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LIMITING BEHAVIOR OF FUNCTIONALS OF THE
SAMPLE SPECTRAL DISTRIBUTION

By DANIEL MACRAE KEENAN

Carnegie-Mellon University

The parameters of a stationary process can be viewed as functions of the
spectral distribution function. This work concerns (estimators) parameters
defined as integrals of m (=1)-dimensional kernel functions with respect to
the (sample) spectral distribution function. Conditions for asymptotic nor-
mality, almost sure convergence, and probability one bounds are derived for
such estimators. The approach taken is based upon the reduction of an m-
dimensional problem to one-dimension via consideration of a Frechet differ-
ential and its linearity. The probability one bound for the estimators is
obtained by first establishing it (O((n™*log n)*?)) for the difference of the
sample and true spectral distribution functions in the supnorm and then
showing that this rate is transferred to the estimators through integration.

1. Introduction. Let {X;, —0 < i < o} be a strictly stationary stochastic process
defined on a probability space (?, <7 P). If we are concerned with the marginal distribution
of X;, then estimators can be developed for parameters of the marginal distribution when
the dependency dies out quickly. Sen (1972) and Yoshihara (1976) derive asymptotic
results in this situation for U and V statistics under the assumptions of *-mixing and
absolute regularity, respectively. However, if it is the dependency in which we are
interested, then the marginal distribution is not our concern, but rather the joint distri-
butions. For the covariance structure, we are interested in the second moment structure
of the bivariate distributions. The (2nd order) frequency domain essentially considers
simultaneously the second moment structure of all the bivariate distributions of (X;, X;),
i, ] € Z. Higher-order cumulant spectra consider more structure (and more variables,
jointly). This paper concerns parameters and estimators defined as functionals of the
spectral distribution function and of its estimates, respectively. A possible alternative to
this is to assume that the process is a given ARMA model and using Akaike’s Markovian
representation (Akaike, 1974a), represent the univariate process as a multivariate AR(p),
for some p € N*, and apply the results of Sen (1972) and Yoshihara (1976), since the
parameters of interest are associated with the marginal distribution of the new process.
The order of the process could be determined by Akaike’s AIC criterion (1974b) or Parzen’s
CAT criterion (1974). This is approximately the procedure which is at the foundation of
robust estimation for time series models (see Martin, 1978). The approach of this paper
does not require the parameter of interest to be determined by some finite dimensional
joint distribution (e.g. a restriction to ARMA models nor a prior specification of the order)
in order to obtain asymptotic results for estimators of parameters of the joint structure.
In fact, the parameter may depend upon the entire process, e.g. parameters of the spectrum
of an arbitrary linear process. Asymptotic distributions, probability one bounds, and
almost sure convergence will be shown for certain functionals of the sample spectral
distribution. A probability one bound for the sample spectral distribution function is also
established.

2. Let {X;, —0 < i< o} be a strictly stationary stochastic process with mean zero for
which the kth order cumulant spectra, f(-), is finite, 2 = 2, 3, ... We will assume
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throughout that
E:;,vz,uuv;,_ﬁ—m l Uil 'C(U], U2, *--, vk—l) I <

forj=1,2,---,k—1,k=2,3, ..., where c(vy, Vs, - -+, Us—1) is the kth order cumulant
of {X(0), X(v,), X(vs), -+, X(vs—1)} (see Brillinger, 1975, Section 2.6). In the case of a
Gaussian process this condition is satisfied if

Yo o |v]]e@)]| < .

