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ON PROJECTION PURSUIT MEASURES OF MULTIVARIATE
LOCATION AND DISPERSION

By JAMES ALLEN FiLL' AND IAIN JOHNSTONE?

Stanford University

Huber (1981b) and Li and Chen (1981) have proposed the use of projection
pursuit techniques to construct and estimate measures of location and disper-
sion for multivariate distributions. In this paper we show that such measures
do not ordinarily commute with affine coordinate reexpressions unless the
distribution is centrosymmetric (location case) or elliptically contoured (dis-
persion case).

0. Introduction. Projection pursuit (PP) techniques for the analysis of
high dimensional data were introduced by Kruskal (1972) and Switzer (1970;
Switzer and Wright, 1971) and Friedman and Tukey (1974) and later applied by
Friedman and Stuetzle to a variety of problems, including regression (1980a),
classification (1980b), and density estimation (1981). The idea underlying PP is
to select “interesting” low dimensional projections by iteratively maximizing an
appropriate projection index, usually with the aid of a computer.

Huber (1981b) and Li and Chen (1981) have proposed the use of PP to
construct and estimate measures of location and dispersion for multivariate
distributions. When is such a measure equivariant under affine tranformations?
In essence we show that a PP location (dispersion) measure is equivariant if and
only if the univariate measure from which it is built is linear (quadratic) in an
appropriate sense (Lemmas 1, 4). This equivariance holds for all distributions
only when the univariate measure is expectation (standard deviation) (Theorems
2, 5). For a fixed multivariate distribution, all PP location (dispersion) measures
will be equivariant only when the distribution is symmetric through its center
(elliptically contoured) (Theorems 3, 6). We emphasize that these theorems
pertain to functionals on probability distributions. Corresponding estimators are
constructed in the usual way by evaluating these functionals at the empirical
distribution.

Thus PP measures of location and dispersion possess limited equivariance
properties. Nevertheless, for data generated from elliptically contoured distribu-
tions the PP dispersion estimators of Li and Chen (1981) perform promisingly.

Our results are developed in Section 1 (location) and 2 (dispersion) and proved
in Sections 4 and 5, respectively. Section 3 contains further comments and
discussion of some implications for data analysis.
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128 FILL AND JOHNSTONE

1. PP location. Let @ be a real-valued functional on a given class of
distribution functions F on R. It will be convenient to abuse notation by writing
QX for Q(F) when X is a random variable with cdf F. To define a PP measure
of location, we require that @ be a location functional:

QX +c¢) =bQX + ¢

for all choices of b, ¢, X. Examples of location functionals include expectation,
median, and M- and L-measures of location. Given a random vector X € R, p
= 2 fixed, define @, = Q;(X) by

Qo = sup{Q(a’X): [a| = 1}

and let a; = a,(X) be a maximizing direction. Huber (1981b) defines the PP
measure of location for . (X) based on @ as

TX = T(Z (X)) = Qoa,.

In the most familiar example, @ is expectation and TX = EX for X with finite
expectation.

When ¢ (X) has an unambiguous center u, TX = u for any choice of Q. More
precisely, suppose that . (X) is centrosymmetric through pu:

X—p=¢—-X-n.

From characteristic functions an equivalent condition is that & (a’(X — u)) be
symmetric about zero for each a € R”. For any location functional @ we find
Q(a’' (X — u)) =0, so that Q(a’X) = a’u and consequently TX = pu.

The PP location measure T is translation equivariant on the translation family

Tr(X) = {L (X + b): b € R}
generated by < (X) if
TX+b)=TX +b, b€E R

It is easy to see that T = E is translation equivariant on each Tr(X), and that
every PP location measure T is translation equivariant on Tr(X) if the given
< (X) is centrosymmetric. In fact, these properties characterize expectation and
centrosymmetry, respectively (Theorems 2, 3).

Huber (1981b) shows that translation equivariance forces @ to be linear:

LEMMA 1. T is translation equivariant on Tr(X) if and only if there exists a
vector u such that
Q(a’'X) =a’uy, a € RP,
and then
TX = p = (Q(X1), -+, Q(Xp))".

A data analyst desiring a measure of location not biased toward any placement
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or scaling of coordinate axes might require affine equivariance of T:
TAX +b) = A(TX) + b, A ER™, bE R

It is, however, an immediate consequence of Lemma 1 that a PP measure T is
affinely equivariant for X if and only if it is translation equivariant on Tr(X).

