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ON CHI-SQUARED TESTS FOR MULTIWAY CONTINGENCY
TABLES WITH CELL PROPORTIONS ESTIMATED FROM
SURVEY DATA

By J. N. K. RAo AND A. J. ScoTT
Carleton University and University of Auckland

The impact of survey design on standard multinomial-based methods for
a multiway contingency table is studied, under nested loglinear models. The
asymptotic null distribution of the Pearson chi-squared test statistic, X (or
the likelihood ratio test statistic, G?) is obtained as a weighted sum of
independent x? random variables, and the weights are then related to the
familiar design effects (deffs) used by survey samplers. A simple correction to
X? (or G?) is also obtained which requires the knowledge of only the cell deffs
and the deffs for collapsed tables (marginals), whenever the model admits a
direct solution of likelihood equations under multinomial sampling. Finally,
an example on the relative performance of X2 and some corrected X statistics
in a three-way table is given, using some data from the Canada Health Survey,
1978-1979.

1. Introduction. Statistical methods for analysing cross-classified categor-
ical data have been extensively developed under the assumption of multinomial
sampling (e.g., Bishop, Fienberg and Holland (abbreviated BFH), 1975), utilizing
hierarchical loglinear models. Computer packages are also readily available.
Researchers in subject matter areas (e.g., social, behavioural and health sciences)
have been using these methods to analyse data from complex sample surveys,
but most of the commonly used survey designs involve clustering and stratifica-
tion and hence the multinomial assumption is violated. Nathan (1975), Koch et
al. (1975), Shuster and Downing (1976) and others have developed asymptotically
valid methods, based on the Wald statistic, which take the survey design into
account. However, in secondary analyses from published reports containing
multiway tables, the researcher may not have access to the necessary information
(e.g. the full estimated covariance matrix of cell estimates) for implementing
these methods. At best the reports might contain some information about
variance estimates (design effects) for marginal totals or cells. Consequently, it
is of importance to assess the impact of survey design on standard multinomial-
based methods and suggest simple corrections requiring only minimal information
on the design effects (abbreviated “deffs”). Even when the necessary information
is available, it is not clear that methods based on the Wald statistic would
necessarily perform well in finite samples, especially when the number of cells in
the table increases leading to unstable sample estimates of the covariance matrix
(Fay, 1979). It would be desirable to obtain improved corrections to standard
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methods utilizing the detailed information and study their finite sample proper-
ties relative to those of the Wald statistic and others.

Cohen (1976), Altham (1976), Fellegi (1980), Brier (1980), Rao and Scott
(1981) and others have shown that clustering can have a substantial effect on
the distribution of the standard Pearson chi-squared test statistic, X* and that
some adjustment to X2 may be necessary, without which one can get misleading
results in practice. Rao and Scott (1981) and Scott and Rao (1981) have shown
that the X? statistics for testing goodness of fit (simple hypothesis), independence
in a two-way table and homogeneity of proportions across populations are
asymptotically distributed as weighted sums of independent x; random variables
with weights related to particular deffs. They developed a simple correction to
X? which requires only the knowledge of deffs (or variance estimates) for
individual cells in the goodness of fit problem and the deffs of proportions in
each population in the homogeneity problem.

In this article we propose to generalize the previous results of Rao and Scott
to multiway tables. In Section 2, the asymptotic distribution of X? (or equivalently
G2, the likelihood ratio test statistic) is obtained as a weighted sum of independent
x} random variables under nested loglinear models M; and M,, where M, is
nested in M;. The important special case of a saturated model M, is also
investigated. A simple correction to X* (or G?) is obtained in Section 3 which
requires only the cell deffs and the deffs of collapsed tables (marginals) whenever
the likelihood equations under multinomial sampling admit explicit solutions.
Finally, an example on the relative performance of X* and some corrected X?
statistics in a three-way table is given in Section 4, utilizing some data from the
Canada Health Survey, 1978-1979.

2. Asymptotic distribution of X2 (or G?). Let 7 denote the T-vector of
population cell properties, 7;, in a multiway table Zx, = 1,t =1, ---, T).
Suppose a sample, 3, of n ultimate units is drawn according to a specified survey
design, p(§), and let p denote a consistent estimator of = under p(5), Zp, = 1.
Typically, p; is a ratio estimator depending on survey design weights. We assume
that a central limit theorem for the specified design is available which ensures
that Vn(p — =) converges in distribution to a N7(0, V) random vector, say Y,
as n — o, i.e. P is approximately T-variate normal with mean vector O and
singular covariance matrix V/n for sufficiently large n (see Rao and Scott, 1981
for the literature on central limit theorems for various survey designs). In the
case of multinomial sampling V reduces to P = D, — =« ’ where D, = diag().

