The Annals of Statistics
1983, Vol. 11, No. 3, 959-969

ASYMPTOTIC THEORY OF SYSTEMATIC SAMPLING

By RoNALDO IACHAN

Iowa State University

The main purpose of this paper is the development of an asymptotic
theory of systematic sampling from a stochastic population. The superpopu-
lation model assumed is that the population arises from a second-order
stationary process. A comparison among the multiple random start systematic
sampling schemes is made in terms of the limiting expected variance of the
sample mean. Asymptotic normality of the systematic sampling mean is
obtained, both unconditionally and conditionally on the given population.
Finally, the asymptotic behavior of confidence intervals based on two distinct
variance estimators is studied.

1. Introduction. Suppose we are interested in estimating the mean Xy of a finite
population IIy = {X (1), --- , X(IN)} with a natural labeling. Consider systematic samples
of size n consisting of elements X (j), X(j + &), -+, X(j + k(r — 1)) where j is a random
integer between 1 and k. These are called single random start systematic samples, or,
simply, systematic samples. Multiple random start systematic samples consist of elements
indexed by m (say) random starts drawn without replacement from the first /= mk labels
and of every ¢th element thereafter. ,

Our asymptotic framework consists of a sequence Ily of populations expanding as
N — o, from which samples of size ny = N/k — o as N — o are taken. See, for example,
Fuller and Isaki (1982) for a careful construction of a related framework. Except for
Theorem 3.2, where & as well as n is allowed to grow to infinity with the population size,
we shall assume % to be fixed throughout this work. This assumption could actually be
relaxed by assuming only that ky — k& < » as N — oo, but the gain in generality in our
results would be then overshadowed by the increased complexity of statements and proofs.

In order to study the asymptotic properties of the systematic sampling procedures as
the sample size n — o, we shall assume that the population itself is stochastic. Stochastic
population (or superpopulation) models were introduced by Cochran (1946) in the very
context of systematic sampling to formalize the strong dependence of the behavior of this
sampling scheme on the structure of the population. More specifically, Cochran (1946)
assumed that the population values themselves arise as the realization of a weakly
stationary process.

If we introduce the usual p-notation for the sampling distribution and the suffix p for
expectations over repeated applications of the sampling procedure, then for any design for
which the sample mean X (n) is p-unbiased we have

Vo(X(n)) = Ex(X(n) — Xn)%

In order to compare the precision of distinct ( p-unbiased) sampling designs, Cochran
(1946) argued that the p-variance V,(X(n)) itself cannot be used as a criterion since it
depends heavily on the particular population at hand. Such was the motivation to examine
classes of population within a superpopulation model and to consider instead & {V,(X (n))}
as a criterion, where & denotes expectation under the superpopulation distribution. Note
that the overall variance is

VX (n) = 8(Vo(X(n)} + ¥ (E)X(n)},
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where ¥(Y) = (Y — £Y)? denotes variance with respect to the model distribution. The
second term in the right hand side is however independent of the (p-unbiased) design and
vanishes asymptotically. Our approach is thus distinct from that of Matern (1960) who
considers n X V,(X(n) — Xn). We shall suppress hereon the suffix p when no confusion
may arise.

It will be assumed that the population values are observationsat ¢t =1,2, ..., Nof a
weakly (or second order) stationary process £(-) defined on a certain probability space
(Q, F, P). Explicitly,

(1.1) . &) =0, &((e(t+v)) =p()? tvER.

We assume p(0) = 1 so o” is the variance and p(-) the autocorrelation function of (¢).

A deterministic mean function was also considered in the model, and found to have no
influence upon our asymptotic results provided that the mean is locally smooth. Its
presence in the model, however, permits the study in the same framework of classical cases
of departure from stationarity such as linear or parabolic trends (see Bellhouse and Rao,
1975, for example) and periodic components in the fixed finite population values. In case
a linear trend is suspected, Yates’ (1948) end corrections bring about a considerable
improvement in estimation. Anyhow, it was shown by Madow (1953) in this case that
centered systematic sampling (where the start is no longer random but located at the
center of the first block of & elements) outperforms its random start counterpart.