Choice of the projection index @ will depend on the family of possible
distributions of the input X to the PP location algorithm. At one extreme, if in
each instance X has a multivariate normal distribution, then @ = E seems a
sensible choice. On the other hand, if . (X) can have heavy “tails,” then a more
robust location functional @ might be desired.

If equivariance guides the choice of a location measure, one can ask for which
choices of @ the corresponding PP location measure T will be translation
equivariant on Tr(X) for each . (X) in a given class. The answer is in principle
provided by Lemma 1. However, Theorem 2 provides a more explicit solution
when ¢ (X) is completely unspecified, and Theorem 3 specifies when the choice
of @ is totally unrestricted by equivariance.

Huber asked if there are any PP location measures other then expectation
which are translation equivariant for all vectors X. The answer is no if @ is
nonnegative (X = 0 implies QX = 0).

THEOREM 2. If the PP location measure T corresponding to a nonnegative
location functional @ is translation equivariant on Tr(X) for each X with finite
expectation, then Q@ = E.

Changing the point of view, we now regard the distribution of X as fixed and
let @ vary. The next theorem shows that every PP measure Ty, is equivariant for
a genuinely multivariate X only when X has a centrosymmetric distribution.

We call X one-dimensional if X =4 u + Zb for some u € R?, b € R”, and scalar
random variable Z. Since

Qa’X) =a’'(u + (QZ)b), a E R?,
it follows from Lemma 1 that each Tq is translation equivariant on Tr(X) with
TeX = p + (QZ)b. If < (Z) is not symmetric, then T¢X varies with Q.

THEOREM 3. Suppose that Tq is translation equivariant on Tr(X) for each
nonnegative location functional Q defined on { < (a’X): a € R?}. Then < (X) is
either centrosymmetric or one-dimensional.

2. PP dispersion. Analogous results apply to multivariate PP measures of
dispersion. We now require the projection index @ to be a scale functional on
cdf’s:

QX +c)=|b| QX

for all b, ¢, X. Let X € R” be a given random vector. Following Huber (1980,
1981b) and Li and Chen (1981), we construct a PP pseudocovariance matrix S (X)
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for & (X) using the principal components algorithm. Let
A = sup{Q*(a’X): la] = 1}

and let a; be a maximizing vector. Subsequent pseudo-eigenvalues \; and pseudo-
eigenvectors o; are found successively by restricting a to the orthogonal comple-
ment of the space spanned by the eigenvectors found previously. We then define

S(X) = Ef=1 Naia! .

In particular, if @ is standard deviation SD and X has covariance matrix X
then S(X) = ¥ and the PP algorithm yields the principal components of variation
in ¥ (X).

Let & (X) be spherically symmetric about zero, i.e., suppose that I'X =, X for
each orthogonal matrix I' € R”*?, An equivalent condition is that a’X =, X, for
all |a| = 1, from which follows

Q*@X)=k|al’, a€Rr,

where k = kg = Q*(X,). Thus S(X) = kI; the lack of uniqueness of the sequence
(e, - -+, @) poses no difficulty.

More generally, X is said to have an elliptically contoured distribution with
center p and nonnegative definite shape matrix ¥ if there exists a (necessarily
symmetric) scalar random variable W such that

a’'(X — p) =, (@’ 3a)"’W, a € R’

(cf. Anderson and Fang, 1982). Through an appropriate change of coordinates, it
is again easy to check (cf. Li and Chen, 1981) that S(X) is a scalar multiple
(depending on Q) of X.

In the one-dimensional case X =; u + Zb we find likewise that S(X) is a
scalar multiple of bb’.

As remarked by Li and Chen, the PP matrix S(X) is in general symmetric,
nonnegative definite, location invariant, and, by virtue of its construction,
orthogonally equivariant:

S(I'X) = I'S(X)I'” for all orthogonal T.

It is natural to posit also that S be equivariant with respect to changes of
coordinate scale in R”: S(DX) = DS(X)D for all diagonal D. Since any p X p
matrix can be expressed as a product ¥DT of orthogonal matrices ¥ and I'" with
a diagonal matrix D € R”*?, we are led to require affine equivariance:

S(AX + b) = AS(X)A”, A E R, b € R".

Clearly covariance has this property, as does any PP operator S when .~ (X) is
elliptically contoured.

The following analogue of Lemma 1 shows that affine equivariance forces
Q%*a’X) to be a quadratic form in a.

