approach to the problem (cf. Hallin, 1981c), suggests a
symbolic generalization of this important factorization property. In order to
introduce this generalization, we first need to recall some concepts about differ-
ence operators.

2¢. The adjoint difference operator. Let a;,(L) = a;o+ anL + --- + a;,;Lbe a
scalar difference operator of order q. The one-sided Green’s function G(t, s)
associated with a,(L)(cf. Miller, 1968) can be defined as the value, for t € Z, of
the (unique) solution of the homogeneous equation a,(L)x; = 0 with “initial”

values x, = ayg, X;-1 = +-- = %—4+1 = 0. The adjoint operator af(L) is then
defined as
(6) af(L) = af + aAL + --- + ai Lt afj = Qsq-jq-i» tEZ

with the characteristic property that the Green’s functions G*(t, s) associated
with af (L) satisfy

(7) G(t,s) =-G*(s—gq,t), t,sE Z.
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This definition of an adjoint difference operator can be extended to the case
of multivariate difference operators: define the adjoint operator A¥ (L) of A.(L)
=Apo+AuL+ .- + Athq as

(8)  AXIL)=Alh+ALL+ --- + ALLY, A% = Alrgjas, tE Z

Such an extension should be legitimatized by some property analogous with (7).
Denote here by G(t, s) the matrix solution of A,(L)X; = 0(X; a p X p matrix;
t € ) taking “initial” values X, = Ay, X, = - -+ = X,_,+1 = 0, and designate
G(t, s) as the one-sided Green’s matrices associated with the operator A,(L);
accordingly, let G*(¢, s) stand for the one-sided Green’s matrices associated with
A¥(L). (A linear difference operator of order q defines vector difference equations
and matrix difference equations, denoted here by A,(L)y, = - and A, (L)X, = -,
respectively; of course, the columns of a matrix solution are themselves vector
solutions.) The following result can then be established (Hallin, 1982b):

(7) G'(t,s) =—-G*(s—q,t), t,s€E Z.

2d. Factorization of the autocovariance operator. We can now state the fol-
lowing result, characterizing the links between MA autocovariance operators and
MA model operators:

THEOREM 1. T (L) is the autocovariance difference operator associated with
some MA(q) model (of the form (2)) iff it can be factored into

9) I'(L) = A(L) ° A¥(L), t€Z

(° denotes the symbolic product of difference operators; recall that the symbolic
product of two difference operators is obtained by applying usual noncommutative
multiplication rules, the lag operator L operating on any time index appearing on
its right. EXAMPLE: ¢,L%d, 1L = c,d,_, L®).

PrOOF. The proofis immediate by expanding the symbolic product (2;A,;L’)
o(2; ALLY). If T,(L) = I'(L), (9) takes the form, for models with constant
coefficients, of an ordinary product of polynomials T'(L) = A(L) - A*(L);
moreover, A*(L) = A’(1/L)L?: (9) thus reduces to the classical result (5). 0

3. A first look at the model-building problem.

3a. Factorizing the autocovariance operator. How can the symbolic factori-
zation (9), which expresses the link between an autocovariance function and the
possible MA(q) models for it, be used for model-building purposes? Roughly
speaking, how can we solve equation (9) for A,(L) in terms of T';(L)?

The most immediate consequence of (9) is that any vector solution of
A¥(L)Y, = 0is also a solution of I',(L)y, = 0. Hence, if A,(L) provides an MA(q)
model for a process with associated autocovariance operator I',(L), the pg-
dimensional solution space of A¥(L)y; = 0 is a subspace of I',(L)y; = 0’s 2pq-
dimensional one. We may thus expect to solve the theoretical model-building
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problem by choosing appropriately pq linearly independent vector solutions of
T'«(L)Y: = 0, just as the appropriate selection of g out of the 2q roots of the
characteristic autocovariance polynomial led, in the univariate MA(q) stationary
case, to an adequate MA(q) model.

Such an approach was previously applied to the univariate MA(1) and MA(2)
cases in Hallin (1981 and 1982a). Continued fractions results and methods (more
precisely, properties of positive definite continued fractions—cf. Wall, 1948)
allowed for a complete and explicit solution in the MA(1) case only; our purpose
is to introduce here a quite natural matrix extension of the concept of continued
fraction, which will provide a complete and explicit solution for the general p-
variate MA(q) problem. Let us briefly show how such an extension naturally
arises from (9).

