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THE ASYMPTOTIC DISTRIBUTION OF PRINCIPAL COMPONENT
ROOTS UNDER LOCAL ALTERNATIVES TO MULTIPLE ROOTS

By Davip E. TYLER

Old Dominion University

The asymptotic distribution for the principal component roots under
local alternatives to multiple population roots is derived. The asymptotic
theory assumes the estimate of the population covariance or scatter matrix to
be asymptotically normal and to possess certain invariance properties. These
assumptions are satisfied for the affine-invariant M-estimates of scatter for
an elliptical distribution. The local alternative framework is used in deriving
a local power function for the test for subsphericity.

1. Introduction. The asymptotic theory for the distribution of the roots of a sample
covariance matrix has been studied extensively. In these studies, two different approaches
have been used. One of these approaches has been surveyed recently by Muirhead (1978).
This approach assumes a normal population. It involves the use of asymptotic represen-
tations for the hypergeometric function which appears in the exact joint density of the
sample roots. The exact joint density of the roots was derived by James (1960). The use
of asymptotic representations for the hypergeometric function in the exact density was
first introduced by G. A. Anderson (1965).

Another approach is based upon expanding the sample roots about the population
covariance matrix. Using this approach, Girshick (1939) and T. W' Anderson (1963) derive
the asymptotic distribution of the sample principal component roots assuming a normal
population. For this case, Sugiura (1976) derives subasymptotic approximation to the
distribution of the sample roots. This approach has also been applied in finding the
asymptotic distribution of the roots of the sample covariance matrix taken from non-
normal populations by Waternaux (1976) and by Davis (1976). Subasymptotic approxi-
mations for the non-normal population case have recently been given by Fujikoshi (1980).
For the non-normal population problem, only the case when all the population roots are
distinct has been studied.

In this paper, the asymptotic behavior of the principal component roots for a general
class of estimates of a covariance or scatter matrix is studied. The estimates are assumed
to be asymptotically normal and to possess certain invariance properties. This class of
estimates include the affine-invariant M-estimates for the scatter matrix when sampling
from an elliptical population. Special cases of these M-estimates are the sample covariance
matrix and the maximum likelihood estimates of the scatter matrix for a specific elliptical
population. The class of estimates is given in Section 2, along with a review of some
distribution theory for eigenvalues of spherically invariant random symmetric matrices.
The affine-invariant M-estimates are reviewed in Section 3.

The asymptotic distribution of the estimates of the principal component roots is derived
under a sequence of local alternatives to multiple roots. This is done in Section 4. As a
special case of the local alternative framework, one obtains the asymptotic distribution of
the roots of the affine invariant M-estimates of scatter for elliptical populations under
arbitrary multiplicities of the population roots. The local alternative framework is novel
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even when applied to the roots of the sample covariance matrix from a multivariate
normal sample. It answers the following question: at what rates must two neighboring
population roots approach each other with respect to “sample size” in order for the
asymptotic theory to treat them as distinct roots, as multiple roots or as a mixture? As an
example, the results in Section 4 are applied in Section 5 to derive a local power function
for the test for subsphericity.

Although the asymptotic results under local alternatives to multiple roots appear to be
somewhat obvious, the crucial step in the derivation is not straightforward. For clarity,
this step is proven independently in Section 6. The method of proof involves expansions
for eigenprojections and a study of their truncation bounds. These expansions and bounds
are reviewed within Section 6.

2. Spherically invariant random symmetric matrices. Let ¥, be a sequence of
nonrandom symmetric positive definite matrices of order p, and let T', be any sequence of
p X p nonrandom matrices such that I',)I', = X;'. Let S, be a sequence of symmetric
positive definite random matrices of order p such that Z, = n/?T,(S, — ¥.)T} satisfies
the following assumptions.

ASSUMPTION 2.1.

(i) The distribution of Z, is invariant under the transformation Z, — QZ,Q’ for any
orthogonal Q.

(ii) Z, — Z in distribution, where Z is multivariate normal.

Assumption 2.1 states that the distribution of Z, is “spherically invariant”. It readily
follows that the distribution of Z is also spherically invariant. Since Z is multivariate
normal, its distribution can be characterized by its first two moments. Since Z is spherically
invariant, its first two moments can be characterized by three parameters (Tyler, 1982,
Theorem 1).

LEMMA 2.1. There exists constants n, 61, 02 with ¢, = 0 and o, = —20,/p such that
E(Z) = 3l and var{vec(Z)} = o:(I + K,,,) + a2vec(I){vec(I)}’.