LEMMA 4. S is affinely equivariant on
Aff(X) = { L (AX + b): A € RP*P, b € RP}
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if and only if there exists a symmetric matrix ¥ € RP*P such that
Q*@’'X) =a’'fa, a € RP,
and then

SX) =¥ = (o) = (AQ*(X: + X)) — QX)) — QXX))).

To obtain a characterization of covariance analogous to Theorem 2, we shall
require the scale functional @ to satisfy two monotonicity conditions, the first
designed for symmetric distributions and the second for arbitrary variables. Let
X and Y be random variables symmetric about u and », respectively. X is said to
be less dispersed than Y (X <; Y) if

| X — u| =|Y — v| stochastically.

Now drop the symmetry requirement and let X and Y have distribution functions
F and G, respectively. X is said to be less spread out than Y(X <, Y) if

F'v) - F'u)<G'v) -G '), 0O<u<v<l.

For definiteness we use left-continuous inverses, but any fixed convex combina-
tion of left and right continuous inverses would be an equivalent choice. These
definitions are discussed further by Bickel and Lehmann (1976, 1978).

A scale functional is dispersion (resp., spread) monotone if it is monotone
relative to the ordering <, (resp., <,). Both orderings are needed because in the
symmetric case <, compares too few distributions to be useful alone; for example,
(1/2)(8(-1) + 8(+1)) is not spread-comparable to the uniform density on (-1, 1).

Let Ly(L%) denote the class of all distribution functions (symmetric about
zero) with second moment. Since kQ is a scale functional if @ is, we suppose
henceforth that @ has been normalized so that

Q(‘/z 5(_1) + Y 5(+1)) = 1.

THEOREM 5. Suppose that S is affinely equivariant for all square integrable
random vectors of a fixed dimension p = 2.
(i) If Q is dispersion monotone, then Q* = Var on L$.
(i) If, in addition, Q is spread monotone, then Q* = Var on all of L.

Consider again the situation of . (X) fixed and @ varying. Theorem 6 says
that if every PP dispersion measure Sy is affinely equivariant for a genuinely
multivariate X, then . (X) is elliptically contoured.

THEOREM 6. Suppose that X has finite expectation, and that Sq is affinely
equivariant on Aff(X) for each scale functional Q defined on {< (a’X): a € R?}.
Then &£ (X) is either elliptically contoured or one-dimensional.

3. Further comments and discussion.

A. Higher dimensional starts. The question naturally arises whether wider
classes of affinely equivariant PP measures can be constructed if one begins with
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projections onto subspaces of dimension two (or higher). We examine this issue
for the more interesting dispersion problem; analogous comments apply to the
location case.

Let R2*2 denote the class of nonnegative definite 2 X 2 matrices. One approach
is to replace the real-valued pseudovariance functional @2 on univariate distri-
butions with an affinely equivariant R?*2-valued functional @ on bivariate
distributions. Choosing a total ordering on R?*?, we then search for the p X 2
matrix A with orthonormal columns which optimizes Q2(A’X); call this matrix
A;. By successively restricting the columns of A to the orthogonal complement
of those of the preceding A;’s, we obtain A;, A,, ---, A,z (assume p is even) and
define

S(X) = T4 AQUAIX)AL.

Suppose, however, that the ordering on R3*? is consistent with the partial
ordering of unit rank matrices (a b)’ (a b) induced by the trace a®> + b% Then
one can show that no new affinely equivariant PP dispersion measures S are
generated from this recipe: S(X) can also be built up from a univariate @
satisfying Lemma 4.

B. Directional data. We have seen that the term PP “location measure” is
in fact a misnomer since there exist distributions for which T is not translation
equivariant. As Donoho (1982, Section 4.3) notes, however, the corresponding
location measures for directional data do possess directional equivariance. For
example, let @ = median and let . (X) be concentrated on the unit sphere in
RP. Then TX is the central ray of the (infinite) cone of least angle containing at
least half the data. TX = TX/|| TX || is a measure of directional location: it is
equivariant with respect to rotations about the origin. We note in passing that
the empirically derived T(F,) converges slowly to T(F); in the case p = 2, for
example, the “shorth” argument of Andrews, et al. (1971, pages 50-52) implies a
rate of order n™'/3,

C. Implications for data analysis. The location and dispersion measures have
been considered as functions on theoretical distributions. Point configurations
(empirical measures) of samples from a continuous distribution are, with proba-
bility one, neither centrosymmetric nor ellipically contoured, even when the
parent distribution is precisely symmetric.