The following algebraic results are useful in our derivations:

LEMMA 1.
1) 1'r=1p=1;
2 D,1=mD;'w=1;
(3) V1 = VD;! x = 0. In particular, P1 = PD;' = = 0;
(4) PD;'V =VD;'P = V. In particular, PD;! P = P so that D} is a generalized
inverse of P.
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In general, a loglinear model on the 7,’s may be written as
(1) p=1u(0)1+ X0

where p is the T-vector of log probabilities u; = In x,, X is a known T' X r matrix
of full rank r(= T — 1) and X’1 = 0, 6 is an r-vector of parameters, 1 is the T-
vector of 1’s and @(8) = In {1/[1’exp(X0)]} is the normalizing factor where
exp(X#) is the vector of exponential functions exp(xi8),t=1, --., Tand X’ =
(X1, - - -, X7). If r="T — 1 in (1) we get the general (or saturated) loglinear model.
For instance, the general loglinear model for a 2 X 2 X 2 table may be written as
(see BFH, 1975, page 33):

Wi = U + Uiy + Usy + Us) + Uizij) T Uisar) T Uss(int Uizsije)

(2) o
L,j,k=1,2

where the sum of any u-term over each of its subscripts is zero, i.e. uye) = — Ui(),

Uize1) = —Urza1) ete. Here 0 = (uy), Usq), Usy, Ui2a11), Uisan)s Uzsay), Uizsain)’ and

X is an 8 X 7 matrix consisting of 1’s and —1’s. Under the hypothesis of no three
factor interaction H :uis3111) = 0, for example, X reduces to an 8 X 6 matrix X,
(say) and the deleted column is given by X, = (1, -1, -1, 1, -1, 1, 1, —-1)’
provided p is ordered as (u111, #1125 H1215 K122, K211, R212, H2o1s Ra22) .

Under multinomial sampling it is well-known that the likelihood equations
are given by

3) X'm = X'(n/n)

where n is the T-vector of observed frequencies, n,, in the sample (Zn, = n) and
# = x() is the maximum likelihood estimator (m.le.) of = under the model
(Z#, = 1). The method of Iterative Proportional Fitting (IPF) is often used to
determine # from (3) directly (without evaluating the m.l.e. 6 of ) whenever (3)
does not admit an explicit solution. The m.le. 7 are easily obtained for hierar-
chical models.

For general survey designs, we do not have a m.l.e. of 7, due to difficulties in
obtaining appropriate likelihood functions. Hence we use a “pseudo m.le.,” 7
obtained from (3) by replacing n/n by p (Imrey et al., 1982). The consistency of
p ensures the consistency of =, under standard regularity conditions.

2.1 Asymptotic covariance matrix of . 'To obtain the asymptotic covariance
matrix of 7, we need the following result.

LEMMA 2. Under the regularity conditions given in Section 14.8.1 of BFH
(1975),

(4) 6—0~XPX)X'(P —n)
and
(5) x—m~PX(6—0)

where «~» denotes “asymptotic equivalence”.
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Proor. From BFH (1975), page 517, we have
6—6~ (A’A)TA'D;V2(D — =)
and
# —x ~ DY2A(6 — 0)

where A is the T X r matrix whose (i, j )th element is 7;/*(d7;/d6;). Now, under
the loglinear model (1) we have A = D;?PX, A’A = X'PX and A'D;V3(p —
x) = X’(p — «) using Lemma 1.

Since the asymptotic covariance matrix of p is D(p) = V/n, we get from (4)
the asymptotic covariance matrix of 6:

(6) D(9) = (1/n)(X'PX) (X'VX)(X'PX).
Hence the asymptotic covariance matrix of = is
(7 D(#) = PXD(§)X'P.

Imrey et al. (1982) derived (6) and (7) by the §-method, using implicit differen-
tiation. In the special case of multinomial sampling, we have V = P and (6)
reduces to the well-known result D(6) = (X’PX)™/n (see e.g., Fienberg, 1980,
page 170).

The asymptotic covariance matrix of “residuals” p — = is obtained by noting
that p — = ~ [I - PX(X’PX)"'X’](p — =) so that

(8) D — #) = n I - PX(X'PX)'X']V[I - X(X'PX)'X'P].