The notation used in the lemma is as follows. If B is a b X t matrix, then vec(B) is the
transformation of B into the bt-dimensional vector formed by stacking the columns of B.
If Bis b X t and C is ¢ X u, then the Kronecker product of B and C is the bc X tu
partitioned matrix B ® C = [b;.C]. The commutation matrix is the ab X ab matrix K,, =

%1 Y1 J; ® J; where Jj; is an a X b matrix with a one in the (i, j) position and zeroes
elsewhere. This notation is to be used further in Section 5. For a good overview of the
algebraic properties of the “vec” transformation, the Kronecker product and the commu-
tation matrix, see Magnus and Neudecker (1979).

The form of var{vec(Z)} given in Lemma 2.1 states that the distinct off-diagonal
elements of Z are uncorrelated with each other and with the diagonal elements. Each off-
diagonal element has variance o,. The diagonal elements have variance 24, + ¢, with the
covariance between any two diagonal elements being ¢2. The matrix Z has density

(2.1) f(Z) = keexplkitr{(Z — nI)*} + koltr(Z — n])}?]

in ¥2p(p + 1) dimensional space, where k, = —(40,)7?, k; = 62(20, + poy) (40,)7?, and kg
= 2-W2=1(2 + po,/a,) V2 (2wa, )" V/PPP+) The density function of spherically invariant
symmetric matrices can be expressed in terms of the eigenvalues of the matrices. In
particular, (2.1) can be expressed as

(2.2) f(Z) = keexplky T2 (2 — 1)* + ko{ X2 (2 — m)}’),

where 2z, = z, = ... = 2, are the eigenvalues of Z.
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The distribution of the eigenvalues of spherically invariant random symmetric matrices
has been well studied. For random symmetric matrices in general, a useful technique is to
average the density of the matrix over the orthogonal group. That is, suppose Y is a
p X p random symmetric matrix with density f(Y) which is absolutely continuous in
1%p(p + 1) dimensional real space. The distribution of the eigenvalues of Y is the same as
the distribution of the eigenvalues of the spherically invariant random symmetric matrix
V with density fo(V) = [o(» f(HVH’)(dH). The integral is with respect to the invariant
measure (dH) on the group O(p) of orthogonal p X p matrices normalized so that the
measure of the whole group is unity. In particular, the distribution of the roots of Y = Z
+ M, where Z has density of the form given by (2.1) and M is a fixed p X p symmetric
matrix is the same as the distribution of the roots of W with density

(23)  fo(W) = keexplki T21 W} + m}) + ka{¥21 (wi — m)PoF P (—2k Wo, Mo)),

where w, = w, = - - - = w, are the roots of W — 4l and m, = m, = - -- = m, are the roots
of M. The constants 5, ko, k; and k; are the same as in (2.1). The hypergeometric function
oF can be represented by oF{(—2k Wo, Mo) = [0 etr{—2k, WoH'MoH}(dH ), where
W, = diag(w,, w., - -, w,) and M, = diag(m,, me, ---, m,). The role of hypergeometric
functions of matrix arguments in multivariate distribution theory and their properties are
treated in detail by James (1964) and Muirhead (1978).

The following lemmas are to be applied in Section 4. The first lemma follows from the
continuity property of eigenvalues of symmetric matrices. The second lemmais an obvious
generalization of Theorem 13.3.1 in Anderson (1958).

LEMMA 2.2. LetZmn be a sequence with respect to n  of g(m) X g(m) random symmetric
matrices, and let A, = ()\1,,., )\2,,., <+, Ag(m),m) Where )\1,,. = )\2,,. = ...z )\q(,,.,,,. are the
eigenvalues of Zmpn. If (Ziny Zony s Zin) = (Zy, Z3, ---, Z,) in distribution, then
(A, Xsy oo M) = (A, Asy - -+, N in distribution, where A = (A1m, Azms ** *5 Agimy.m) @NA
Am = Aom = -+ = Aymy,m @re the eigenvalues of Z,.

LEMMA 2.3. Let {Zn}m=12,....x be a set of random symmetric matrices with the order of
Zn being g(m) and with joint density f(Z,, Zs, - - -, Z,) which is absolutely continuous in qo
=14 Y&_ q(m){q(m) + 1} dimensional real space. Furthermore, assume that f(Q:Z,Q1,
Q2Z2Q2, oo, QZiQL) = f(Zy, Zy, - - -, Zy) for any set of orthogonal matrices @y, @, -- -,
Q:. The joint density of (A1, Az, - - -, )\k), where Ay = (Ap,my Aoims = *» Ngimp,m) GNA Aym = Aoym
= ... = A\ym).m are the roots of Z, is

h(xly A2) ) Am) = hOf(Aly A?y Tty Ak) I_Ih=1 H}t-l,j<t ()\Jm At,m))
where hg' = ==/2% [[4_, T[99 T%{q(m) — j + 1}] and A, = diag(Aim, Ao, * - +5 Agomy,m)-

3. M-estimates of scatter. A p-dimensional random vector Y has an elliptical
distribution if its density is of the form f,(y; u, @) = | @|™%g{(y — n)'Q'(y — w)} for
some positive definite symmetric matrix Q and some nonnegative function g, where g is
independent of u and Q. Properties of elliptical distributions have been studied by Kelker
(1971). The variable T = (Y — )’ Q (Y — u) has density

(3.1) fr(t) = {x/2P/T(%p)it /PP g(t).