In fact, not even the distribution of a PP estimator is equivariant. We illustrate
the dispersion case. Let S, (X) = S(F,) denote the PP estimator of S(X), where
F, is the empirical measure based on X, - .-, X,. Then in general & (S,(4X))
# £ (AS,.(X)A’), even if < (X) is spherically symmetric. For a simple example,
take three observations from the uniform distribution on the unit sphere in R?
and let Q = range and A = (3 9). While the condition number of S;(AX) is at
least ¥4, there is positive probability that the condition number of AS;(X)A’ is
strictly smaller than .

At this point one asks—how important is equivariance? The answer of course
depends on the statistician and the data analytic situation. Equivariance may be
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less compelling, for example, when the original coordinates have valuable inter-
pretations. On the other hand, robust affinely equivariant location estimators in
R” are available (Donoho, 1982, Section 2.3; Stahel, 1981), but are expensive to
compute—currently, the best algorithms require about n(}) operations.

How much equivariance is lost by using the relatively inexpensive PP “location
estimators” in nonsymmetric situations? Unfortunately, the effect of coordinate
shifts can be arbitrarily large even for a standard normal distribution with a
fixed proportion ¢ of contamination at the point (x, 0)’. Using @ = median and
measuring location from (x, y)’, where y > x2/(26) with § = ®71(1/(2(1 — ¢))),
one finds TX = (x, 0)’. In contrast, TX measured from the origin is (4, 0)’. Note
that the unsatisfactory behavior of T is achieved only by moving the contami-
nation far (in the sense of Euclidean distance) from the symmetric center.

One possible remedy for nonequivariance is to choose the coordinate origin
via a true location measure T (e.g., coordinatewise median) and then apply a PP
operator T. The resulting measure T*X = T(X + T(X — T,X) is then translation
equivariant, and even rigid motion equivariant if T, is. Such a measure is typically
continuous with respect to e-contamination from centrosymmetry. To be specific,
let d denote the Kolmogorov metric d(F, G) = sup{| F(t) — G(t)|: t € R} on
univariate df’s and define the PP multivariate extension d(W, X) = sup{d(a’W,
a’X): [lall = 1}. Let b(e, F) = b(e, F, Q) = sup{| Q(G) — Q(F) |:d(F, G) < ¢} be
the bias contamination function (e.g., Huber, 1981a), and define b(e, W) =
sup{b(e, a’W):[lall = 1}. If W is centrosymmetric about some point and
d(W, X) = ¢, then we show

IT*X — T*W | =< (p + 1)*b(e, W)

provided ToX has ith coordinate Q(e/X), i = 1, ..., p. By the translation
equivariance of T* and invariance of the multivariate d and b, we may suppose
ToX = 0, so that T and T* agree at both W and X. But the projection of TX —
TW onto TX has length < b(¢, W), while the length of the residual does not
exceed | TW || = (T2%; Q*(e/W))2 < p'?b(e, W).

Other translation equivariant possibilities—computationally more expen-
sive—are to minimize J (x) = sup{Q; (a’(X — x)):[ a | = 1} or K(x) = sup{Q, (a’(X
— x))/Q:(a’(X — x)): [a| = 1}, where @, and @, are respectively location and
scale functionals. The latter solution is even affinely equivariant and, as with
other PP techniques, will inherit resistance properties from the projection indices

Q: and Q..
4. Proofs for PP location.

A. PROOF OF LEMMA 1. In Section 1 we tacitly assumed that the supremum
of @(a’X) over unit vectors a in IR” is achieved by some a,. More generally we
now suppose only that the supremum @, is finite, let a, be any limit point of a
maximizing sequence, and denote by {TX]} the set of all vectors Q,a, so obtained.

For an example demonstrating lack of uniqueness of TX, let @ be median and
ZL(X) = (145)(be, + de, + 6-¢,), Where e; are the coordinate vectors in R2. In this
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case {TX]} = {(¥, 1), (Y2, —¥2)}. Nonuniqueness also occurs if . (X) has uniform
density on the interior of the triangle with vertices e,, e;, —e,.

In this more general setting translation equivariance of T requires equality of
the sets {T(X + b)} and {TX]} + b for each b € R”. For an alternative proof of
Lemma 1, see Fill and Johnstone (1982).

B. PROOF OF THEOREM 2. A proof of Theorem 2 may be based on the usual
Riesz representation theorem for L? (Critchlow, 1981; described in Fill and
Johnstone, 1982, pages 17-18). We present here an elementary proof which
extends more conveniently to the dispersion problem of Section 5. Our argument
has four parts, the first three developing a characterization of expectation on any
atomless probability space in which the usual continuity requirements are re-
placed by the assumptions of nonnegativity of Q. We begin by establishing the
result for two point distributions.