If V = P, (8) reduces to n”'[P — PX(X’PX)'X'P]. The diagonal elements of
(8) provide the asymptotic variances of the residuals p, — #, and hence the
standardized residuals which are useful in detecting model deviations.

2.2 Nested models. Denoting the model (1) by My, let X = (X, X,) and 6 =
(%), where X, is T X s and X; is T X u and correspondingly 8, is s X 1 and 05 is
uxX1(s+u=r X11=0,X%1 =0). We are interested in testing the null
hypothesis H: 6, = 0 so that under H we get the reduced model M,:

i.e., M, is nested in M;. Let 31 and 7 = 1r(§1) denote the “pseudo m.l.e.:’ of 0, and
= respectively, under M, obtained from the likelihood equations Xi7(8,) = X’p.

The consistency of p ensures that of = under M, (S, = 1).
The Pearson chi-squared test statistic is given by

(10) X? = n 3(4, — #)%/% = n(# — #)’D;' (7 — 7).
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Alternatively, the likelihood ratio statistic
G? = 2n 2#In(#./7) = 2nZpIn(#./7.)
(11) = 2n3pIn(p./7:) — 2nZpIn(p./7:)
=G5 — G} (say)

is used to test H. The statistics X2 and G? are asymptotically equivalent — the
proof follows along the lines of Lemma 14.9-1, BFH (1975). For multinomial
sampling, it is well-known that X2 (or G?) = xZ under H, where “=» denotes
“asymptotically distributed as” (see e.g., Theorem 14.9-8, BFH, 1975). The same
asymptotic null distribution holds under a product multinomial sampling scheme
which arises with stratified simple random sampling when the strata correspond
to levels of one dimension of the contingency table. This will not remain true,
however, with more complex survey designs involving clustering or stratification
based on variables different from those corresponding to the contingency table.

We now derive the asymptotic null distribution of X? (or G*) for any survey
design, p(s).

THEOREM 1. Under H:0, = 0,

(12) X2 ~ 05X 4,PX,)0,
where 6 = <0}> and
0,
(13) X, = I - X;(X1PX)) X' P)X;

is the projection of X, on the orthogonal complement of the space spanned by the
columns of X1, where the inner product is defined with respect to P(X2PX; = 0).
Moreover, under H

(14) X* = Zi"=1 o W;
where the W/'s are independent x} randqm va~riable§ andNthe 6/'s (all greater than
zero) are the eigenvalues of the matrix (X5PX,) (X 5VX)).

Proor. Using (5) for # — = and the analogous result -7~ PXI(?)I -0,
for * — 7 we get
- P[Xl(él —0) + Xo0, — xl(él - 01)]
where ~ ‘
A\
(15) 0,)— 6, ~ (XPX))'X1(p — ).
Now, expressing X'PX as the partitioned matrix

X PX, ngx2>

X'PX = (x;le X45PX,

and using the standard formula for inverse of a partitioned matrix (e.g., Seber,
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1977, page 390), we get from (4) and (15)
b, — 0, ~ (6, — 8) + (X\PX,){(X;PX;)6,.
Hence
7 —x ~ PX,6,
and
X? ~ n(# — 7)’D7N (7 — 1) ~ nfuX4PX,)b,

noting that PD;'P = P. Also it follows from (6) and the formula for the inverse
of a partitioned matrix that

(16) D(6:) = (1/n)(X:PXo) X5V (X5PXy)

Hence 6, ~ N,(O, D(0,)) and using the standard result on the distribution of
quadratic forms in normal variables (e.g., Johnson and Kotz, 1970, page 150), we
get X2 = X §; W, where the 8’s are elgenvalues of D(6,)(X4:PXo)n =
XyPX,) (X% VX,) and W;s independent x? random variables.

For multinomial sampling, V=P so that §; = 1,i =1, ---, u and hence we
get the standard result X* ~ x2 under H, as a special case of Theorem 1.

Fay (1979) has obtained an alternative representation of the asymptotic
distribution of X? (or G?) in which the 6/s are nonzero eigenvalues of a singular
matrix, unlike the nonsingular matrix X5PX,)~ 1(X5,VX.,) in our Theorem 1.
Foutz and Srivastava (1978) derived a representation similar to (14) in the
context of the asymptotic distribution of the general likelihood ratio statistic (for
the iid case) when the model is incorrect.

Note that X ,p is a vector of contrasts in the p;’s since X%1 = 0. The covariance
matrix of X5p is (X4 VX;)/n for the survey design used, while X5PX,) / n is the
corresponding covariance matrix for multinomial sampling. Thus é,, - - -, , are
the “generalized design effects” (as defined in Rao and Scott, 1981) for the
contrast vector X4p; the largest eigenvalue, 8, say, is the largest possible deff
taken over all linear combinations of the elements of the vector Xp.