If the second moments of Y exist, then its covariance matrix is ¢, where ¢ = E(T)/p.
Let Y, Ys, - -+, Y, be a random sample from the elliptically distributed random vector
Y. Maronna (1976) defines affine-invariant M estimates of location and scatter to be
solutions to a system of equations of the form n™* ¥; ui(d:)(Y; — u.) = O, and
nt Y us(d?)(Y: — ) (Yi — wa)’ = S,, where d? = (Y; — u,)"S7'(Y; — u,). The functions
u, and u, must satisfy a set of general assumptions given in Section 2 of Maronna’s paper.
The solutions (u., S,) are estimates for the parameters (u, ) where ¥ = ¢7'Q. The
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parameter o is the solution to the equation E{y(cT)} = p, where y(t) = tu,(t) and T has
density (3.1). Maronna (1976) shows that n'/*(S, — ) — N in distribution, where N is a
multivariate normal matrix with zero mean. If the parameter Q depends on n, then (S,,
X, = ¢7'Q,) satisfies Assumptions 2.1.i and 2.1.ii. This follows from the affine-invariant
properties of the M-estimates, and of the family of densities {f,} for a fixed g. The
parameter ¢ does not depend on n. For the M-estimates, the values of 5, o, and o, in
Lemma 2.1 are = 0, 0; = (p + 2)’¥1/(2¢» + p)® and 0> = ¥3°[(Y1 — 1) — 2(¢> — Du{p +
(p + 4)¥»}/(2y2 + p)*], where ¥, = E{Yi(sT)}/{p(p + 2)} and ¥» = E{cTY’(cT)}/p (Tyler,
1982, Example 3). The values of o, ¢, and o, for a variety of M-estimates and a variety of
elliptical distributions have been tabulated by the author (Tyler, 1983, Table 1).

The estimate S, corresponds to the sample covariance matrix whenever u,(d) = 1 and
uq(t) = 1. For this case, 0 = 1, 6 = 1 + « and ¢, = « provided the fourth moments of the
elliptical population exist. The parameter « is a kurtosis parameter defined such that 3«
= E{(Y; — 1:)*}/(Q:)? — 3. If Y is multivariate normal, then « = 0.

For a specific family of elliptical densities {f,} with g fixed, the maximum likelihood
estimates are M-estimates with u, (d) = u,(d?) and u,(t) = =2g’(t)/g(t). Under the assumed
family of densities, 0 = 1, o, = {¥p(p + 2)}/E{h*(T)} and ¢, = —20,(1 — ¢,)/{2 + p(1 —
a1)}, where h(t) = tg’(t)/g(t) (Tyler, 1982, Example 2). The multivariate t distribution on
f degrees of freedom is an elliptical distribution with g(t) « (1 + t/f)~%/?®*0_For this
distribution, 6, = 1 + 2/(p + f) and ¢, = 20,/f. For f > 2, the covariance matrix of the
multivariate ¢ is ¢ with ¢ = f/(f — 2). For f > 4, the kurtosis parameter is given by 1 + «

=(f=2/(f- 4.

4. The asymptotic distribution of the roots. Let the sequence (S,, ¥,.) satisfy
the conditions of assumption 2.1. In addition, for any p X p symmetric matrix M, let
M(M) = (M) = - -+ = N\(M) represent the eigenvalues of M.

In this section, the asymptotic distribution of the roots of S, are found under the
following sequence of local alternatives to multiple roots:

n1/2‘xi(2n) - ‘Ym,n} -
Ym,n

d 1€ _7,
-0 [E F, r>m

© (€ Z, r<m
(4.1)

where _7,, 7,, --., 7, is a partition of the set {1, 2, - .., p} with _#,, = {i(m), i(m) + 1,
- -+, i(m) + g(m) — 1} and where v, , is the average of \,(¥,) over i € _7,,. Condition (4.1)
implies that \(2.)/\i(X.) > 1if i € 7, and j € 7, and that Y ,, di = 0. The
framework (4.1) also includes the case whenever X, = ¥ does not depend on n. For such
cases, d; = 0.

To obtain an asymptotic distribution, the roots of S, are first “standardized” by defining
Xin = n'2{\(Sn) — Ymn}/VYmn. An asymptotic representation for the limiting joint
distribution of X; = (X;,., Xo,n, * -, Xpn) is given in Theorem 4.1. This theorem shows
that the asymptotic behavior of A\;(S,) is not influenced by the eigenvalues of X, which
differ from \,(¥,) by more than O(n~"/?). Theorem 4.2 gives the density of the limiting
distribution of X,,.