Consider again the MA(q) model (2); putting

2t &t Aw A cee Agg
2t-1 €11 0 At—l,O e At—l,q—z
zt — . .
Rt—g+1 Et—g+1 0 v At—q+1,0
Atq e 0
a=1 : L], tez,
At—q+2,2 e At—q+2,q 0
At—q+1,1 cc At—q+1,q—1 At—q+1,q

we have, of course,
2" z, = Aype; + Atlct—q, t € z,

{z;; t € qZ} is thus an m-variate MA(1) process (with m = pq), so that we may
concentrate most of our attention on the first-order multivariate case

(10) 2 = At{)et + A318t—1, t e Z.

Let 2, = E(z:2/) and T', = E(z;z}-;) stand for T';; and T';;: if 2, is generated by
(10), 2, and T, are nonsingular, and

Zi=AnAl + AnAl, Ti=AnAiL0 tEZ.

We shall refer to the sequence (Z,, I';; t € Z) as z.’s (time-dependent) autocovar-
lance function.

Now, let (Z;, T;) be a given MA(1) autocovariance function, and suppose we
want to solve the model-building problem by means of the symbolic factorization

(9). Consider m linearly independent solutions, ¢} --- ¢, of the homogeneous
vector equation I',(L)y, = 0:
(11) F;+1\!/t + Et‘Pt—l + Ft¢t—2 = 0, te Z.

The vector space spanned by ¢ --- ¢ is the solution space of any difference
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equation B¥(L)y; = (Bi+1,1 + BiL)y, = 0 such that
(12) Big'Biwin = —(Yir - Y)W - Y)Y, L E Z,

the operators B} (L) being thus symbolic divisors of T';(L).
Suppose that one of these operators, A¥ (L), say, is such that I',(L) = A,(L)°
A¥(L), hence providing an appropriate model for (2., T',): (12) can be written as

(127) ApAl = —Tin(Wi - YW1 - Y)Y, tEZ
or, equivalently,
(13) : AtlAtll = _Ft(lptl—2 s ll/f'iz)(l”—l ce lpﬁl)_l, t e Zz.

Denote by ®, the right-hand side of (13): &, is positive definite (p.d.).
Conversely, suppose that an m-tuple (¢} - .- ) is such that

“Tu(Yls - YR)Wht - YD = &,

is p.d. for any t € Z: we can choose a sequence of nonsingular matrices (A;;
t € Z) such that A;;A}, = &, t € Z. Define A as T' ;1 A/;L1: the corresponding
model operator A;(L) provides an appropriate solution to the model-building
problem, and it is easy to see that the set of models obtained from (¢ - -- ¢7)
by trying all the possible factorizations of ®, is precisely the equivalence class of
A,(L) (cf.2a.).

Summing up, we established the following result:

THEOREM 2. An m-tuple {y! --- Y7} of linearly independent (i.e. such that
|t - Y| #0, t € Z) solutions of T',(L)y, = 0 defines a solution to the model-
building problem iff &, = =T, (Yi—3 - - - Y2) (Y- - - - YI"1)7! is positive definite for
any t € Z. This solution is unique up to the orthogonal transformation equivalence
defined in Section 1la.

3b. Matrix continued fractions. What appears from Theorem 2 is the impor-
tant role played by the sequence of matrices ®,, and most of the next section will
be devoted to a study of their positive definiteness properties. Starting from the
definition, we have, substituting for ¥:_, in terms of Yi_, and y/_,

® =T [(Yi1 -+ YEDWie -+ Yo
=T [~ T/ CaWiz - %) + Toa(Wis - YR Wis -+ Y27
hence the prospective recursion ‘
(14) &, =T(2— &-1)7'T}, tE 2z
similarly, substituting for ¥!_, in tems of ¥_, and ¥,
= (Tln(i -+ ¥ + 2oy oo+ YD) Wi -+ P) ™
yields the retrospective recursion

(15) b, =2, - F;+lq)t_+ll I1t+1, tEe Z.
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Iterating (14) and (15) brings infinite expressions of the form

(16) F(Zim1 = Teei(Zemg = Tica(- - ) ' T i)' T i) 7' T

and

(17) 2= T = Tia(Ceee — Thia(c ) ' Teas) ' Tege) 7 T

formally, and all convergence considerations apart, (16) and (17) are matrix
generalizations of continued fractions such as

2 _ <'Yt2+1| _ 'Yt2+2l _ 'Y?+3| _ )
cee ],

and o
! |0?+1 |0?+2 |0'%+3

vil _ vl _ vl
lo?sr  lot2  lots

which appear in the univariate MA(1) spectral factorization problem (Hallin,
1981c¢). Two main questions thus arise: Do such expressions converge? Are their
limits positive definite?