The absolutely continuous spectral distribution function of the X, process will be denoted
by F()), A € [0, 27]. Consider the functional

27 2
2.1 0(F) =J(: J(: h(A1, Az, - -+, A) dF(Ny) dF(Ne) -+ dF(As)

where h is real valued, symmetric in its m (=1) arguments, and of bounded variation
(whose definition is given in Section 3). If h were not symmetric, we could replace it by a
sum over all permutations. For a sample {X;, X, - - -, X}, the sample spectral distribution
is defined as

2 27s
(2.2) FaN) = == Socmimen I,,(l)
n n
where I{?()) is the sample periodogram
(2.3) I90) = 51— | S Xexp(-it*) 12, X € [0, 211
Yy

One estimator which we will consider is

G(Fn) = ~£ c I h(>\ly >\2, M) )\m) an(Al) e an(Am)
(2.4) .
27

= (—) 1”,=1 e 2;:”=1 h(gil, Eip S} gi,,,) H;"=l Ii?(g:,)-

n

If m = 1, then 6(F,) is of the general form of an estimator considered by Parzen (1957).
Another empirical spectral distribution function is F}(-), given by

AR, = MF.(27)
n

(2.5) Fr(\) =

where A3} = F;'(jF.(2x)/n), j =1, 2, ---, n, and F,(-) is the piecewise linear version of
F.(-). Two additional estimators of §(F') are

2w 27
0(F7) = f f A1, -« -y Aw) dFE(A) - -+ dFE(A\)
0 o
(2.6)
F.(2
= % Vi1 v e B h()\fﬁ)), - )\8:)'))
and
-1
en U= (::) Fu2m) T hOMD, -, M), 1< << - <ipsn

The values {A{3, j =1, ---, n} can be viewed as approximate order statistics from the
spectral distribution F. It may be that estimators defined w.r.t. F}}(-) are computationally
easier to work with. The last two estimators are of the form of the traditional V and U
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statistics. Asymptotic normality, probability 1 bounds and almost sure convergence will
be established for these three estimators.

3. Let K be {G|6(G) < », G spectral distribution function on [0, 27], G(27) < «} and
D[0, 2] be the set of functions on [0, 27] with discontinuities of the first kind. Let | - |-
be the sup norm

" H"m = SUPo=<r=2x | H\) |

on D[0, 2x]. This norm does not induce the usual Skorokhod topology (see Billingsley,
1968, Chapter 3), however, that will not prove important to us. We could just as well work
with the interval [0, 7], although there are notational conveniences in using [0, 2].

Let E be the linear space in D[0, 2] generated by {A|A = ¢(G — H), ¢ E R, G,
H € K}. The Gateaux differential (see Serfling, 1980, Section 2) of §(F) at F € K in the
direction of G is defined as

D.(6(F), F, G)
0[F + MG — F)] — 6(F)

(3.1) = lim)\l()

A
m f ’ J; ’ J(: h(A1, Ay -+, Am) HT=2 dF()\j) d[G()\) - F()\l)]

m[J(: ’ hi(A) dG(N;) — G(F)]

whereforl=c=<m

(3.2)

27 27
hC(Al’ M) AC)___ ‘I‘: M I h(xl’ A2’ ) Am)l’.Ij”;(.%l dF(Aj)~
By the above definition of the Gateaux differential, D, (8(F), F, G) is a Frechet differential
at Fif
(3.3) 0(G,) — 60(F) — D:(8(F), F, G,) = o(| G, — F|)

all sequences {G,}2; in K which converge to F in the sup norm. We will be assuming
throughout that D,(8(F), F, G) is a Frechet differential w.r.t. the sup norm. Lemma 3.2
establishes (3.3) when in addition to bounded variation, h is assumed to be continuous.
The generalization of bounded variation to more than one dimension which we will use is
that h is of bounded variation in each component with the total variation norm for that
component being integrable with respect to the other components, e.g.

27 27
f M f "h('y AZy M) Am)"udAZ"'dAm<aJ and
0 0

(34)  T(he, k) = 8UPiy ... igy) Tiy -+ Zig | Bkheliyy =05 Eipy Mewty 205 A) | < @
forl<k=c<m, (A1, -+, A\.) € [0, 27]°* where A, is defined recursively by
Ahe(Esy, §igy -+ o5 &) = helEiyy Eipy -+ o5 E) = helEim, Eigy -+, &)
and
Drho(Eiy iy - o0 ) = BerhelEips Eip <05 Eis -5 £ = BicrhelEiy, &y w0y Eimrs oo &)

where {£;,}, - - -, {£:.} are finite partitions of [0, 2x] (see Hobson, 1927, page 343-346). Note
that by the symmetry of h it was not important that we went from left to right. The
following well known result will be of assistance in proving Lemma 3.2.
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LEMMA 3.1. Iflis a real (or complex) valued, continuous function of bounded variation
on [0, 27] and K is a right continuous, bounded function on [0, 27] with K(0) = 0 then

J(: ’ I(x) dK(x)

where || - ||, is the total variation norm.