The critical step in the proof of Theorem 4.1 is statement (4.3). As noted in the
introduction, the proof of this step is technically involved. Therefore, rather than prove
this step within the proof of Theorem 4.1, its proof is given separately in Section 6. For
the case p = 2, it is possible to give a simple proof for (4.3) by using the explicit expression
for the roots of a 2 X 2 symmetric matrix. That is, Baxe = (b;) has roots Ya(b,, + by) £
Yo{(byy — by)? + 4b%}*2 However, the necessary generalization for p > 2 is not straight-
forward.

Before presenting Theorem 4.1, additional notation is needed. Let D,, be the g(m) X
q(m) diagonal matrix with diagonal entries di), diim)+1, * - *» Qigmy+qem—1. Lt Z be defined
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as in Assumption 2.1 and let

Z(l,l) Z(1,2) R Z(l,k)

Z(2,1) Z(2,2) e Z(Z,k)
4.2) z= :

Ziy L o+ Zup
represent a partitioning of the rows and columns of Z in accordance with the partition
F, Py, -+, P. For any p X p matrix M, define M, in an analogous manner. Finally,
for any p-dimensional vector a, let a,, be the ¢(m) dimensional vector a{,, = (Qim, - - -,
Ai(m)+q(m)—1 ). Note that a’ = (a(l) a(lz) L) a(k)).

THEOREM 4.1. The standardized roots X,, — X in distribution, where the distribution
of X is characterized by Xm) = {M(Wn), Ma(Wa), -y Nm)( W)} with Wy, = Z oy + Di.

PROOF. First observe that for h € 7, X, , can be exp‘ressed as M(M,,,,,) where M., .
= n'"*(y3S, — I). Since M(M,,») = M(QM,,,Q") for any orthogonal @, it then follows
from Assumption 2.1.i that one can assume without loss of generality ¥, = A, =

diag{\i(X.), Ma(Zn), -+, M(En)}. By expressing S, = A, + n”2AY2Z,AY?, the matrix
M., can be rewritten as M,,;, = D,,, + T,.., where D,,, = n'?(y;},A, — I) and T, =
Yrn A2 Z, A2

For j € 7, (Dpm); — ® if r < m, (Dpn);; — — if r > m. The submatrix (D) mm —
D,,. The random matrix T,,, has the following convergence properties. The submatrix
(Tn)mmy = Z(m,my in distribution since Z, — Z in distribution and A\x(¥,)/Ymr. — 1 for h
€ _7,. The elements of (T, ). for r # mor t # m may or may not converge depending
on whether N\;(X,,)/Ymn. converges for j € _7,,. The convergence of this ratio is not implied
by (4.1).

Loosely interpreted, the block-diagonal matrices (M, ).~ “diverge” to +o for r < m
and to — for r > m, and the block diagonal matrix (M, »)(mm) does not diverge. The off-
diagonal matrices (M) are “negligible” with respect to (M, »)¢» for r # m. Thus,
one might conjecture that Xim)+j-1,. is asymptotically equivalent to A;j{(Mnn)m,m}. More
specifically, it is proven in Section 6 that

(43) Xi(m)+j_1.,. - )\j{(Mm,n(m,m)} —0 in probability
forj=1,2,...,9(m)and m = 1, 2, .- -, k. Theorem 4.1 then follows from Lemma 2.1
since (M, ,,, My, -+, My,) = (W, Wy, .., W,) in distribution. O '

It is possible to show that Theorem 4.1 is still valid if Assumption 2.1.i is replaced by
the assumption that the distribution of Z is spherically invariant. The normality assump-
tion for Z also is not essential. However, the normality assumption is needed in order to
express the density function of X in a well-studied form.

THEOREM 4.2. The joint density of the limiting distribution X in Theorem 4.1 is

h(X) = h()fO(x){Hk=l Hf’,(z';'},j<z(xi(m)+j—1 - xi(m)ﬂ-l)}

on the domain {Xim) = Ximy+1 = +++ = Xigm)rqem—1; M = 1, 2, - - -, k}, where hy is defined in
Lemma 2.3 and

fo(x) = Koexplky Y1 tr{(Xn — nI)? + DL} + Re{ Xk tr(Xm — 9%
X [1ke1 oFY¥™ =2k (Xm — nl); D}

with by = —(401)™", ke = 02201 + pox)”'(40))™ and K, = 27V (2 +
po2/61) V2 2ma,)" VA% where gy = Y2 Yk g(m){q(m) + 1}. The parameters 1, ¢, and o,
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are defined in Lemma 2.1. The matrix X,, is a d(m) X d(m) diagonal matrix with entries