4. A brief theory of matrix continued fractions (M-fractions)

4a. Definitions. (The value, when it exists, of our M-fractions is itself a matrix;
the elements of this matrix can be seen as generalized continued fractions in the
sense of Magnus (1977); the leading elements of our M-fractions are also gener-
alized continued fractions in the sense of Rutishauser (1958); the connection with
other definitions of generalized continued fractions is less evident (cf. De Bruin,
1978, Van der Cruyssen, 1979). In this section, we adopt the same presentation
as Wall (1948, Chapter 1).

Formally, a matrix continued fraction (shortly, an M-fraction) is an infinite
expression of the form

(18) By + Ai(By + Ax(Bz: + As(---)™)™)7,

where the m X m matrices A, and B,(p € N), called elements, are real matrices:
A, is called the pth partial numerator, and B, the pth partial denominator. The
finite expression

(19) F™ = By + Ai(By + Ay(- - - (Bpey + A,B7Y) 1))

is called (whether it has a well-defined value or not) the nth approximant. The
0-th approximant is taken as B,.

As in the univariate case, the nth approximant can also be seen as the value,
in W = 0 (the m X m null matrix), of By + ti°ts°-..ot,(W), with ¢, a linear
transformation

t,(W) = Ap(B, + W)™, p=1,2, -
By mathematical induction, it is easy to show that
tiotyo +-- 0t (W)
=A(G'(n=1, )W+ G'(n, D)G'(n = 1,0 W + G'(n, 0))7",
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where G (¢, s) is the Green’s matrix associated with the second-order equation
(20) Xt - B’tXt—l - A’tXt_g = O, t = 1.

Hence, F™ can be written as B, + A,G’(n, 1)(G’(n, 0))~".

Up to this point, we made only formal descriptions, disregarding existence,
nonsingularity and convergence problems; we are now able to make the following
definition.

DEFINITION. The M-fraction (18) is said to converge if at most a finite
number of its associated Green’s matrices G(n, 0) are singular, and if the limit
of its sequence of approximants

(21) F =lim,_.F™ = By, + A,lim,-.G’(n, 1)(G’(n, 0))™!
exists (componentwise) and is finite; the value of a convergent M-fraction is
defined to be the limit (21).
4b. Positive definite M-fractions. Of particular interest, in our model-building
context, are the M-fractions with elements of the form
A, =-C;55Comy, B,=C/Z1S,, (p=1,2,--.),

with C_; = 1 and C, a full-rank m X m real matrix such that the infinite
symmetric block-tridiagonal matrix

So C 0 0
Co Si C O
(22) C = 0 Ci S G

0 0 C4% S

is positive definite (p.d.—Recall that, if we denote by M, the finite segment of
dimension n of a (semi-) infinite matrix M (i.e. the n X n square block in the
upper left corner of M), M is positive definite (positive semidefinite) iff all its
finite principal minors are p.d. ( positive semidefinite) iff M), M), Ms), - - - are
p.d. (positive semidefinite)).

Such an M-fraction will be called a positive definite M-fraction. It can be
written more conveniently

(23) So = Co(S1 — Cy(S; — Co(---)7'CH)ICHICI)'CYh
in the sense that its approximants F ™ take the form
F™ =8y = Co(S; — Ci(Se — -+ CoyS7'Clry --2)7IC))7IC,.

The coefficients of the difference equation (20) characterizing the approxi-
mants of (18) are expressed in terms of the elements A, and B, of (18); the
corresponding equation for (23) is

Xt - StC;_IIXt_l + C’t—]_Ct_—12Xt—2 = 0, t= 0,
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with Green’s matrices G(t, s). It is easy to see that the Green’s matrices H(t, s)
of

CtXt + StXt—l + C§_1Xt_2 = 0, t=0
are such that
H(t, 0) = (-1)'C7'G(t, 0) and H(t, 1) = (-1)""'C7'G(t, 1);

hence G’(t, 1)(G'(¢, 0))™' = —H’(t, 1)(H'(t, 0))7}, and the approximants F ™ of
(23) take the form F™ = S, + CoH'(t, 1)(H' (¢, 0)).

Clearly, expressions (16) and (17) involve p.d. M-fractions associated with the
autocovariance difference equation I',(L) X; = 0.

4c. Some properties of (finite) positive definite matrices. Before studying the
convergence of (23), we first state without proof a few lemmas on (finite) p.d.
matrices. All the matrices in this section are m X m.

LEMMA 1. Let A, B, C be such that A-B and B-C are p.d.: then A-C is also
p.d.

LEMMA 2.

(i) Let My, My, M,, --- denote a sequence of p.d. matrices such that M, —
M., is itself p.d. for n € N. Then M = lim,_..M,, exists, and is positive
semidefinite.