=< |l@2mKQCm) | + |11 K|l

PROOF. See Lemma 7.2.2B, page 254, Serfling (1980).

LEMMA 3.2. For 0(F) defined by expression (2.1) with h being symmetric, continuous,
and of bounded variation, (as defined above), D,(6(F), F, A) given above is a Frechet
differential w.r.t. the sup norm.

PROOF. Let {G,}m-; be a sequence in K which converges to F. Expression (3.3) can be
written as

0(Ga) — 0(F) — D\(6(F), F, G»)

=3z, ('3) { f e P 2252 Tl dIGa(Y) = F(Ajn}.

By Dominated Convergence and bounded variation, h. is also continuous and of bounded
variation and using expression (3.4) we have that for1 < /=<c¢—1

L et B <2 A s dIGA(N) = FOV))

is continuous and of bounded variation. By Lemma 3.1 and the definition of bounded
variation

J[(‘)zﬂc he(A1, -+ -5 o) Tl 6= dIGR(N;) — F(\)) ’

IA

“ f " hc('y A2y ] )‘c) I_I;:=2 d[Gn(A}) - F(A})] " Gn - F‘"m
[0,27']‘:— v

+ | Gn(27) — F(27) |

.[;2 - hc(27l', Ag, +o ey )\c)Hf‘=2 d[GnO\j) - F()\j)]

" Gn _:F" wsuPlEili Zil

L2 - [hc(gily )\21 MY A«':) - hc(gi,—h A27 MY Ar:)] H;"=2 d[Gn(A}) - F(Aj)]

Ju:z - h(2m, Nz, -+, No) T1j=2 dlGa(N)) — F(N)] ’ | Ga(27) — F(27) |

where the sup is being taken over all partitions {£;,} of [0, 2x]. Applying Lemma 3.1
recursively to the terms of the summand and the latter term we obtain

L2 ’ hc(xh M) Ac) I_Ijq=1 d[Gn(Aj) - F(AJ)]'

= (|| G, — F“m)c SUPg; ), - -t ) Zil,---,i, |Achc(fi., fizy cety fic) | + of || G, — F||¢,)

(the latter term being, due to the recursive evaluation of integrals at 2x). Therefore we
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have that
|6(Gn) — 6(F) — D,6(F), F, G,) |

= (’j}) T(he, Y(1 G = Fll)* + o(I Gy = Fl.)

=0o(|Gs — Fll»). o

Note: In proving Lemma 3.2, the time series nature of the observations is not used.
That is, this result holds for the general statistical differential approach, although an
assumption of bounded variation in the general case (i.e. unbounded support on R) would
be quite limiting since all the (nonconstant) polynomials and therefore, all moments and
cumulants, are eliminated. For the case of compact support (e.g., [0, 27]), such an
assumption is quite reasonable. Also, it should be noted that h is not a function of the
data but rather generates the nonrandom weights of the periodogram products (see
expression (2.4)).

Let R., and R}, be defined as the remainder terms

(3.5) n'”Ri, = n'*[0(F,) — 0(F)] — n'’Dy(8(F), F, F,)
(3.6) n'?Rt, = n'2[0(F%) — 6(F)] — n*2D,(0(F), F, F%).

We will show that both n'/?R;, and n"/?R%, converge in probability to zero. We first need
the following lemmas. The first is the statement of a well-known time series analogue of
a Kolmogorov-Smirnov result. (See Grenander and Rosenblatt, 1957, Chapter 6, for an

historical account)

LEMMA 3.3. If F,(-) is the sample spectral distribution (i.e., expression (2.2)) based
upon a sample {X,, X, - - -, X,} from a strictly stationary process satisfying the assumption
of Section 2, then n'?| F, — F| . converges in distribution to | Y |« where {Y(\),0 <\ <
27} is a zero-mean Gaussian process whose sample paths are continuous, w.p.1.