2.3. A Wald statistic. If a consistent estimator, V/ n, of the covariance matrix
of p, V/n is available, one can construct a Wald statistic, X%, which is asymp-
totically x2 under H:0, = 0. Let C be any T X u matrix of rank u with C'X; =
0, C’1 = 0 and C’X; nonsingular, in particular, if X1 X, = 0 a convenient choice
of C would be X,. Then H:0, = 0 is equivalent to H':¢ = C'p = 0 and hence a
Wald statistic for testing H, based on =,'is given by

an W= ¢'[D@)]$
where ¢ = C’4, 4 is the T-vector of logprobablhtles #: = In 7, and D(4) is the

estimated asymptotic covariance matrix of é. Noting that 4 — p ~ D g —x)
(by the delta method) we get

(18) D(¢) = C’'D;'D(#)D;'C = Z,, say
where D(=) is given by (7). The estimator of D(¢) is obtained by replacing = by
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# and V by V. The Wald statistic (17) is independent of the choice of C. Koch
et al. (1975) give excellent illustrations of the Wald statistics with survey data.
If no estimator of V/n is available, the effect of survey design is sometimes
ignored, as in the case of X? or 02 and V/n is replaced by the multinomial
covariance matrix P/n in D(¢) In this case D(¢) reduces to X, =
n~1IC’X(X’'PX)'X’C, using the fact PD;'C = C. This leads to a test statistic
alternative to X2 or G*

(19) X% = né’[C’X(X'PX)X'C] 4.

As in the case of X* (or G?), the true asymptotic null distribution of X% is a
weighted sum of independent x} random variables, Zv; W;, where vy, - - -, v, are
the eigenvalues of Y5'Z,. Theorem 2 below shows that X%, in fact, is asymptot-
ically equivalent to X? under H which implies that X% = Z5;W; and {41, - - -, 6.}
is identical to {y1, - - -, Yu}-

THEOREM 2. Under H:0, = 0, X% ~ X2

PrOOF. Under H we have § =¢ — ¢ = C'(i — p) ~ C'D;'(x — =) ~
C’D;'PX(0 — 0) using (5). Hence, noting that C’'D;'PX; = C'X = (0, C'X;)
and using the formula for the inverse of the partitioned matrix X’'PX, we get

é ~ C'X0,
and
C’X(X'PX)'X'C = C'Xx(X,PX,) "X 5C.
Hence
X3 ~ nbyXiPX,)6; ~
noting that C’Xj is nonsingular.
In the Appendix, another (multinomial) Wald statistic, X% /(1), based on a

weighted least squares estimator (WLS), 8, of 0 is shown to be asymptotically
equivalent to X?, under H.

2.4. Special case of saturated model M;. In the important special case of
saturated model M, with s + u = T — 1, we can obtain the ;s directly from C
without having to calculate the projection matrix X,. Since # = p in the saturated
case, we have D(#) = V/n under the given survey design and D(wx) = P/n =
under multinomial sampling. Hence, noting that C’'D;'PD;'C = C’D;'C we get
the result that the §;s are eigenvalues of 2;'Z, = (C’D;'C)™(C’'D;'VD;'C).

2.5. Effect of survey design. The asymptotic null distribution of X? may
be approximated by a x? variable, following Satterthwaite (1946): X% =
X2/[(1 + a?)é.] is treated as x2 where v = u/(1 + a?), 8. = Z6;/u and a® = 2(§; —
6.)?/[ud?] is the square of coefficient of variation (c.v.) of the §/s. It is, however,
not necessary to evaluate the individual ;s in order to compute X%, since 26; =
E(X?) and 2 262 = V(X? where E and V respectively denote the asymptotic
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expectation and asymptotic variance operators To evaluate E(X?) we first note
that X*> =~ 37Y?/x, where vn(# —7) = Y =4 Nr(0, B), B = (bu) =
PXzD(()z)XZP and D(02) is given by (16). Hence E(X? = Ebtt/ﬂ't Similarly,
noting that V(Y?) = 2b% and cov(Y%, Y7) = 2bj,t # =1, .-, T, we get

V(X?) =2 Y5 3L b3/ (mem).

If the estimated full covariance matrix V/n of cell estimates p is available, X%
may be employed as an alternative test statistic to X%, using the estimated a
and §. obtained from B in place of unknown a and é..