(ii) However, M is strictly p.d. iff there exists some p.d. matrix D such that M,
= D is p.d. for all n € N, or, equivalently, iff the determinants | M,, | are
uniformly bounded from below by some strictly positive number d: | M, | =
d>0,nEN.

(iii) In any case, M, — M isp.d., n € N.

LEMMA 3. Let A and B be p.d. such that A-B is itself p.d.: then B™' — A~ (as
well, of course, as B™' and A™') is still p.d.

4d. Convergence of positive definite M-fractions. We are now able to establish
the main theorem on the convergence of p.d. M-fractions.

THEOREM 3. Consider the positive definite M-fraction (23):

(i) all its approximants F™ are p.d.;

(ii) F*V = F®™ispd,n€EmN;
(iii) it converges, and its value is a positive semidefinite matrix F;
(iv) moreover, if we consider the p.d. M-fraction

(24) S1 = Cu(Se = Cp (---)7CE)'CY,

it converges to a (strictly) p.d. value Fy, = C4(Sy — F)™'Co; of course its
approximants also satisfy (i) and (ii).
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The successive points of the theorem give an indication for the proof. As for
point (i), it follows from the following lemma (as in Section 4b, denote by M,
the finite segment of dimension n of a (finite or infinite) matrix M):

LEMMA 4. (F"™)' = (Cih1)im, m<n € N.

PROOF OF LEMMA 4. In order to prove that F™ admits an inverse (F™)™!
which is the m X m block in the left upper corner of (C(,+1,), we shall establish
that the solution of the system (the unknowns Xi, X,, -- -, X,.; being m X m
blocks)

X, 1
X, 0
Cory | | =|:
Xnt+1 0
ie.
So X1 + Co X,

SO -

C6X1 + 81X2 + C1X3
CiXe + 8: X3 + C X,

Cln—IXn + San+1 = 0
is such that F™ = X7, By successive substitution, we obtain

X1 = "Sr_;lcr';—l ny
Xn = =(8Sp1 = Coy S7'CH-) 7Y

Xy ==(81 = Ci(Sz — - -+ CouiSF1Chy --4)7ICH)TICY,

and, replacing in the first equation,
X1 =(So = Co(S; — --- Cn—IS;IC;—l . ‘)_106)_1y

which is precisely (F)™. Now X, being nothing else than (Cjk41)(m) and C
being p.d., so is C(,+1), hence also X7'. 0

PROOF OF THEOREM 3. (i) From Lemma 4, F = X', which is p.d.
(ii) We assumed, in the definition of a p.d. M-fraction, the blocks C; to be
nonsingular; hence

F"™0 = F™ = Co(81 = -+ CpaSn-y = ComyS7'C o) IC sz - -)7ICH
—Co(S; = -+ CroS;LClL_y - )1Ch ‘
is p.d. iff
(St =+ CoyS7'Clhy -+ ) = (81 = -+ CrpS7LCly +- )t
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is p.d., which, according to Lemma 3, holds iff
Ci(Sz — -+ CoeyS31CHy -+ )T'CT = Ci(Sy = -+ CopS7LCH0)'CY

is itself p.d. Using the same arguments repeatedly, F'"™V — F™ js p.d. iff
C.-1S8,'C/, is p.d., which completes this part of the proof.

(iii) From (i) and (ii), we know that the sequence of approximants F™ satisfies
the assumptions of Lemma 2(i); hence the M-fraction converges to a positive
semidefinite value F.

(iv) Finally, denote by F{™ the approximants of (24); they are p.d. and satisfy
the assumptions of Lemma 2(i)—however, they also fulfill the additional require-
ment that F{” — C,S5'Cy is p.d. for any n. Indeed, F{” = C4(So — F ") 1Cy;
hence F{ — C4,S5'Co = C4((So — F ™)~ — §51) C, which, according to Lemma
3 again (C, is nonsingular), is p.d., F ™ being itself p.d. (cf. (i)). It thus follows
from Lemma 2(ii) that F; is (strictly) p.d. 0

4e. Positive definite M-fractions and infinite positive definite band matrices. In
this section, we consider infinite band matrices of the form

'CQ.SI‘CI

(25) C= C1 S G

Co S C.,

where the C;/s are nonsingular m X m blocks. We denote by C{ and Cy,
respectively, the submatrices

[ S, Ciu ]
Ct+1 St+1 C f:+2
C?- _ Ct+2 "S't+2 {:+3 ,
\ : . : . : . J
(26) ) )
S, C
C: Sy Coy
C = Ciy §t_2 c | :

as in the preceding sections, (C7)(,) and (C7 ) stand for the finite segments of
C; and Cr. Let also (F;)™ and (F7)™ denote the approximants of the M-
fractions

(27) S: - Cl:+1(St+1 - ,t+2(‘ . ')_ICt+2)_ICt+1
and
(28) S, = Ci(Si—y — Cia(---)7'CL0)7IC
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associated with C; and C;; whenever they are convergent, their values will be
denoted by F; and F;.