PROOF. See Theorem 7.63, page 258-259, Brillinger (1975) (or Theorem 4.3, Brillinger,
1969).

LEMMA 34. For F} and F, defined by expressions (2.5) and (2.2), respectively,
n'2|| F% — F, ||« = o(1) with probability one.

PROOF. F.( ) was defined to be the linear interpolated version of F.(-). By the
construction of F, we have

IR(N)
SV

o 2
n'2sup, | F,(A) — Fo(N) | = n*?sup;<j<n —nE IP(N) | = 27 supi<jen

for each w € Q where )\j = 27j/n. By Brillinger (1975), Theorem 5.3.2, we have that
lim sup,_.«[supxI?(N)/log n] < 2 sup, fe(N)

with probability one. Since f is continuous and log n/n'? = o(1), we have

3.7 n'2|F, = F,| = 0(1) w.p.1

By the construction of F¥* from F,, we have

sup, | F¥(A\) — F.(\)| < F.(2x)/n for all « € Q.
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Since F,(27) — F(27) is 0,(1) and
1

nZe?

P{| F.(2w) — F(2w)| > n'%} < é E[F,(27) — F2m)] = [v + O(n™1)]

(where ¢ is given by expression (4.5) in the Lemma 4.1) we have that (F.(2r) —
F(2m))/n'? converges completely to zero and thus F,(2x)/n'? converges to zero, w.p.1.
Consequently,

(3.8) n2|F¥ — Fo]le = 0o(1) wp.l

and the result follows from expressions (3.7) and (3.8).0

Note: Again, it is assumed throughout the paper that h is such that D,(8(F), F, G) is a
Frechet differential at G = F; Lemma 3.2 shows that it is sufficient to have h continuous
and of bounded variation. For other h’s the condition would need to be individually
verified.

THEOREM 3.5. For F.(-) and F%(-) given by expressions (2.2) and (2.5) we have
n'2(6(F,) — 0(F)), n'*(6(F%) — 6(F)) and n“*(U, — 6(F))

are all asymptotically normal with zero and variance mA where A is given by

27’[10‘ ’ [hi 27 — &)hi(@) + | (@) |?])f2(c) da
(3.9)

+ AJ(: I hl(a)hl(ﬁ)fxxxx(a’ ﬁ’ _a) da dﬁ] ’

assuming 0 < A < oo,

Note: If A were equal to zero, then a second order approximation, as with traditional
U and V statistics, could be employed throughout.

PRrROOF. By Lemmas 6.2.2 A and B, Serfling (1980), page 218, n'/?R,, and n'?R¥, are
each o,(1) if n'?|| F, — F|l. and n'/?|| F¥ — F | . are each O,(1), which was shown to be
true by Lemmas 3.3 and 3.4 above. Therefore n*%(9(F,) — 0(F)) and nV2(0(F¥) — 0(F))
have the same asymptotic distributions as n'/?D,(8(F,), F, F,) and n'2D,(0(F*), F, F*),
respectively (if ones exist). By expressions (3.2) and (2.2),

2
n'2D,(0(F), F, F,) = n'’m f hi(A\) dF,(N\) — 0(F)
(]
(3.10)
= /2 27 o, (n)
=n""m 7 Ej-l hl(Ei)Ixx (EJ) - o(F)
where & = 2xj/n. Since h is of bounded variation, so is h; and by Theorem 5.10.1, page

168, Brillinger (1975) the result follows for n*/%(6(F,) — 6(F)). For eachn =1 and w € @,
there is a Borel signed measure y,,, corresponding to

nY2[FX(-; @) — Fu(+; 0)],

the difference of two bounded, non-decreasing functions and therefore a function of
nomalized bounded variation. By Lemma 3.4 pu,, converges weakly to the zero measure
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on [0, 2x], for each w € Q (except for a set of measure zero) and by Billingsley ((1979),
Problem 25.14, page 195, extended to signed measures).