1°. Let (Q, &7, P) be an atomless probability space and Q(-) = f(P(-)) a
finitely additive set function on o with Q(Q) = 1. If @ is nonnegative valued,
then Q = P.

To see this, choose p; and p, from [0, 1] with p; + p, = 1. P is atomless, so
there exist disjoint sets A; € & with P(A4;) = p; for i = 1, 2. Additivity of @
entails f(p; + p2) = f(p1) + f(p2). Combined with f(1) = 1, this easily yields
f(i/n) = 1/n for n =1, 2, ..., and then f(p) = p for rational p € [0, 1].
Nonnegativity of @ forces f to be monotone, and the conclusion follows.

2°. If u is a finite Borel measure on [0, ), then there exists an unbounded
increasing nonnegative function on [0, ©) which is u-integrable. Consequently, if
X = 0 is an integrable random variable on a probability space (2, <7, P), then
there exists an unbounded increasing function g with E(Xg(X)) < .

To prove this, it suffices to consider a cdf F on [0, ») having unbounded
support, so that t, = F7(1 — n™®) 1 « as n 1 o, where F~' denotes the
left continuous inverse of F. The monotone unbounded function g(t) =
Yn=1 ndg, ... (t) satisfies

fgdu < ¥ianll - F(t)] < Zian™? < oo

3°. Let (2, &7, P) be an atomless probability space and suppose that Q(X) =

Q(Z (X)) is defined for X € L,(Q) and satisfies
(i) @1=1,

(i) QX+ Y) =X+ QY regardless of the joint < (X, Y), and

(iii) X = 0 implies QX = 0.
Then @ = E.

First we note that conditions (i)-(iii) insure that 1° applies here; hence Q(I4)
= P(A) for each A € o/. Together with repeated use of (ii), this shows that
Q(al,) = aP(A) = E(al,) for rational a = 0. Monotonicity of @ yields the same
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relation for all @ € [0, »). Additivity then establishes QX = EX for simple
random variables X = 0, and an approximation argument based on the monoton-
icity of € extends the equality to all bounded X = 0.

For unbounded 0 < X € L,, observe that for any ¢ € [0, «)

QX = E(XIix<) + Q(XIix>) = EX + RX,
where
0<RX= limqw l Q(XI{X>C;) < oo,

Let g be an unbounded increasing function with E(Xg(X)) < o, as provided by
2°. Choose M = 1 and c sufficiently large that g(c) = M. It follows that

Q(Xg(X)ixyx>q) = QXg(X)1x>) < MQ(XIix>),
whence
o > R(Xg(X)) = M RX.

Therefore RX=0and QX =EX forall0< X € L,.
Now for general X € L,, write X = X* — X~ and use (ii) to extend the identity
to all of L,.

4°. To finish the proof of the theorem, take (Q, o7, P) in 3° to be ([0, 1], Borel
field, uniform probability). Since @ is a location functional, Q1 = 1. Translation
equivariance of T implies that Q is finitely additive. Since the random variable
F~'(U) has cdf F when U is uniformly distributed on [0, 1], it follows that QX =
[6 F'(u) du = EX whenever E | X | < o.

C. ProoF OF THEOREM 3. We again fix dimension p = 2.

Let X be a given random vector, and 2 = 2xthe class of nonnegative location
functionals with domain at least { (a’X): a € R"}. For each Q € 2 let T(X be
the PP location measure for X.

For an arbitrary scalar random variable Z with distribution function F, define
G.Z to be the a-quantile (“2)(F~“(a) + F~®(a)), where F~*and F~* are, respec-
tively, the left and right continuous inverses of F. Define the “a-mid”

M.Z = (%) (G.Z + Gi1-.2).

With our definition of G,, M, is easily seen to be a monotone location functional.

Suppose now that .~ (X) is not centrosymmetric. Rotating and translating
< (X) if necessary, we may suppose (Lemma 2.1) that med(a’X) = 0 for a € R?
and that & (X;) is not symmetric (about zero); here med = M. 1/2. In this case
there exists a € (0, %) for which M_X; # 0.

We define the relation of affine equivalence on distribution functions by
decreeing for scalar random variables Y, Z that Y ~ Z if there exist real constants
b # 0 and c such that Z =; bY + ¢. Now construct a nonnegative location
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functional @, in 2 by setting
{bMaXl +c if Z=4bX,+c;

Q.Z =
med Z, if Z #X;.