If p(-) is non-negative, nonincreasing and convex, then as shown by Cochran (1946),

(1.2) EIV(Xys(n))] = [V Xas(n))] = E[V (Xus(n))]

where X,:(n), Xuws(n) and Xas(n) denote the means of systematic sampling, stratified
random sampling (with one selection from each stratum of % consecutive elements) and
simple random sampling respectively, all with sample size n. This result was extended by
Gautschi (1957) and by Hajek (1959). In Section 2 we will partially generalize (exclusive of
stratification) in an asymptotic setup all three results above by relaxing the assumptions
on the model and by establishing a complete hierarchy of the multiple random start
systematic sampling schemes in terms of their asymptotic expected variances. This result
gives an idea of the cost (in terms of larger expected variance of the sample mean) incurred
in using more random starts in order to afford a better estimate of the variance from a
single sample. We also show in passing that under even weaker conditions, systematic
sampling dominates simple random sampling. These results are discussed in more detail in
Iachan (1980a).

We shall confine our study to designs in one dimension. Bellhouse (1977) showed that
there can be no optimal unrestricted fixed sample size design in two dimensions even when
the correlation function is assumed convex. He showed, however, that in this case
systematic sampling has smallest expected variance in the restricted classes of aligned and
unaligned designs introduced by Quenouille (1949). We should also remark that no loss of
generality is incurred in assuming N = nrk for the sake of simplicity—the general case (N
# nk) is handled similarly by means of Lahiri’s circular procedure (see for example Murthy,
1967) and end effects are of no importance asymptotically.

Section 3 is devoted to the asymptotic normality of the systematic sampling mean, both
unconditionally and conditionally on the given population, the latter with probability one,
under some simple mixing conditions in model (1.1).

Section 4 deals with two variance estimators motivated by certain assumptions on
p(-) and the asymptotic behavior of confidence intervals based on them. Section 5 contains
the proofs of some of our results.

We now introduce some notations to be used throughout this work. Let X, =
X(+kGE-1)),i=1,---,n,j=1, ---,k, denote the ith element of the jth systematic
sample. Define the jth systematic sample mean X.; = (1/n) Y-, X;; and let X,;s(n) be the
random variable that takes on each X, value with probability 1/k. Define in the same way
X.ysom (), the mean of systematic sampling with m random starts and sample size n = mp.
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Let Viim(n) = & {V(Xeysim(n))} and Vis(n) = Vi (n). The population mean can be
written as Xy = (1/N) ¥: ¥, Xy.

2. A hierarchy of the multiple random start systematic sampling schemes. The
correlation function p(-) is non-negative definite and even—we may and will consider it
for £ = 0 only. Let us impose our first assumption on the correlation function, a mild form
of mixing condition on the process ¢(-) in (1.1):

Al) Yo |p)] <.

It follows from (A1) that

(P1) lim;—p(¢) = 0,

(P2) ¥ %-1| p(kv)| < o, k = 1, k integer.

Therefore, the function S(k) = ¥ %-:1 p(kv) is well-defined, provided that (A1) is assumed
as it will be from this point on.

We are now able to compute the limiting expected variance (normalized by a factor n)
of systematic sampling from population (1.1). Here as everywhere in this work, /= mk is
the sampling interval (or step) of systematic sampling with m random starts and sampling
fraction 1/k.

TaeoreEM 2.1. If (Al) is assumed in (1.1) then, as N— w and k = N/n is held fixed,

(2.1) lim,,_,ansys(m)(n) = 02(1 - %){1 - Z-E_I (S(]-) - JS(/))} = ‘/sys(m)> say,

where S (k) = ¥ %=1 p(kv).
It is easy to show that

_ 2 2
Vas(n) = & {(Var(Xas(n))} =% (1 - %){1 _—N—(N_——l_) YN - U)P(U)}

and

limn_mnVsrs(n) = 0'2(1 - %) = Vs, say.

The remainder of this section will be focused on the comparison of the multiple random
start systematic sampling schemes—notice that both single random start systematic
sampling and simple random sampling belong to this class (with m = 1 and m = n,
respectively). Our ultimate goal here is a complete hierarchy of such sampling schemes in
terms of their limiting expected variances

(2:2) Veys(m) = Vm{l - (S(1) — mkS (mk))} = V{1 — 2g(mk)},

mk—1
where we define the function g(¢) = (S(1) — £5(£))/(¢— 1) for integers /= 2.