n'2[D\(0(F), F, F}) — Di(0(F), F, F,)]
(3.11) o
=m J(: hi(\) d[nA(FR(N) — Fa(M))] = o(1)

with probability one. The statistic U, was defined by expression (2.7). Since h is bounded,
the proof of Lemma 5.7.3, Serfling (1980), will still go through even though {{\{}}7=1}7-1
are dependent. By the lemma we have

(3.12) E|U, — 6(F*)|® < (E| F.(27) |%)Y?0(n™®) = O(n™®)

(first term on r.h.s. is O(1); see proof of Theorem 5.10.1, Brillinger (1975), page 418, for
cumulants of F,(2x)), and by the Bonfertoni Inequality, for every ¢ > 0

P{n'?| U, — 0(F*)| > ¢ for at least one n = no}
< Yoon, Pin'?| U, — 0(F%) | > ¢}
=0(1)e™® Jpan,n 2> 0 as ng— .

Thus n2| U, — O(F¥)| — 0 wp.ln— .0

4. Probability 1 bounds and almost sure convergence. For the following lem-
mas an additional assumption will be made concerning the kth order cumulants of the X,
process. The assumption is assumption 7.7.2 of Brillinger (1975), page 264. We will assume
that C, is finite for all K € N where C, is defined as

Cr = Dopin- - | €01, V2, <2, V1) |

where ¢(vy, Ve, - - -, Up_1) is the kth order cumulant of (X(0), X(v1), - - -, X(vk-1)). We will
also assume that

(4.1) Yi1 (B C,Coy -+ C(ZY/LY) <

for Z in a neighborhood of zero, where the inner summation is over all indecomposable
partitions v = (vy, - - -, »,) of the table

12
3 4
oL -1 2L

with »; having n; > 1 elements, j = 1, ---, p. In the case of a Gaussian process this
condition is satisfied if

Yo (V)| < .

The next lemma uses an approach of Brillinger (1975) for obtaining probability one
bounds. The periodogram I&(-) at a single frequency is O(log log n) w.p.1 (see Parthas-
arthy, 1960) whereas Brillinger (1975, Theorem 7.7.2, page 263) shows that sup,/ ™W(A) is
O(log n) w.p.1. The next lemma shows that the sup, | F.(\) — F(M\) | is O(n~*(log n)"?)
w.p.1, the improvement being due to the averaging of the periodogram. It can be viewed
as a law of the “uniterated” logarithm result for the sample spectral distribution function.
The slower rate must be connected with the fact that in Lemma 3.3, n'2[F,(¢£) — F(¢)], 0
< £ < 2m, convergences to a Gaussian process, which is neither (necessarily) a Wiener
process nor can be viewed as a Wiener process under transformed time (i.e. intrinsic time).
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LEMMA 4.1. If assumption (4.1) is satisfied then | F, — F | . = O(n""*(log n)"/?) almost
surely.

PROOF. Let G.(A) = [F.(\) — E(F.(\)], A € [0, 2x]. Using Brillinger (1978), Theorem
5.10.1, page 418 and Lemma 4.2, page 402, we have that the joint cumulant of (G.(}\;),
Gu(A2), -+, Ga(AL)), N €O, 27),j =1, .-+, L, L € N7, is bounded by n(%, C,, --- C,),
defined above, and thus for an arbitrary ¢ > 0 and « > 0 sufficiently small

a2 " | o] *
lOg E(exP{aGn( )\)}) - ? Var Gn()\) = 2L=3 (Ev Cnp M Cnp)n T

E(exp{aG,(N\)}) = exp{a?/2 Var G.(N\)(1 + &)}
and consequently
(4.2) E(exp{a| G.(N) |}) = 2 exp{a?/2 Var G,(N)(1 + ¢)}.
By the construction of F,(A) and E(F,()\)),
(4.3) SuPosr<ex | Gu(N) | = sup Ni | Ga(N) |, N = (2mj/n), j=1,2,---,n
and thus
(4.4) E(expla sup\|G.(M) }) = E(expla sup A | Gu(N) |}) = Y= Elexpla | Gu(N) |})
< 2n exp{(a?/2)[supyVar G.(N)](1 + ¢)}.