We show that location equivariance of Tq_ forces all projections a’X to be
equivalent. For suppose to the contrary that Y = a/X » X;. Then Q.Y =
med(a;X) = 0 and hence, by Lemma 1, Q.(cX; + Y) = cM_.X; # 0 = med(cX,; +
Y) for ¢ # 0. Consequently ¢X; + Y~ X, forallc# 0. ButcX; + Y—;Yasc—
0, so by the convergence of types theorem (e.g. Breiman, 1968) Y ~ X;. This
contradiction forces the conclusion that for each a € R” there are scalars b(a),
c(a) with a’X =; b(a)X; + c(a).

Equating medians we find that c¢(a) = 0. Lemma 1 shows that

b(a)@X, = Q(a'X) = a’(QX;, ---, QX})’

foralla € R” and Q € 2. Let b, = b(e;) and b = (b, ---, b,)’. It follows that
QX; = bjQX; and hence that b(a)QX, = a’bQX;. Taking for @ the Q, constructed
above allows us to divide by @.X; # 0 and conclude that b(a) = a’b. Therefore
a’X =; a’bX, for all a € R”, so that X =, bX, is one-dimensional.

REMARK 4.1. The location functional @, employed in the proof of Theorem
3 is indeed nonnegative, but quite irregular. If the hypotheses of Theorem 3 are
strengthened by the requirement that T4 (X) = u be independent of Q € 2, then
the class 2 may be reduced to the collection {M,: 0 < a < ¥} of a-mids. See Fill
and Johnstone (1982, page 20).

5. Proofs for PP dispersion.

A. PROOF OF LEMMA 4. In proving Lemma 4 we do not require that S(X)
be uniquely defined, the general requirement for affine (linear) equivariance
being that the sets {S(AX)} and A {S(X)}A’ agree for each A € RP*®; the notation
here is as in Section 4A.

Suppose first that S is equivariant. Let A € R”*Pbe the matrix with first row
a’ and all other rows 0’, so that AS(X)A’ = diag{a’S(X)a, 0, - - - , 0} and AX =
(a’X)e,. It is easy to see that S(AX) = diag{@?*(a’X), 0, - - -, 0} uniquely. Thus
affine equivariance implies that @*(a’X) = a’S(X)a for all a € R”. Hence {S(X)}
is a singleton whose element we denote ¥

Conversely, if the quadratic form equation

Q*(a’X) = a’'fa

holds, then the relations @*(a’AX) = Q*((A’a)'X) = a’A¥A’a show that S(4X)
= AZA’ uniquely, with ¥ = S(X).

We now identify the entries o;;of ¥ = S(X). Putting a = e; and then a = e; +
e; in the quadratic form equation shows that

ai\i=Q2(Xi), a'ij=C(Xi$)(j)9 l=17 ey Dy ]=1$ IR )
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where the pseudocovariance functional C is defined by
C(Y, Z) = (WIQXY + Z) — QXY) — Q%(2)]

and depends only on the joint distribution of Y and Z. In these terms the
quadratic form equation takes the form

Q*(Tr: a:Xy) = Y2, YP, aa,C(X;, X)),

For future reference we note first that if Y and Z have the same joint
distribution as Y and (—Z), then C(Y, Z) = 0. Secondly, if @2 is of quadratic
form on a linear space .# of random variables on a given probability space, then
C and Q define a semidefinite inner product and seminorm, respectively, on _#.
In particular, the parallelogram law and triangle inequality then hold for Q.

B. PrOOF OF THEOREM 5. We prove a weakened version of Theorem 5
assuming affine equivariance of S for every dimension p = 2; see Fill and
Johnstone (1982, page 26) for the extension to fixed dimension.

1°. We first establish that Q2 = Var for symmetric three-point distributions:
with F, = pd-1) + (1 — 2p)do + pb(+1) we show

f(p)=Q¥F,) =2p, 0<p<1t

Since by convention f(¥2) = 1, it is enough to show that f(p, + p2) = f(p1) +
f (p2) whenever p;, p, and p;, + p, all lie in [0, Y2]. For then the argument of 1°
of Theorem 2 establishes f(p) = 2p via monotonicity of f, which here is a
consequence of additivity of f and the fact that Q2 = 0.