Xim)s Xigm)+15 * * *5 Xi(m)+q(m)—1-

Proor. Without loss of generality, assume n = 0. The joint density (Za,1, Z,2), + - *»
Z.r) in go dimensional space is

(4.4) fi(Zy, Z,, ---, Z) = Keexpik, fh=1 tr(Z%) + kz(zk =1 tr Zm)z},

and the density of W= (W, W, ..., W,) is o(Wy, --+, W) = AW, — Dy, -+, W, —
Dy). The joint density of the & set of eigenvalues of {W,,},,-12,...x is the same as the joint
density of the k set of eigenvalues of {V,,}n=1,5,...,» where by recalling that tr!D,, =0, V =
(Vy, Vs, - -, Vi) has density

f(V) =f f f(HiViH{, H:VoH3, -+, HiViHi)(dH)(dH>) - - (dH),
Olg(1)] Olg(m)]

(4.5) = Koexplk: Yy tr(V2 + D2) + Ep{SEoy trVial?2]

X [1k- {f etr(—2k1V,,,H,’,,D,,,Hm)(de)}’~
Olg(m)]

The integral in the last expression is o Ff™(—2k, V,,, D,,). Since f5(V) depends on V only
through the & set of roots of {V,,}n=12,...x, the joint density of these roots can be found by
applying Lemma 2.3.0

By examining A(x), one can note that the variates X, X, - -+, X are mutually
independent if and only if ¢, = 0. For sample covariances from elliptical populations, this
implies that the “kurtosis” parameter x = 0, see Section 3. Waternaux (1976) makes this
observation for the sample covariance from an elliptical distribution whenever the covar-
iance matrix ¥ is not dependent on n and has all roots distinct. The joint marginal density
of X, is given by

(4‘6) hm(xm) = kﬂ,mexp[kltr{(Xm - 71[)2 + D?n} + kZ{tr(Xm - 77[)}2]

X 0F£§""‘”{—2k1(X,,, = nl); Dn} H‘]I,(g)l,j<t(xi(m)+j—l = Xitmy+e—1),

where

kgl = 20/2Mm=1(9 4 g(m)ay/a,)V2(20,)M/amiam+ T4 Ts{g(m) — j + 1}].

Whenever ¥, = ¥ does not depend on n with ¥ having roots with multiplicities q(1),
q(2), - - -, q(k), the densities given in Theorem 4.2 and in (4.6) simplify since D,, = 0 for
m=1,2, ..., k and the hypergeometric term (F{™{—2k,(X,, — n[); 0} = 1. For this
special case, the method of proof for Theorem 4.1 is not necessary. The result can be
obtained by generalizing the arguments in Anderson’s (1963) derivation for the principal
component roots of a sample covariance matrix from a multivariate normal population.

5. Test for subsphericity. Let Y,, Y3, ---, Y, be a random sample from a
Normal, (g, ) population. The likelihood ratio criterion for testing the sphericity hypoth-
esis Ho:¥ = M with X\ unknown is L, = | £|%?"/(p~'tr )™, where ¥ represents the
sample covariance matrix. Under Hy, it is well known that —2 In L, — x%i/2)p+2)(p-1) ID
distribution. Under the sequence of alternatives £, = A(I + n~*/2D), Nagao (1970) shows
that —2 In L, — xZ/2(p+200-1(£) in distribution, where the noncentrality parameter ¢ =
Yeftr D® — p~!(tr D)?}. '

Consider the subsphericity hypothesis for testing the equality of theg=p—i+ 1 (¢ =
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p — i+ 1) smallest roots, that is Hy,:\(E) = .- = »(¥) and assuming A\;—;(Z) # \(3).
Anderson (1963) shows the likelihood ratio criterion for H,, to be L,, =
{121 M(E)}927/{g™ $2, A(£)}Y?™, and the limiting null distribution of —2 In L,.
to be xf/2@+2e-n. The limiting distribution of —2 In L,, under the sequence of
alternatives \j(¥.) = M1 + n~%?q)) for j = i is shown by Waternaux (1977) to be
Xtoaroe-n(€g) where £, = (T2, a} — ¢~ (T2 a;)?} provided the roots {N(E,), j < i}
are distinct and not dependent on n. The next theorem shows that this limiting distribution
is valid no matter how A;(¥.) behaves for j < i provided they separate from X faster than
O(n™"?). Before stating the theorem, the following lemma concerning quadratic forms in
normal variables is needed for the proof of the theorem, see Srivastava and Khatri (1979),
Corollary 2.11.1.

LEMMA 5.1. Let Z ~ Normal.(0, T), and let A be an r X r symmetric matrix. If ATA =
Aand t = tr(T'A), then Z'AZ ~ x2(¢) with £ = 0'A6.