The following theorem gives a necessary and sufficient condition for C to be a
p.d. matrix.

THEOREM 4. C is p.d. iff, for some t € Z, the following conditions hold:

(i) C{ and C; are p.d. (hence, (27) and (28) are p.d. M-fractions)
(ii) Ff + F; — S, is positive semidefinite.

If (i) and (i) hold for some t € Z, they hold for any ¢t € Z.
Proor. If Cisp.d., (i) trivially holds; let us show that (F})® + (F;)? — S,
ispd.VteZ,Vk €N We have
(FOP + (FD)Y = S,
=8 = Cla(See1 — -+ CrrSilkCrsn -+ ) 7'Ciny
= C(Siey = -+ CopnSTECL 1y ---)7'CY
= (FH)"® - C.((F))7'Cy,
which (according to Lemma 3) is p.d. iff
(F)@Y = CL(FHM)TCo = (F)Y + (F)™) = Sy

is p.d. Repeating the same argument, we obtain that (F7)* + (F;)? — S, is p.d.
iff (Fi)@ + (FE)** — S,y is p.d.; now (Fi_)® = 8.y, and (Fi2)**", CL,
being p.d., is p.d. (Theorem 3(i)). Let k and | — o: F} + F; — S, as the limit of
a sequence of p.d. matrices, is positive semidefinite, V t € Z.

Conversely, suppose that C§ and Cq are p.d., and that F§ + F§ — S, is positive
semidefinite; in order to prove that C is p.d., it is sufficient to establish that
Ct, Ci, and F{ + Fi{ — S, are also p.d. and positive semidefinite. The positive
definiteness of C} is obvious; as for F{ + F7 — S,, it is positive semidefinite iff

Ci'(Fi + FT = S)Ci™!
= (C1(S1 = C(Sz = --)7'C)7IC) ™! = (So = Co( Sy = ---)7'CH)!

is positive semidefinite, which, in turn, applying Lemma 3 again, is positive
semidefinite iff

So = Co(S—y = ++-)7'Ch = C1(S; — C4Sy — ---)7'C2)7'Cy = F§ — (So — F?)
is positive semidefinite. Finally, C7 is p.d. iff | (CT))| > 0 V n € N; however

classical formulas for determinants of (finite) partitioned matrices yield

C1
0
[HCD sy | = 1(CTm |+ [ 81 = (C10 -+ O)(CT)m)]™

= [(COm | - |81 = Cil(COHHmC1].
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Now, from Lemma 4, we know that ((C5)ih)m = ((F5)™ V)7L C1 is thus p.d.
iff | S; — C1((F5)™V)71C* | > 0; but this latter determinant is nothing else than
| (FT)™|, whose positive definiteness follows from Theorem 3(i). O

The next theorem establishes the link between p.d. matrices and the p.d.
solutions of recursions such as (14) and (15).

THEOREM 5. Let (M,, t € Z) be a sequence of m X m matrices such that M,
= C(S;_; — M,_1)"'C, (or, equivalently, M; = S, — C'\.1 M7} C.y1) where C, given
in (25), is p.d.

M, is pd, t € Z, iff (Fi, — M,) and (M, + F; — S,) are simultaneously
positive semidefinite for some t, € Z. (F{ — M,) and (M, + F; — S,) are then
positive semidefinite for any t € Z.

Notice that, if C is p.d., there always exist sequences such as (M;, t € Z),
since we have then (Theorem 4(ii)) that F} + F; — S, is positive semidefinite:
particular cases are

(Ff,tez), ((S:—Fi), t€2z)
AF;+Q=-MNS.—F7),tezZ) (0<A<1).

Theorem 5 can thus be interpreted as an extension of Theorem 3(i). We also
have the following corollary:

COROLLARY. Let (M;, t € Z) and (N,, t € Z) satisfy the assumptions of
Theorem 5: if M,, — N, is p.d. (positive semidefinite) for some to € Z, M, — N, is
p.d. ( positive semidefinite) for any t € Z.