The variance of G.()) is

n[ZW J(: f2(a) da + f f frxex(t, B, —a) da dﬁ] + 0O(1).

Let ¢ be
A A
(4.5) SUPOSXSZT%[ L fila) da + J(: J; fo(a, B, —a) da dﬁ]
so that
SUPo<i<e-Var G,(A\) = n[y + O(n™)].
Choose 6 > 0 and let

c(n) = (n log n)'/?
(46) aln) = 252 + 5)%(log n)*/(n"A(Y + O™ )2(1 + 0)*?)
a(n) = 22y + O(n™1)2(2 + 8)V2(1 + &)%c(n).
Therefore, by expression (4.4) and the Markov Inequality
P{n sup, | F.(N) — E(F,(N) | = a(n)}

a’(n)
2

< 2 exp{—a(n)a(n)}expflog n + ny + 0O(n71))(1 + &)}

< 2 exp{—(1 + d8)log n} = Kn~0*+,
By the Borel-Cantelli Lemma we have

n‘/2sup,\ ' Fn(A = E(Fn(x))) I
(&) log n)” <1 wpl

and since | E(F,()\)) — F(\)| = O(n™*) (see Brillinger, 1978, page 168), the result follows. 0

4.7) lim sup,_.»
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COROLLARY 4.2. If assumption (4.1) is satisfied, then | F¥ — F| . = O(n""2(log n)"/?)
almost surely.

ProOF. This follows from Lemma 3.4 and 4.1.0

LEMMA 4.3. If assumption (4.1) is satisfied then the remainder terms
Rln = a(Fn) - G(F) - Dl(a(F)y F, Fn)
RY, = 0(F%) — 6(F*) — D1(6(F), F, F¥)

(4.8)

are each o(n""*(log n)"/?) almost surely.

PRrOOF. The proof is for R;, with an analogous proof holding for R%,. If ¢ > 0 is
arbitrarily chosen, then by expression (3.3) we have
IRlnI <clan_F"°°

for n sufficiently large. Therefore,

n'?|Ru| _ lim su n2|F, — F|l.
(log n)"/? =e P " (log n)"2

and the conclusion follows from the preceding lemma. 0

lim sup, ..

Using the above lemmas we obtain the following probability 1 bounds on our estimators
of interest.

THEOREM 4.4. If assumption (4.1) is satisfied, then

n'2|6(F,)—0(F)|

@A log n)"” =1 almost surely

(4.9) lim sup,_.«
where A is given by expression (3.9)

ProOF. By Lemma 4.3

n'2|0(F,)—6(F)|
(log n)'2

n'2|D,(6(F),F,F,)|
(log n)*2
n

- _2_7!’ n 27r (n) 2xr —
(nlog n)'2| n e hl( )I <n) O(F)l'

The proof now is parallel to that of Lemma 4.1 except that
2
GV = n{ LI . [I (2”’) fn< "’)P{ +0(1)

H, = n[D\(6(F), F, F,) — E(D,(6(F), F, F,))]

o) 2] - o

where h, is of bounded variation (and therefore, bounded) and the difficulty with the
supremum over all frequencies is avoided since we are averaging over all frequencies. By

(4.10) lim sup,_.» = lim sup,_.»
which by expression (3.10) is

m lim sup,_..

is replaced by
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the same argument as in Lemma 4.1, we obtain
E expla(n) | H,|} = 2 exp{(a®(n)/2)(1 + ¢)Var H,}

with Var H, equal to n(A + O(n™')). The a(n), c(n), and a(n) given by expression (4.6)
are again appropriate with (2 + 8) replaced by (1 + 8) and ¢ replaced by A.0

COROLLARY 4.5. If assumption (4.1) is satisfied then Theorem 4.4 holds with (FF)
and U, substituted for 0(F,) in expression (4.9).