The effect of survey design may be studied by computing the asymptotic
significance level of X?, for a desired nominal level o, i.e.,

SL(X?) = P[X® = xi(a)] = Plx} = {(1 + a%)8.}'xi()]

is compared to «, where x2(«) is the upper a-point of xZ. In practice, SL(X?) is
estimated by using V for V and # (or 7) for =. Holt, Scott and Ewing (1980)
report estimated SL(X?)-values for selected items from the General Household
Survey of U.K., for testing simple goodness of fit, independence in a two-way
table and homogeneity of proportions across populations. Hidiroglou and Rao
(1981) provide simplified formulae for B for stratified multistage sampling with
primary clusters sampled with replacement with probability proportional to size,
again for the above three hypotheses (note that M, is saturated for testing these
hypotheses).

3. Modifications to X2. In practice it is often adequate to make a first
order correction to X? (or G?), i.e. treat X2/8. or G?/§. as x2 under H, where §.
may be written as

ud. = tr[(f('szz)_l(x'zvxz)]
(20) = tr[(X"PX) (X' VX)] — tr[(XPX,)(X1VX))]
= (s + u)\. — sh;. (say).

Note that (X’PX) }(X’VX) is the design effect matrix for the contrast vector
X’p so that \. is the average generalized deff of X’'p. Similarly,
(X1 PX,)"Y(X}VX,) is the deff matrix for the contrast vector Xip and \,. is the
average generalized deff of X1p. In the special case of saturated model M, (s + u
= T — 1), ud. reduces to

(21) (T —s —1)5. = (T — DA. — shs.

where (T-DA. =201 - 1rt)dt and d; = v /[n,(1 — 7,)] is the (cell) deff of p, and
= (vy). If T > s, then 8. = \. and we might expect X*/ X. to perform well in
large tables if s is fairly small. Note that A. is mdependent of H, unlike é..
Another approximation X?/d. (Fellegi, 1980) where d. = 2 d,/T is the average
estimated cell deff, is also independent of H. Empirical results reported in Holt,
Scott and Ewing (1980) and Hidiroglou and Rao (1981) for testing independence
in a two-way table indicated that both X2/X. and X 2/d. tend to be conservative,
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i.e. their asymptotic significance level < «, and sometimes very conservative,
whereas X?%/6. works fairly well especially when the c.v. of 4/s is small; the
Pearson statistic X often leads to unacceptably high values of SL(X?).

When the model admits explicit solutions for # and 7, it is possible to simplify
4. considerably. We now show that §. can be computed knowing only the cell
deffs, d;, and the deffs of collapsed tables (or marginals), whenever the model
admits explicit solution. For instance, the no three factor interaction hypothesis
is the only hierarchical hypothesis that does not permit explicit solution in a
three-way table.

BFH (1975, page 75) list the types of direct estimates (i.e., explicit m.l.e.)
possible in four dimensions. Using their notation, a hypothesis leading to direct
estimates is of the form

(22) o = [Hi 7I'ﬂ,]/[nj 7"¢,~]

where 0 denotes an arbitrary cell, =, and T4, are marginal totals of 7, where 6; is
a subset of 6 corresponding to a “sufficient configuration” (under multinomial
sampling) and ¢, = 6; N 0, for some i and ¢. In this case, the “pseudo m.l.e.” =,

(or 17',,) is given by
(23) Ty = [Hi ﬁe,-]/[nj 15¢,]

where p, and p,, are the marginal totals of p, corresponding to 6; and ¢;
respectively. For instance in a three-way table, 6 = {ijk}, 6, = {ik}, 6. = {jk} and
¢1 = {k} for the hypothesis that variables 1 and 2 are conditionally independent
given the level of variable 3.

It is simpler, in the case of direct estimates, to obtain the formula for .
directly by noting that ué. = EX? = EG? = EG% — EG3. Note that G* =
2n Zypeln(py/7s) in the case of saturated model M;. Using (22), we have

G? . PR
— = 2 Y4 Poln(py/7)
(24) n
=2 Yo Poln Pp — 2 3, [To, PoIn o] + 2 3 [Ty, PsIn By, ).
Now
2 20 ﬁoln ﬁo =2 20 ﬁgl:ln ™o + ln{l + u}]
T
A A 2
(25) ~9 20 ﬁo[ln' — Do LU (pa 27I'0) ]
7] 2w

~ 2 Y4 Poln mp + Yo(Ps — m9)?/ms

-1/2

noting that py = my + (Py — ™) and p, — =, is of the order n™"* in probability.