THEOREM 5.1.  Let ¥, be a sequence of alternatives with n"*{\(Ea) — Xgn}/Agn — d;
for j = i, and diverging to infinity for j < i, where X,» = q7' Z2; \(¥,). Under this sequence
of alternatives,

—2 In L,,,q —> X(Zl/g)(q.',z)(q_l)(gq) in distribution,

where &, =% YB_; d?.

PROOF. By Theorem 4.1, the joint limiting distribution of {X;,, - -, X,.} where X;,
= n2{N(Z) = Ngn}/ Ny is {M(Zg + D), -+, A(Z(g + Dy)}. The q X g diagonal matrix
D has entries d;, diy1, - - -, d,. The random symmetric matrix Z, is multivariate normal
with mean 0 and var{vec(Z,))} = I + K, since o; = 1 and o5 = 0. This limiting distribution
is valid no matter how A\;(¥,) behaves for j < i, provided it separates from X, at the rate
indicated in the theorem.

The test statistic can be written in terms of X;,, as follows,

=2 In Lgn = —n In{[12% M(P)} + ng Infg™ 22 M(E))
=—nIn{[]% 1 + n™"?X;,)} + ng In{32; ¢7'(1 + n~V2X;,.)}.
By expanding In(1 + x) = x - Yox? + O(x?), one obtains
=21n Lon = {38 Xin — ¢7N(E8i Xin)?) + Op(n™?)
which converges in distribution to the quadratic form Q(Z,), where
Q(Zg) = Y%lEi IN(Zg + D)V — ¢7H{E2: M(Zg) + Dg)¥]
= Yl{tr(Zg — D)*} — ¢ {tr(Z — D)1

By employing the “vec” notation, the quadratic form can be expressed as Q(Z,)) = {vec(Z(,
+ D))} Agvec(Z () + D)), where A, = V{%(I + K,,) — ¢ 'vec(I)vec(I)’}. This follows
from the properties tr(BC) = {vec(B)}’{vec(C’)} and K, vec(B) = vec(B’), see Magnus
and Neudecker (1979). The theorem then follows from Lemma 5.1 by using the property
K3, = Ito note that A,(I + K, )A, = A,, tr{(I + K, ;)A,} = 2 tr A, = Y(q + 2)(g — 1), and
&, = {vec(Diy}'Aqfvec(Dg)} = Ya(tr D)? since tr Dy = 0.0

One might suspect that Theorem 5.1 could be proven by using the general theory for
likelihood ratio tests. The difficulty in using the general theory lies in the apparent
inability to express Hoq for ¢ < p in the form h(¥) = 0 for some continuously differentiable
Y2(q + 2)(g — 1) dimensional function h. The proof of Theorem 5.1 can be easily extended
to prove the following result for the class of estimates considered in Section 2. Waternaux
(1977) gives a similar result for the sample covariance matrix from an elliptical population
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under the more restrictive conditions on the population roots described prior to Theorem
5.1.

THEOREM 5.2. Let Assumption 2.1 and the local alternative framework (4.1) hold, and

define
A = (T NS fgm)™ T NSO/,

The limiting distribution of —2{In A, .}/01 is a noncentral chi-squared on Ye{q(m) + 2}{q(m)
— 1} degrees of freedom and noncentrality parameter &,y = Ya(tr D,,)?*/a1. Furthermore, if
a2 = 0 then the limiting distributions are jointly independent form=1,2, ---, k.

PROOF. By arguments analogous to the proof to Theorem 5.1, —2{In A, .}/o1 —
o1 {vec(Zimm + D)} Agm) {vec(Zimmy + D)} jointly in distribution form=1, 2, .., k.
The marginal distribution of Z,, » is multivariate normal with mean 5I and covariance
matrix ', = var{vec(Z m,m)} = 01(I + Kymy,qom)) + oz2vec(I){vec(l)}’. The submatrices Z, m)
are independent only if o2 = 0. After noting that A,mvec(l) = 0, it can then be verified
that (Ul_lAq(m))I‘m(Ul_lAq(m)) = Ul_lAq(m) and tr{of‘Aqu‘m} = 1/2{q(m) + 2}{q(m) - 1} The
theorem then follows from Lemma 5.1 since

{vec(D,, — 1)} (67 Agim))vec(D,, — nI) = {vec(Dpn)} (67 'Agimy)vec(Dp) = Emy. O

6. Proof of statement (4.3). Before giving the proof for statement (4.3), a review
of some concepts in spectral theory is presented. Let M be a p X p real symmetric matrix
with eigenvalues A\, (M) = A(M) = - - - = N\(M), and let s(M) = {M (M), A\o(M), - - - N (M)}
denote the spectral set of M. As a function of M, s(M) is uniformly continuous.