PROOF OF THEOREM 5. By definition, C.(S,.; — M,_))"'C; = M, = S, —
CliiM:4C,yy; C, and Cyy, being nonsingular, M, is p.d., t € Z iff (S;-; — M,-,)
and (C/ S, Ciy — M7h) arepd., t € Z. But S,_y = (F£)®, and (C/ii S, Cih
- Mt_+11) is p.d. iff (Lemma 3) M;,; — Ciy St Cloi =M + (F t_+1)(1) = Sii1 is
p.d. Hence, M, is pd., t € Z iff (F})® — M,) and (M, + (F;)? — S,) are p.d.,
t € Z. Reiterating this reasoning, we obtain that M, is p.d. for ¢t € Z iff],
simultaneously,

(29) (FH)Y® — M, pd., REN, tEZ
and
(30) M+ (F;)® -8, pd, REN, t€EZ.

When k — o, the expressions appearing in (29) and (30) converge, according to
Lemma 2(i), to positive semidefinite matrices; (29) and (30) therefore imply

(31) F} — M, and M, + F; — S, positive semidefinite, t € Z.

Conversely, (31), together with Lemma 1 and part (iii) of Lemma 2, imply (29)
and (30). So far, we have proved that M, is p.d., t € Z iff (31) holds. It remains
to verify that (31) holds for ¢t € Z iff it holds for some ¢, € Z, which immediately
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follows by applying to F — M, and M, + F; — S, the arguments leading to
(29) and (30).0

PrOOF OF THE COROLLARY. The corollary again follows by applying to M,,
— N,, the arguments leading to (29) and (30).0

5. The model-building problem.

5a. A characterization of MA autocovariance functions. In this section, we
adopt for covariance matrices I' (of the form (33)) the same notational conven-
tions as we used for C in the preceding section: I';, T'/, (T';),) etc. Whenever
T'/ and/or I'; are p.d., (16) and (17) converge: put then

&, =T,(Zimy = Tm1(Zpp — -+ )T /)T
(32) tE Z.
‘Iﬁ =2, - Ft,+1(zt+l — ‘)_lrt+1-

We can state the following characteristic property of MA autocovariances.

THEOREM 6. (Z;, I';; t € Z) is an m-variate MA(1) autocovariance function iff
@) 12| #0#|I\|,t€EZ
and

(i) the corresponding covariance matrix, of the form

Ft/+2 21 Ten
(33) I'= r {+1 2 | )
r{ 2. Tum

is p.d.

Condition (ii) can be replaced by:
(i)’ T'} and T';, are p.d. and ®7, — ®;, is positive semidefinite for some t, € Z.

COROLLARY. The set of all m-variate MA(1) autocorrelation functions is a
convex set, i.e. (A2 + (1 — NI/, A\F/ + (1 — MT/; t € Z) is an MA(1)
autocovariance function (0 = A< 1) if (Z/,T/;tZ)and (2!, T'/; t € Z) are (cf.
Anderson (1976) for a more complete but stationary result).

PrROOF. The equivalence between (ii) and (ii)’ immediately follows from
Theorem 4 and the definitions of & and ®;. Also, under conditions (i) and (ii),
&} and ®; are (strictly) p.d.: ®; satisfies the assumptions of Theorem 3(iv), and
&; = T(F7) ' '/, with F;_; the value of the p.d. M-fraction associated with
I';_1, and therefore satisfying the same assumptions.
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Now, suppose that (i) and (ii) hold; as we noticed at the end of Theorem 5,
there always exists at least one sequence (M;; t € Z) of p.d. matrices satisfying
recursions (14) and (15). Consider an m-tuple (¢} - - - ) of linearly independent
solutions of (11) such that

(pto = _Fto('p}o—z e V/Z)L—Z)(V/}o—l e MZ—I)_I be equal to Mto

(take, for example, (Y11 - - - ¢7—;) =1land (Y12 - - - Y1) = =T, M,, as “initial”
values). Since ®, and M, are solutions of the same recursions, we have ®, = M,
for any t € Z, and ®, p.d. Theorem 2 thus applies, which completes the “if” part
of the proof. The “only if” part is immediate, as well as the proof of the
Corollary. 0O

In his 1971 book, T. W. Anderson (pages 224-225) implicitly gives an impor-
tant theorem, which can be stated as “a second-order g-dependent (univariate)
stationary process always admits (in a quadratic mean sense) an MA representa-
tion”. This result has been extended for seasonal moving averages by O. D.
Anderson (1978), and is certainly the most convincing argument for using MA
models. We give it here in a general p-variate (by a p-variate process, we mean a
nondegenerate one, whose covariance matrix X, is never singular) nonstationary
context.

THEOREM 7. A p-variate process {z;; t € Z} with mean zero is an MA(q)
process iff it is second-order q-dependent, i.e. iff its autocovariances T, = E(2,27,)
exist and are such that | Tyu+q| #0and Ty yiqins1 =0foru € Z, n EN.