Similarly,
(26) 2 Zﬁi ﬁailn ﬁﬁi ~2 26,« ﬁailn my, + 26; (136‘ - Wﬂ;)z/‘ﬂ'o,
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and
(27) 2 Y4, Doln Py, ~ 2 Ty, PoIn s + Xy (Dy, — 7"«/:,)2/7%,-
Using (25), (26) and (27) in (24) and noting that
2% pllnmy—Filnmy + ¥;Inw,]=0
due to (22), we get

02 Ao_ 02 A”.‘—
__~2.(_p__..._f_)_ zljzﬂ‘(p 7")1 ZJJ

e (P«tu «a)l
R G DX e |

or
(28) E‘G% = Za (1 — ) dy — Zi {Zﬁ, 1- 71'0,) dﬂ,} + Zj {Zdy (1 - 7"¢,) d@}-

Here d, = V(p,)/[7s(1 — m,)/n] is the deff of cell estimate p, under H and =, is
given by (22), and dy, = V(py))/[x(1 — =)/n] and d, = V(p,)/[7, (1 — m,)/n]
are the deffs of marginals p, and p, respectively. Similarly, EG3 is obtained when
7, is of the form (23). A

_ The estimated deff d, of d, is given by dy[ps(1 — Py)/7s(1 — 74)] where dy =
V(ps)/[Ps(1 — Py)/n] is the estimated deff of p, irrespective of H, and V(p,) is
the estimate of variance of Do. It is a common practlce to report d, rather than
d,, The estimated deffs d,, and d¢ are given by V(p Do,)/[Ps(1 — Py)/n] and
V( Do)/ [P, (1 — Dy)/n] respectlvely Hence

(28a) ud. = 2o & (1 —po)da -2 {20, - ﬁa,)(ia,} + 2 {tha, - ﬁqty)(idz,}‘

The result (28a) should have important implications for the publication of tables
from survey data.

For ready reference, we now give the results for I X J and I X J X K tables
when M, is the saturated model:

I x J table: Independence (1 ® 2): m;j = mism4j & Ui =0,1=1, ---, [; j =
1,---,d.

I - 1)(J — 1)6.
(29)

=i Zj (1 — mipmsj) dij -2 (1 =my)di(r) — %, 1- T4y) d'(C)

where ,, and 7. are the row and column marginals, d;(r) and d;(c) are the deffs
of p.+ and p.; respectively, and d,, is the deff of p;;. Hence, X*/ $. can be computed
knowing only the cell proportions p;, and their estimated deffs d; i, and the
estimated deffs d;(r) and d (c) of the one-way marginals p;, and p.;.

Bedrick (1983) has 1ndependently obtained (29) using an alternative deriva-
tion, and stated the general result (28).

I x J x K table: (a) complete independence (1 ® 2 ® 3): mip = TissTajs Totk
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S Wioagije) = Unagy) = Usiiky = Usspp = 0,t=1, -, [;j=1,---,J; k=1, .-, K.
(IJK — 1 — J — K + 2)é.
(30) =32 Yk (1 = mipamajumasr) dip — 2i (1 — miy) di(r)
=2, 1 = mjs) dile) = X (1 — mpip) di(l)

where 71+, T4+ and ., are the three-way marginals and d;(r), d;(c) and d,(l)
are the corresponding marginal deffs and d;;, is the deff of p;;..

(b) Independence of variable 1 from variables (2, 3) jointly 1e® 23): Tijk =
Tit++ W4 jk S Ur23(ijk) = Ur2(ij) = U1sGik) = 0 (Slmllal‘ly 2 ® 13 and 3 ® 12)

(I — 1)(JK — 1)é.
(31) =i Zj Zk 1- 7l'i++7l'+jk) dijk
=i (1= muy) di(r) — X Xk (1 — w4ji) din(e, 1)

where ..’s are the two-way marginals when collapsed over variable 1 with
corresponding marginal deffs d;:(c, [).

(c) Conditional independence (1 ® 2|3): mijx = (TisaTsjk)/Trrr S Urzaijny =
UrgGij) = 0. (Slmllarly § ® § | T and T ® g | 5)

KUI-1)0(J - 1)5. =3 3; T (1 - w) diji

T++k
(32) =22 (1 = mir) din(r, 1)
=22k (1 = mji) dinle, 1) + X (1 — wr4r) di(l).