PROOF. By Lemma 4.3, expression (4.10) holds with F, replaced by F5 and the result
for (F*) follows from expression (3.11) and Theorem 4.4. For U, the result follows from
the fact that n'/2| U, — 8(F%) | = o(1) almost surely (proven in Theorem 3.5). [

COROLLARY 4.6. If assumption (4.1) is satisfied then 0(F,), 0(F7) and U, all converge
to 6(F) almost surely.

5. A few applications. For h()\) = e**, s € N, the sth autocovariance,

(5.1) O(F) = y(s) = J(: h(X) dF(X)

and under the conditions of the above theorems, the results apply. The probability one
bound in Theorem 4.4 is a general bound. Since £ = X;Xj.,, — < j < ®, defines a new
stationary process, if the X; process is ¢-mixing and ¢; satisfies weak dependency conditions
for a function of a ¢-mixing process (see Billingsley, 1968, Section 21), then a law of the
iterated logarithm for y(s) follows from a result of Philipp (1967). One way to view the
weaker result of Theorem 4.4 is that 8(F) may depend upon all of the autocovariances.

A general form of estimators of the spectral density at A(i.e., f.())) is a quadratic form
in the data (see Grenander and Rosenblatt, 1957, Chapter 4).

(27rn)_1 2}:k=1 ),k Xj Xk o

If W, is a symmetric function of bounded variation on [0, 27]* whose first n® Fourier
coefficients are the b;,’s:

W)\(E, 7]) = W)\(n, 8) = W)\(27I' - E, 2 — 77)y s g € [0, 27(]

27 2
bj,k = f f eXp(ij)\l - ikAZ)W)\(AIy A2) dxl dk2, j’ k = 1’ e, n
0 0

then the varianpe of the estimator is

87(2 2 27
0(F) =—J(: J; | Wal\i, N2) |2 dF(N) dF(X2)

n2

and an estimator of the variance is 0(F,):

2 2
o(F.) = <8ni)(2;") s Tt | Wall, £ 119E)2(E)
when & = 2xl/n, 1 =1, 2, ---, n. The most general form of an estimator of the spectral
density at A replaces W, by a sequence W{» which becomes concentrated at \ as n
increases.

The sample moments of a distribution are both U and V statistics. The moments of
the spectral distribution function are of interest since the bandwidth, the expected number
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of zeroes and the expected number of local maxima of stationary Gaussian process in a
given interval all depend upon certain moments of the spectral distribution. Under the
conditions of the above theorems, the results apply to these estimators. The central
moments are defined for a kernel, h, of dimensional m > 1.

Let J, be a sequence of positive integers which are o((n/log n)/?). For data X;, -- -,
X, if we define c,(s) as:

2
eals) = f ™ dF,(\) s €N
0

then c,(s), 0 < s < o, are the circular autocovariances. Since [F,(-) — F(-)] is right
continuous and of bounded variation (along each realization), integrating by parts we have
(by Theorem 4.4):

2 .
J(: e™ d[F,(\) — F(N)] ’

SUPosss=d, | €a(S) — Y(8) | = Suposs=y,

27
[Fa(2m) — F(27)] + is J(: [F.(A) — F(\)]le™ dX

= SUPoss=<J,

IA

0o(1) + .| Fo — Fllw = o(1) w.p.l.

For linear processes An, Chen, and Hannan (1982) have given a variety of results which
are similar in nature to this.

Lastly, the general form of the estimators of this paper serves as a first step in the
establishment of estimators of time series parameters of the spectrum of a stationary
process defined as a solution of an integral minimization (analogues of M-estimators). For
even if 6(F') is not defined with respect to a kernel, the differential approach to statistical
functions is still applicable with D,(0(F), F, F,) often still having a representation with
respect to a kernel.

Whittle (1953) and Walker (1964) have shown that (under weak assumptions) maxi-
mum likelihood estimation of time series parameters is asymptotically equivalent to
minimization of a certain integral defined with respect to the sample spectral distribution.
Ibragimov (1967) established consistency results for “maximum likelihood ” type estima-
tion performed with respect to the spectral density. Minimization estimators can be
established which generalize these results.
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