The eigenspace of M associated with A € s(M) is V,(M) = {x € R?| Mx = \x} where
RP” is the set of all p-dimensional real vectors. The eigenprojection of M associated with A
€ s(M), denoted P\(M), is the orthogonal projection operator onto V,(M). The eigenpro-
jections have the properties P\(M) = {P\(M)}’ = {P\(M)}?, P\(M)P,(M), = P,(M)P\(M)
=0 for A # u, and MP,(M) = P\(M)M = AM. The spectral decomposition of M is M =
Saesan APA\(M). If v is any subset of s(M), then the total eigenprojection of M associated
with » is P(v, M) = Y»e, PA(M).

Lemma 6.1 gives the Taylor series expansion and truncation term for the product
MP(v, M) for » C s(M). This product is important in studying the eigenvalues of M. The
non-zero eigenvalues of the product are the non-zero elements in ». In addition, if A\,_, (M).
# N(M) and Ay (M) # M_y(M), and if M, is a p X p symmetric matrix with A\;_;(M,)
# Mi(Mo) and Niyg—1(Mo) # Mirg(Mo), then

(6.1) | A(M) = \(Mo) | = 2| MP(v, M) — MoP(vo, Mo) |

fort=1i,i+1,---,i+q—1wherer = {N(M), -, Nisgr(M)} and v, = {N(Mp), -- -,
Ai+g-1(Mo)}. The norm, || - ||, on the set of all real p X p symmetric matrices is the maximum
absolute value of the eigenvalues of the matrix argument. Statement (6.1) is obtained by
appling the inequality A\,(A — B) < \(A) — A\(B) < M(A — B) for any two symmetric
matrices A and B of order p. The matrices MP(v, M) and M,P(v,, M,) are symmetric.
The 2 factor in (6.1) is due to the possibility that \,(M) may be matched with the zero
root of MyP(vo, M,) rather than with \.(M,).

The proof of Lemma 6.1 uses well-known results and perturbation techniques in spectral
theory. The reader should refer to Kato (1966), Chapter 2, for a good overview. It is
necessary to introduce complex variables for the lemma and its proof, and to extend the
norm defined previously to the set of all p X p matrices with complex entries. Let i =
V=1. Define the norm || A | = {\(A*A)}”2, where A* represents the conjugate transpose
of A, and A, () represents the maximum eigenvalue. This norm has the important property

(6.2) IAB| = [Al - IBI.
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LEMMA 6.1. Let D be a real p X p symmetric matrix with A\;,_,(D) # \:(D) and \i+g-1(D)
# Aisg(D), and let M = D + T be a real p X p symmetric matrix. Define w = {\(D), - - -,
Nitg—1(D)} and v = {(N(M), - -+, Nisg-1(M)}. Let G be a circle in the complex plane with the
roots of D in w inside G and the roots of D not in w outside G. Also, for any p X p matrix B
and any p X p symmetric positive definite matrix T, define r(G, B, T') = max.ec || I"'B(D —
al)7'T||. If r(G, T, T') <1 for some T, then
(1) N1 (M) # N(M) and Nyg—1 (M) # Nirg(M), and
(ii) MP(v, M) = DP(w, D) + P(w, D)TP(w, D) + H(T) + E(T), where

H(T) = Ysewutw Mu — N{PND)TP,D) + P.(D)TP\(D)},

and

E(T) = —2r1)™" Y7 J(;a(D — al)™M{=T(D — aI)™ '}/ da.

NOTE. Ifi=1,the property Ai.i # \; and Airg—1 # Ai4q is understood to read Aiig—1 #
Misg- If i + ¢ — 1 = p, the property is understood to read A\i—; # ..

PROOF. Let T be such that r(G, T, T') < 1. For any a« € G we can apply the geometric
series to obtain

(6.3) (M = al)™ = (D — al)'T[X%0 {T7U=T)D — of)7'TPIT

For « € G, (M — ol)™" exists and so no eigenvalues of M lie on G. By the continuity of
eigenvalues of symmetric matrices, it then follows that the eigenvalues of M within G are
MN(M), -y Nwgmr (M), andthat the other eigenvalues of M are outside G. Thus, \;_, (M)
# N(M) and Ao (M) # Nito(M).

To show part (ii), the expansion (6.3) and the identity

(6.4) Py, M) = —(27i)™* J; M - al) ' da,
can be used to obtain
6.5) MP(v, M) = DP(w, D) + (2=i)™" J;“(D — o)'T(D — al)™ ' da + E(T),

where E(T) is defined in the statement of the lemma. The middle two terms in the
expansion in the lemma follow by integrating the second term in (6.5).0

A bound on | E(T')| can be constructed by using the “triangle inequality” on the
integral involved, and by using property (6.2) and the geometric series. In particular, if T
= diagonal (74, 72, -+, 7p), D = diagonal (4, é;, ---, 8,), and G has center (0, 0) and
radius R, then '