PROOF. Let {z; t € Z} be g-dependent. Its block-band covariance matrix T’
(“block-bandwidth” of (2¢g + 1) blocks) can also be seen to be a block-tridiagonal
matrix of the form (33), with block-triangular blocks I'; (after renumbering) of
dimension m = pq

I‘u,u—q
1-‘u—l,u—q I‘u——l,u——q—l 0
I, = : c. ;
Fu—q+1,u—q I‘u——q+1,u—q——1 Fu—q—l,u—q——Z e 1-‘u—q—l,u—Zq—l

these m X m blocks T'; are nonsingular, since the p X p “subblocks” T, ,—, are
nonsingular, and T is p.d. Hence Theorem 6 provides an equivalence class of pg-
variate MA(1) models for the pg X 1 vector z, = (2,2} - - - 2u—g+1)’. Within this
class there exists at least one operator A;, + A;; L with nonsingular and lower
triangular A,;; the corresponding A is then TI';,;(A7}1)’ and is consequently
upper block-triangular. A,, and A,, are thus of the upper and lower block-
triangular forms required in (2). 0

5b. The main result. The solution of the model-building problem now im-
mediately follows from Theorems 2 and 6.
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THEOREM 8. Let (Z,, T; t € Z) be an m-variate MA(1) autocovariance
function, ®; and &7 the p.d. matrices defined in (32).

(i) If @, = &, for some t, € Z, then ®; = ®f for any t € Z, and there exists
one (and only one) class of equivalent models

2= T11(AZ1) O + AnOivey, tEZ
(34) with A, suchthat AjAL=®, tEZ
(O:; t € Z) an arbitrary sequence of orthogonal matrices

admitting (Z,, T;) as its autocovariance function.

(i) If ®F — ®;, is (positive semidefinite) of rank | (0 < | < m), then ®; —
&7 is (positive semidefinite) of rank | for any t € Z, and there exists a
(Il + 1)/2)-dimensional set of classes of equivalent models admitting
(24, T',) as their autocovariance function. Any p.d. matrix ®,, such that ®;
— &, and ®,, — ¥, are simultaneously positive semidefinite defines such a
class, according to (34), ®, being obtained from the “initial” value ®,, by
means of the recursions (14) and (15).

PRrROOF. The proof is contained in Theorems 2 and 6. I(l + 1)/2 is the
dimension of the convex cone of the real positive semidefinite m X m matrices
of rank /; notice that {®, | ®, p.d., ¢ — ¥, and &, — P, positive semidefinite}
is a bounded closed subset of the /(I + 1)/2-dimensional real space.

6. The univariate MA(1) and MA(2) cases. The univariate MA(1) case
has been treated in (Hallin, 1981), in an autocorrelation function setting. The
MA(1) autocovariance operator reduces to I';(L) = v.411 + YL + vaL? with
vu = E(2,2,_;), and the M-fractions ®; and ®; are then the classical continued
fractions

_ Ya | viu|  Yeea | .
¢ = - - -
| Ye-1,0 | Ye-2,0 | Y¢-3,0
+ Yiei|  Yieei|  Yiesa |
Pr= 10— - - AR
| Yt+1,0 | Yt+2,0 | Yt+3,0

According to Theorem 6, we have ¥} = ¢; > 0, t € Z. For simplicity sake, let t,
= 0; applying Theorem 8, each point ¥, € [P7, ] defines a set of equivalent
solutions to the model-building problem, (a,, + a,; L), with

ah = —Ya¥i-2/Ve-1, sign(a;;a;-1,0) = sign(y:)
a?o = “‘Yt+1,1\//t/¢t—1,

¥: being the solution of the homogeneous equation of order two I';(L)y, = 0
taking on “initial” values y_; = 1 and ¢_, = — ¥, /v0:.
The univariate MA(2) case is detailed in Hallin (1982a). Letting again v, =
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E(2:2;—;), we have
df =3, — limp—w s
s (Zeae = Thea(Zees — - TheonZdorTesar - ) ' Toaa) 'Tiae
®; = limp—o. T,

. (Et—Z - Ft—Z(Et—4 - Ft—4(' . Ft—ZkEt—Z(k+1)I‘;—2k M ')_1F2—4)_1F,t—2)_1r,t

3, = Yo Y , T, = Yi2 0 )
Y1 Yt-1,0 Yi-1,1 Ye-1,2

Still assuming t, = 0, the operator A,(L) = a, + anL + a.,L? provides an
adequate MA(2) model for a process z, with autocovariances v,; iff

with

{amz,z = ’Yz+2,2/(’Yt0 - a?l - 0?2)1/2

te zZ
Qiv1,1 = (’Y:+1,1 - a:+1,2at1)/(‘Yto - 0?1 - a?z)l/zy
or, equivalently,
Q11 = (Y — 0:17:2/a:+1,2)/a:2
Ai-12 = Yt-1,0 — Q1,1 — (‘Yzz/atﬂ,z)

sign(a;—1,2) = sign(vy,-1,2)
with “initial” values belonging to the nonempty set

®, = ( a%z Qo1 Q12 ) p.d.,

2 2
Qo112 Qo1 + A

{001, Qp2, Q12
&3 — &y and ®, — P, positive semideﬂnite}.