The comparison (2.2) is to be made between sampling schemes with the same sampling
fraction 1/Z, hence k is to be kept fixed, and the comparison boils down to that between
the values of g(mk) for distinct numbers m of random starts, 1 =m = n.

We will need in the next results some further assumptions on the correlation function:

(A2) p(-) is nonincreasing;

(A3) p(-) is convex;

(A4) p(-) is continuously differentiable on (0, ©) and Y o-1|vp’ (V)] < 0.

Note that we have imbedded our process in continuous time so that p(-), S(-) and
g(.) are all defined in the real line.

TaroreM 2.2. If the population in model (1.1) satisfies (Al) and (A2) then
(2.3) Viys(m) =< Vs, allm=1.
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This theorem shows that systematic sampling with any number of random starts is
better (in our usual sense) than simple random sampling provided that the correlation
sequence (p(v):v =0, 1, 2, -..) is absolutely summable and nonincreasing. It is worth
remarking that convexity of p(-) is no longer necessary for the asymptotic result, unlike
the analogous exact results of Hijek (1959) and Gautschi (1957). However, the full set of
assumptions (A1) to (A4) is necessary to establish a complete hierarchy of the multiple
random start systematic sampling schemes, i.e.

(24) Vsys(ml) = ‘/sys(mz) if m; = ms.

Define the fuhction Q(¢) = ¢/5(¢) and notice that @(¢) and S’(¢) = ¥, vp’(£v) are well-
defined in view of (A1) and (A4), and hence so is @'(¢). Our next result gives conditions for
the hierarchy (2.4) to hold.

THEOREM 2.3. If the population in model (1.1) satisfies (A1) to (A4) then:

(i) A necessary and sufficient condition for the hierarchy result (2.4) is that @’ (¢) =
(@) — Q)Y (¢—1),all £ > 1,

(ii) A sufficient condition for (2.4) is the convexity of @(-).

It is not difficult to verify that the sufficient condition (ii) holds for the exponential
correlation function p(¢) = e ™%, A > 0, but some relationship between ¢and L is necessary
if (ii) is to hold for the linear correlation function p(t) = (1 — ¢/L)*, L > 0, Both are
classical examples of concave upwards correlation functions, i.e., satisfying (A2) and (A3).

3. Asymptotic normality of the systematic sample mean. In order to establish
asymptotic normality of the mean of systematic sampling (with sample size n, sampling
fraction 1/k) from population (1.1), we first need to find sufficient conditions for

1 21e(f) 5940, 7%) as n— o,
(3.1) n
2 =0% Yo p(v) = d*(1 + 2 Y1 0(v)).

This is done in the lemma that follows, which makes use of the following notation: a
process W(-) is said to have all joint cumulants absolutely summable if for all integers &
=1,% - 2 | cum(W(2y), -+ -, W(tr))| < o, the sum ranging over all integers. Recall that
the joint cumulant of a k-dimensional random vector (Y3, -+, Yz) can be defined as the
coefficient of i*s; ... s; in the Taylor expansion of log(E exp(i Y% 5,Y;)).

LEMMA 3.1. Either of the following two conditions is sufficient for (3.1) to hold:

(B1) &(-) has finite moments of all orders and all joint cumulants absolutely sum-
mable;

(B2) ¢(-) is a linear process: e(t) = ¥ 5w a.Zi—i, with Y;|a;| < © and (Z,:n = 0,
+1, .. .) a sequence of i.i.d. random variables, §Z; = 0, §Z% < oo,

The proof that (3.1) holds for processes satisfying (B1) can be found in Brillinger (1975,
page 94), and for processes in class (B2) the result follows from a theorem in Anderson
(1971, page 429). We could have imposed milder mixing conditions, such as the strong
mixing condition introduced by Rosenblatt (1956), or the ¢-mixing condition detailed by
Rosenblatt (1972), for example, to get stronger results along the same line. We chose,
however, not to list alternative sets of conditions because the ones given encompass most
of practical applications. Note, for instance, that Gaussian processes satisfying the sum-
mability assumption (A1) fall in class (B1).

We are now in a position to state our (unconditional) asymptotic normality result.
Details of the proof can be found in Iachan (1980b).
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THEOREM 3.1. If in the population model (1.1), the process €(-) satisfies (3.1), then as
n— o and k = N/n is held fixed,

Jr(Ran(n) — Zn) =0 N0, %), 0% = 0 1= )1+ —2— (RS (k) — S(V)
k k-1

= lim,_,.n&{V(Xsn(n))} = Vi (see (2.1) or (2.2)).