To show additivity, pick four mutually exclusive events A;, A{, A, A} from
an atomless probability space with P(4;) = P(A!) =p;,i=1, 2. Then

f(p1+ p2) = QL — In,] + [La; — L,))

= QIx — L)) + Q*Un; — L,) = f(p1) + f(p2);

C(IA; - IAI’ IAé - IAz) = 0 since _(/(IA; - IAI’ IAé - IAz) = .5/(1,4,' -
Ly, — (L — 1,y)).

2°. Here we show that Q% = Var on L}. Represent a simple symmetric random
variable X as X = Y7, a;j(Iyy — I4), where all 2r events A;, A/ are mutually
exclusive and P(4;) = P(A]) for each j. As in 1°, C(I4; — Ly, Iy — 1n,) = 0 for
J # k; thus from the quadratic form equation and 1°

QX X) =2 Y-, a?P(A;) = Var X.

An approximation argument using the dispersion monotonicity of @ extends the
result to bounded symmetric X. For arbitrary X € L$, approximation “from
within”, that is, approximation to | X | from below, shows that @*(X) = Var X
on L3.

For the reverse inequality we argue as in 3° of Theorem 2. By the triangle
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inequality for @
QX = SD(XIj 1 x)=¢) + Q(XI} x1>q) = SD(X) + RX,
where
0 = R*(X) = limye | QXX x1>¢) < .

Using 2° of Theorem 2, we let g be an increasing unbounded nonnegative function
on [0, ) such that the symmetric variable Xg'/*(X?) has finite variance. As in
3° of Theorem 2, the finiteness of R*(Xg'/?(X?)) implies that R*(X) = 0, whence
Q?= Varon L§.

3°. We show that @ = Var on all of L, if Q preserves the law of large numbers
(LLN), in the sense that if X, X;, X,, --- is an iid sequence in L; and X, = (1/
n) Y&, X;, then QX, — 0. Since X; — X, is symmetric, we have from the
quadratic form equation and 2° that 2 Var X = Var(X; — X,) = Q*(X; — X;) =
2[Q*(X) — C(Xy, Xs)], i.e., that Q%(X) = Var X + C(X;, X;). On the other hand,
Q*X,) = (1/n)Q*X) + (1 — 1/n)C(X;, X,) and hence Q*(X,) = (1/n)Var X +
C(X;, X,) and

0 < C(Xy, X;) = limype | Q%(X,) < 0.
Therefore Q*(X) = Var X in general, with equality if @ preserves the LLN.
4°. It remains to establish that a spread monotone @ preserves the LLN. For

a given X € L,, we construct a symmetric variable Z >, X for which Var Z <
4 Var X. Performing this construction for each X, we obtain Z, with

Q*X,) = Q*Z,) =Var Z, < 4Var X, = % Var X — 0.

For the construction, let F~! denote the left continuous inverse cdf for X and
define

Z=F'1-U)-F\U),

where U is uniformly distributed on (0, 1). Symmetry and the variance bound
are clear. Write G for the inverse cdf for Z; then G™(u) = F~'(u) — F7}(1 — u)
off of the at most countable discontinuity set of F~'. From this and left continuity
of the inverses follows

G'v) -G u)=F'v)-F!(1-v)=-FYu)+F'1-u)
=2F'v) - F'(u),0<u<v<l,
which shows that X <; Z and completes the proof of Theorem 5.

REMARK 5.1 (a). We note that a scale functional can possess one of the
properties of dispersion and spread monotonicity and lack the other. Bickel and
Lehmann (1978, Example 11) give an example of a functional which is spread
monotone but not dispersion monotone. On the other hand, QZ = med(|Z —
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EZ ) is dispersion monotone but not spread monotone. For example, let & (X)
= (%))(5(_4) + 60 + 5(4.4)) and

1
g_(/(Y) = (46(—8) + 46(_3) + 36(+3) + 6(4.35));
12

then X <, Ybut QX =4> 3 = QY.

(b) Theorem 5 is also valid (with a simpler, more standard proof) if the
monotonicity conditions are replaced by the requirement that @ be L,-continuous,
or more generally that X, — Q0 = 0 whenever EX,, = 0 for all n and Var X, |
0. See Fill and Johnstone (1982, page 28), who also discuss the difficulties
encountered in attempting to prove Theorem 5 via Riesz representation methods.

C. ProoOF OF THEOREM 6. Let X be a given random vector of dimension p
=2, and 2 = Z the class of scale functionals with domain at least { < (a’X): a
€ R"}. For each @ € 2 let Sq(X) be the PP dispersion measure for X.