An alternative expression of these models is also given, in Hallin (1982a), in
terms of solutions of the. homogeneous (scalar) difference equation of order four

Yeroo¥e + Yeer1¥e-1 + Yeode—z + Y-z + Yeobe-s =0, t € Z.

7. Concluding remarks. The three theorems in Section 5 (Theorems 6, 7
and 8) provide a characterization of nonstationary moving average processes in
terms of their (time-varying) autocovariances and an explicit solution to the
corresponding model-building (or spectral factorization) problem.

These theoretical results have immediate applications in system theory, where
the spectral factorization problem has been extensively studied (cf. below) and
in related areas of the mathematical theory of control and optimization. Our
main concern, however, and leading motivation in deriving those results, is the
statistical analysis of nonstationary time series.

Though we cannot exhibit at present a completed statistical application, we
are convinced that Theorem 8 provides the appropriate theoretical basis for the
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analysis of moving average processes with simple time-varying covariance struc-
tures. Simple time-varying covariances does not mean necessarily slowly evolving
ones. The structure of the likelihood function for MA processes with periodically
varying autocovariances, for example, is not very different from the corresponding
stationary one; it should therefore be quite possible to adapt the currently existing
estimation methods to this new situation. It follows indeed from Theorem 7 that
this class of periodic MA processes is precisely the class of (second-order) g-
dependent periodic processes, which of course covers a very broad and attractive
range of phenomena, and should be most useful in the analysis of seasonal time
series.

The estimation problem should also be tractable for processes generated by
MA models whose coefficients themselves obey some linear homogeneous equa-
tion, and the case of models whose coefficients are known analytical functions of
time has already been considered, from a practical point of view, by Mélard
(1982) and Kiehm and Mélard (1981).

Invertibility properties. It is well known that, for predictability as well as for
causal interpretation purposes, a moving average should be invertible in some
sense: “full” (linear) invertibility or, at least, the weaker asymptotic invertibility
property of Granger and Andersen (1978) is thus required.

The models obtained in Theorem 8 for a given autocovariance function should
therefore be classified according to their invertibility properties. In the univariate
MA(1) case, we established (Hallin, 1981b) that, for a given time-varying auto-
covariance function (and in the notation of Section 6),

(i) the only invertible model—if any—is obtained by choosing ¢, = ¥;:
denote by aj its coefficients.
(ii) the only Granger-Andersen noninvertible model—if any—is obtained by
choosing ¥, = ¥§: denote by a;; its coefficients.
(iii) for any model corresponding to an intermediate value 5 < ¥, < @¢
(denote by a;; its coefficients), the following hold:

lim,—_o(a; — af) = lim—ywla; — a;) = 0.

We are presently investigating these invertibility properties in the general
multivariate MA(q) case, in connection with Theorem 8. Up to now, we have
been able to show that (i) still holds (the proof relies on asymptotic dominance
properties of certain subspaces of solutions of homogeneous difference equations);
but (ii) and (iii) obviously need to be modified.

Related results. As mentioned above, the spectral factorization problem has
a long history in the engineering literature on time-varying systems (see B. D.
O. Anderson and P. J. Moylan (1974) or Halyo and McAlpine (1974) for more
extensive references). Anderson and Moylan (1974), more particularly, seem to
address the same problem that we do. Moreover, they are working in a more
general framework: continuous time, general ARMA models, singular as well as
nonsingular autocovariances. However, they do not give their solution in an
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explicit form, and they restrict their attention to finite time intervals t € [0, t,];
this simplifies the problem of choosing an initial value ®, for ®, — indeed, if the
process starts in ¢t = 0, ®, = 0 is always an adequate choice, which automatically
guarantees positive definiteness of ®, and positive semidefiniteness of ®; — &,.
Furthermore, because they do not have a necessary and sufficient condition
equivalent to our Theorem 6 for an autocovariance function to be an ARMA one,
they have to make an extendability assumption which cannot be expressed in
terms of the autocovariances.

Our results, together with the invertibility properties of the model associated
with ®,, make possible a causal interpretation for any variation in a given
covariance function.

Acknowledgement. We would like to thank the anonymous referee for
pointing out the connections between our problem and those treated in the
engineering literature.
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