(6.6) IE(TD) | < {e(R, T)? - ITT'TT7| - [7(G, T, T)/{1 = r(G, T, )],

where ¢, (R, T) = max;| {r;R/(]| ;| — R)}|. By applying (6.2), the term r(G, T, T') can be
bounded by

(6.7) "G, T,T) < (R, T) - |[T'TT,
where ¢(G, T) = max; | {r7/(| §;] — R)}|.
PROOF OF (4.3). Let Lemma 6.1 be applied with D,,, and M,,, replacing D and M

respectively, and with i(m) and g(m) replacing i and q respectively. For any new notation,
terms dependent on m will have the m suppressed.
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It is to be shown that there exists a sequence of circles G, satisfying the respective
conditions on G in Lemma 6.1 such that

(6.8) r(Gn, T, T'n) = 0 in probability
where T, = y,¥? AY2. 1t is also to be shown that

(6.9) H(T,..) — 0 in probability, and
(6.10) E(T,..) = 0 in probability.

It then follows that
(6.11) M, .P(v,M,,.) — P(w, Dpnn)Mp .P(w, Dp,n) — 0 in probability

after noting that D,, ,P(w, Dpn,n) = P(W, D) D n P(w, Di,p).
Let MY be defined by

(MR)immy = (Mp)mmys
MDD = MiMp)mmt + 11 X T for r<m,
M irn = e {Mimn)mmy} — 11 X I for r>m, and
(M2)ey =0 for r # t.

Since D, is diagonal, {P(w, D.n)}onm = I and {P(w, Dmn)}iry = 0 for r # mor t # m.
By noting that P(w, D,,,) = P(w, M%), it then follows that P(w, Dmn)MupnP(W, Dpy) =
M?P(w, M?). Inserting this identity into (6.11) gives

(6.12) M,..P(v, M,,,) — M3P(w, M}) — 0 in probability.

Statement (4.3) is obtained by applying (6.1) with M,, , and M? replacing M and M,, since
Niemyi-1(M8) = Ni{(Mo 2 )m,m }- Thus, to complete the proof, (6.8), (6.9) and (6.10) must be
proven.

To show (6.9), expanding P(w, D, ) gives

H(Tm,n) = erw,péw hn( A, ﬂ){PX(Dm,n)Zan(Dm,n) + Pu(Dm,n)ZnPX(Dm,n)}’

where h.(\, 1) = M = p)7I(1 + n~ Y20 YY1 + n~YPu)'2 Recalling that A(Dp,n) — d:
for't = i(m), -- -, i(m) + g(m) — 1 and | A\(Dp,,) | = o for t < i(m) or t > i(m) + g(m) —
1, it follows that maxye,, ew | Aa(A, w) | = 0. Thus, since Z, — Z in distribution, (6.9) is
true.

By deﬁnition‘ Of Dm,m Ai(m)(-Dm,n) =0= Ai(m)+q(vm)—l (Dm,n)- Let a, = max{ I Ai(m)(Dm,n) "
| Nitmy+gomy—1(Dm.n) |} and let b, = minf| Nigmy-1(Dmn) |, | Niimy+gtm)(Dm,») | }. Define G, to be
the circle in the complex plane with center (0, 0) and radius R, = a, + (b, — @,)/ Since
@, — max{dim), digmy+qm-1} and b, — oo, for large n the roots Aj(Dp,,) for j = i(m), i(m) +
1, .-, i(m) + g(m) — 1 are inside G,, and the roots A\j(D,,,) for j < i(m) or j > i(m) +
g(m) — 1 are outside G.. .

To show (6.8), inequality (6.7) can be used to obtain r(G,, T, I'n) < c2n | Z, || where

con = max;| {1 + n”Y?N(Dpn)}/{| Ai(Dmn) | = Ra}|.
Evaluating the maximum for j € _%, and j & _#,, separately gives
Con < max[(1 + n=Y2a,)(b, — a,)"Y?, (1 + n™Y2b,){(b, — @n) — (bn — @n)"?}].

The right-hand side of the inequality goes to zero. Statement (6.8) is thus justified since

Z, — Z in distribution.
To show (6.10), inequality (6.6) can be used to obtain

| E(Twn) | < cinll Zall - (MG, Ty Ta)/1 = 1(Gny Ty Tn)ll,
where ¢, = max; | {1+ n7Y2\(Dnn)}2Ra/{| \i(Dm,n) | — R} |- Since Z, — Z in distribution
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and r(G,, Tmn, I'n) — 0, it only needs to be shown that ¢, is bounded for large n.
Evaluating the maximum for j € _7,, and j € _7,, separately gives

e1n < max[(1 + n~"?a,) {1 + an(bs — @)™},
(1 + n~Y2p,)2(1 + a,(by — @)~ Y2}{(bn — an)? — 1}].

The right-hand side of the inequality goes to 1.0
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