Hence, for the case of a three-way table one can compute the corrected statistic
X?/§ for the hypotheses (a) — (c) knowing only the three-way table of proportions
Dijr and their estimated deffs d,,k, estimated deffs d,,(r c), d,k(c l) and dlk(r 1) of
the two-way marginals p;;+, P+, and p j and the estimated deffs d;(r), d (¢) and
d, (1) of the one- way marginals Pis++, P+j+ and Py .

When the model does not permit explicit solution for # or =, 8. cannot be
expressed in terms of only the cell deffs and marginal deffs. For instance, in the
2 X 2 X 2 case and the no three-factor interaction hypothesis H : u;23¢;x = 0 for
all (i, j, k) using C = X, = (1, -1, -1, 1, —1, 1, 1, —1)’, in the equivalent
hypothesis H': C'u = (p111 — p1o1 + pao1 — pon1) — (k112 — tage + pose — pore) = ¢
— ¢, = 0 where ¥, is the log cross-product ratio in the kth 2 X 2 layer (k = 1, 2),
we get from Section 2.3

6. = 6, = (C’'D;'VD;'C)/(C’'D;'C)

1 -1
= (Zi 2 2k 1r_k> {351 oot v T Ty (—1)**
7]

where we labeled the cells (ijk) as follows: (1) = (111), (2) = (121), (3) = (221),
(4) = (211), (5) = (122), (6) = (112), (7) = (212) and (8) = (222). Since 6, involves
all the covariances v, ) it cannot be expressed in terms of only the cell deffs
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and marginal deffs. When the hypothesis does not permit explicit solution for =

or 7 and only the cell deffs and marginal deffs are known, we can take the é.
corresponding to a hypothesis “closest” to H (in the sense of having approxi-
mately the same u-terms in the model) and admitting explicit solution. For
instance, to test H:uy23(,, = 0, we can take 4. corresponding to a conditional
independence hypothesis: t123(1) = Uiy = 0.

The general result (28) also covers the case of one set of fixed marginal totals
of the observed frequencies, n;, in the sample, provided the u-terms corresponding
to fixed margins are included in the model (1). However, the published tables
usually report estimated cell proportions and their marginal totals within each
population corresponding to fixed margins, and the associated deffs. Therefore,
we need to express 6. in terms of the within-population cell proportions and
associated deffs. We now derive such a formula for the I X oJ table when M, is a
saturated model. The corresponding results for three-way and higher dimensional
tables will be reported in a subsequent paper.

I x J table: Let n;; be the observed sample frequency in (i, j)th cell and
let the row margins n,. = Y ; n; be fixed. We take p; = (n;+/n)p;;) and =; =
(ni+/n) P;;, where P, are the cell proportions within the ith row population and
Dj) are the corresponding survey estimates (Y; Pji;) = Y Pj;y = 1). Hence H: m;;
= mipms; © Piyy = Yi(nie/n) Pj;y = P; (say) which is the test of homogeneity of
proportions across populations.

Since p;+ = ni./n we get V(p;+) = 0 and hence

(33) (1 = m) di(r) = nV(pis)/min = 0.

Also

(34) (1 = miymyj) dij = nV(py)/(mivmy;) = (1 — Py) dji;)
where

djiy = ni: V[pwl/Pi(1 — P;)
is the jth cell deff in the i-th row population, under H. Similarly,
(35) (1 = m4j) di(c) = nV(Psj)/me; = (Zi (nis/n) dyi))(1 — P))

noting that p., = ¥; (ni/n)pjw» and nV(p.;) = ¥: (ni/n) diwyP,(1 — P)),
assuming that sampling is done independently within each row population.
Hence, using (33), (34) and (35) in (28) we get

(36) (I =1)(J = 1)8. = 31 — P}) djo(1 — nes/n)

which agrees with the result given by Scott and Rao (1981). Thus 4. depends
only on the estimated cell deffs within each row population.

The formula for é. in the case of fixed column margins n.; is obtained from
(36) by interchanging the subscripts i and j. '

4. Example. We now provide an example on the relative performance of
X2 X2%/56., X?/X. and X?/d. in a three-way table, utilizing some data from the
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TABLE 1.
Estimated Asymptotic Significance Levels (SL) of X 2 and the Corrected Statistics X2/3.,
X?%/\., X?/d. : 2 X 5 X 4 table and nominal level a = 0.05.