For the proof of Theorem 6 we shall require a scale functional R € 2 which
is nondegenerate, in the sense that Z of the form a’X is degenerate if RZ = 0. If
the expected squared length of X is finite, then R = standard deviation will do.
To discuss the general case, define the “a-spread”

Q.Z = (%)Gi1-Z — G Z)

for « € (0, %); the a-quantile function G, was defined precisely in Section 4C.
Let .# be the linear space of vectors a for which & (a’X) is degenerate. Now
QZ%(a’X) decreases as « increases, and had a quadratic form representation a’¥.a
in view of the affine equivariance of Sq_. It follows that .#Z, = {a: Q.(a’X) = 0}
form a monotone family of linear spaces with intersection equal to .#; the
linearity of .4, is a consequence of the triangle inequality for @,. Hence for a >
0 sufficiently small .#, = #, and a’X is degenerate if Q.,(a’X) = 0. Thus R =
Q., € 2 is nondegenerate.
One could more simply choose

7 {O, if & (Z) is degenerate
" |med(|Z - med Z||{|Z - med Z| > 0}), otherwise.

Note, however, that each Q. is a very regular functional, whereas R is not even
dispersion monotone. Theorem 6 is clearly strengthened if we require the func-
tionals @ € 2 to be as regular as possible.

In the proof below we drop the unnatural assumption that X have finite
expectation and show instead of elliptical contouring of X that

a’X =, (a’¥a)"?’W + c(a), aER®

with c(a) € R, W symmetric about zero, and ¥ nonnegative definite.

Of course, if p = EX € R” exists, then c(a) = a’u and X has an elliptically
contoured distribution. More generally, if & (W) satisfies the weak law of large
numbers (see Feller, 1971, XVII.2a for equivalent conditions), or if X is centro-
symmetric about some u € R” (in particular, if the hypotheses of Remark 4.1 are
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satisfied), then X is elliptically contoured about u. Indeed it is natural to
conjecture that the (apparently) weaker conclusion above forces X to be ellip-
tically contoured without any further assumptions.

We begin the proof of Theorem 6 with a reduction to the full rank, spherically
symmetric case. Let R € 2 be the nondegenerate scale functional obtained above.
Consider Y = V!X, where the nonsingular matrix V € R”*? satisfies VPV’ =
Sg(X), with P = diag{l, ---, 1, 0, ---, 0} having rank r equal to the rank of
Sr(X). Partitioning Y’ = (Y{, Y3) and a’ = (ai, a}) correspondingly gives
R%*@]Y,) = aja, and R*(a;Y.) = 0 for all a € R”. Since R is nondegenerate we
conclude that Y, is degenerate. In particular, if r < 1 then it is clear that X is
one-dimensional.

Replacing X by Y; we may now suppose that p = 2 and R*(a’X) = || a|?* for
all a € R” and must show that

a’X =, X, +c(a), a€ SP?!

where SP7! is the unit sphere in R”. The main step is to prove that affine
equivariance forces all projections a’X to be affinely equivalent; to wit, that a’X
=, b(a)X; + c(a) for a € SP~1. Assuming this for the present, it then follows by
equating R-values that b(a) = 1. The mapping a — & (a’X) on the connected
set 771 is continuous in the topology of weak convergence and takes values in
both of the closed sets {{< (X, + ¢): ¢ € R} and {<Z (=X, + ¢): ¢ € R}. The
intersection of these two sets is therefore nonempty, so that . (X;) is symmetric
and we may take b(a) = 1.

To show the affine equivalence of all a’X, we suppose that some a’X » X,
and deduce from the convergence of types theorem the existence of v > 0 such
that X; » a(8)’X for 8 = 0, %, v, v; here

a(g) = (1 — Bla + Be,.
Affine equivariance requires that
QX)) = (v 'aly)’X — v = v)a’X)
= v2Q*a(y)'X) + v X1 — v)*Q*(a’X)
-y 71 = v)[4Q*(a(v/2)'X) — @*(a(y)'X) — Q*(a’X)],

but it is an easy matter to construct a scale functional @ violating this condition.
This contradiction shows that all projections a’X must be equivalent, and
completes the proof.

REMARK 5.2. It is not clear how to construct the violating @ so as to be
regular, say, dispersion and spread monotone. However, if the hypotheses of
Theorem 6 are strengthened by the requirement that S¢(X) = ¥4 depend on @
only through a multiplicative scalar, there is a direct proof of Theorem 6 (Fill
and Johnstone, 1982, page 32) which uses only the class 2 of dispersion and
spread monotone functionals @ and avoids the contradiction argument.
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