Hypothests

@ _(b)_ R () B
I®2®3 1®23 2®13 3®12 I®2|3 1®3|2 2831

SL(X?):_ 0.72 0.33 0.76 0.72 0.43 0.30 0.78
SL(X?/§.) 0.16 0.11 0.14 0.13 0.095 0.11 0.12
SL(X?/X.) 0.34 0.056 0.39 0.32 0.098 0.06 0.39
SL(X2/d.) 0.34 0.054 0.39 0.32 0.097 0.06 0.39
Y ’ 2.09 1.40 2.25 2.09 1.63 1.39 2.31
C.V.(5) 1.54 1.02 1.37 1.27 0.86 1.05 1.11

Canada Health Survey (CHS), 1978-1979. The CHS was designed to provide
reliable information on the health status of Canadians. A complex multistage
design involving stratification and cluster sampling was employed and the esti-
mates of totals and proportions were subjected to post-stratification adjustment
on age-sex, to improve their efficiency. We consider the three hypotheses (a), (b)
and (c) leading to explicit solution for m.l.e. Hidiroglou and Rao (1983) provide
simplified formulae for the estimated covariance matrix B under the above three
hypotheses. Table 1, taken from Hidiroglou and Rao (1983), gives the estimated
asymptotical significance levels (o« = .05) of X? and the three corrected statistics
for a 2 X 5 X 4 table with the following variables: (1) sex (male, female), (2) drug
use (0, 1, 2, 3, 4+ drugs in a 2-day period), (3) age group (0-14, 15-44, 45-64,
65+). Here n = 31,668 and X. = 1.614, d. = 1.615. The Satterthwaite approxi-
mation was used in computing the SL-values reported in Table 1.

It is clear from Table 1 that SL(X?) is unacceptably high, ranging from 0.30
to 0.78 whereas o = 0.05. Hence the effect of survey design on X? is severe. The
corrected statistics X2/X. and X?/d., where X. and d. do not depend on the
hypothesis, have essentially the same performance. Their SL is reduced to
approximately 0.06 in two cases and 0.10 in one case but in the remaining four
cases it is higher than 0.30. The corrected statistic X?/5. has a more stable
performance than X2/X. or X2/d. (SL ranging from 0.095 to 0.16), but not
entirely satisfactory due to the large c.v. of the §/s. It may also be noted that,
unlike the empirical results for two-way tables previously reported, X2/X. or
X 2/a?. may not be conservative for three-way tables; in fact, as shown in Table 1,
their SL could be quite high.

This work was supported by a research grant from the Natural Sciences and
Engineering Research Council of Canada. This paper was presented at the
International Meeting on Analysis of Sample Survey Data and Sequential Analy-
sis, Jerusalem, June 14-18, 1982. Thanks are due to the referees for constructive
suggestions.

APPENDIX

Asymptotic equivalence of X? and X3 (1) under H. Let Fbea (T—1) X T
matrix of rank T — 1 such that F1 = 0, and let £ = Fg where g is the T-vector
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of logprobabilities i, = In p,. We have Vng-£f)~ N (0, V¢) where f = Fu =
FX6 and Vi = FD;'VD;'F’. In the case of multinomial sampling, V; =

FD;'F .
The WLS estimator of 6, under the model f = FX# is given by
(A1) 6= X'F'V/FX)"'X'F'V7'Fii

where V; = FD;'VD;'F’. The asymptotic covariance matrix of  is given by
D(0) = (1/n)(X’F'V7'FX) ™' = (1/n) V, (say).
Hence, a Wald statistic, which is asymptotically x2 under H:0, = 0 is given by
(A.2) X% (1) = nf,Viho,
provided V is available. Here §’ = (6%, 0%) and the corresponding partition of V,
is given by
V011 V012
Vy = .
¢ (V021 V022>
Note that § and X3(1) are independent of the choice of F, since F*'V;!F* =
F’V7'F for any F* = GF, where G is nonsingular and f* = F*u. Consider the
particular choice
_(X'P
*~ (%)
where F,is (T'— 1 — r) X T matrix of rank T — 1 — r with F;X =0 and F,1 =

0. With this choice
_ (X'PX

and, for multinomial sampling with V = P,

v. - (X'PX 0
=\ o F/D:'F,

after some simplification. Thus, replacing V by P=D; - pp’ in (A.1) and (A.2)
we get the multinognial-based Wald statistic X3%(1) when V is not available.
Now replacing V by P in (A.1) we get

6-6=XPX)"'X'P(i — p) ~ X'PX)"'X’PD;Y(p — x)
= (X'PX)"'X'(p—n) ~0 — 6,

using (4). Moreover, V, reduces to (X’PX)™! so that Vi, = (X4PX,)". Thus,
under H:0, = 0,

X%(1) = nfuX5PXo) "0, ~ nb3X4yPX,) 6, ~ X2,

using (12).
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