The following corollary is a trivial consequence of Lemma 3.1 and the subsequent
remark.

COROLLARY 3.1. If the process ¢(-) satisfies either (B1) or (B2) (or any of the
alternative mixing conditions referred to) then the asymptotic normality result (3.1)
holds.

An analogous result is valid for multiple random start systematic sampling. In case m
random starts are employed, the asymptotic variance coincides with the limiting expected
variance (2.1). The reader interested in the proof is referred to Iachan (1980b).

We turn now to asymptotic normality results conditional on the particular population
at hand.

Note that under our assumptions, X.,s(n) — Xn is the sum of components from n
stretches of the series of population values generated by a process without long-range
dependence. Let now 2 — o as well as n — «, and define the sequence of distribution
functions

(3.2) Fin(x, w) = Pr{vn(Xu(n) — Xn) < x| Xaw), -+, Xn(w)}
for a given realization of population values

Xi(w), -+, Xn(w), wel.

THEOREM 3.2. If the process €(-) satisfies (B1) or (B2) then, there is a set A CQuwith
P(A) = 1 such that, Y w € A,

(3.3) Fpn(x, w) > Q(f), Vx,
o
as k— o and n— o,

Here as elsewhere, @ is the standard normal c.d.f., and P is the underlying distribution
of process (1.1).

A detailed proof of this result (based on the convergence of the associated characteristic
functions) can be found in Iachan (1980b) and is sketched in Section 5.

4. Variance estimators. The variance of systematic sampling cannot be unbiasedly
estimated from a single sample. Various superpopulation models have been assumed in
the literature to arrive at reasonable estimators—we will examine here the asymptotic
behavior of two such estimators motivated by different assumptions on our model (1.1).
Recall that P denotes the underlying distribution in superpopulation model (1.1) under
which the systematic sampling variance estimators are to be studied.

The first variance estimator considered is based on the assumption that the population
is in random order, translated into a correlation function in (1.1) which is zero if ¢ # 0. The
second estimator of the variance was introduced by Cochran (1946) motivated by a
correlation function of the exponential form,

4.1) po(t) = exp(—At), t=0,A>0.
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Explicitly, if the jth systematic sample
Xy=X(j+kG-1)i=1---,n)

is drawn, we form the estimators

A 1\ 1 1
(42) V,(n) = (1 - E) ;2;;1 (Xij - X.j)2/(n - 1) = (1 - Z) W/n,

N I\ W 2 2
. c ={1-=)— — s T =)
(4 3) V(n) ( k) n (1 J’nrhl + rkl - 1)

where W = W(J, n) is the mean of squares within the jth sample and r;, = r:(j, n) =
Y Xy — X)Xy — X)) /31Xy — X, ;)? is a sample estimate of the autocorrelation at
lag &, p(k).

Consistency of 7 and of W (as an estimator of 6?) as stated in Lemma 5.3 follows under
a stronger assumption on model (1.1):

(C1) e(.) is a stationary finite linear process of the (ARM}X) form
Zli’=l aiﬁ(t - l) = ;I‘=1bjz(t _]))

where (Z(n):n = 0, 1, ...) is a sequence of i.i.d. mean zero random variables
with a finite fourth cumulant.

Note that if a process &(-) is in subclass (C1) of linear processes then it is also in (B2).
The theorem that follows provides a heuristic justification for the use of Cochran’s
estimator when the correlation function is exponential (as in (4.1)) and % as well as n is

large.

THEOREM 4.1. Under assumptions (A1) and (C1) on model (1.1), we have as n — »
and k = N/n is fixed,

(4.4) nV.n) —p o?® 1—1 1—.L_1+%_ .
k é’npk Pk -1

If we define now c(k, A) = P — lim,_.n(V.(n) — Vays(n)) then it is not difficult to show
that lim_.c(k, A) = 0 for any A > 0 in case the correlation function is indeed given by
(4.1). See Iachan (1980c) for details.

The theorem also allows us to find an explicit expression for the following ratio which
will be useful in future calculations:

(4.5) R(k; p) = P — lim,o(Vo(1)/ Vys (1))
which in view of (2.1) and (4.4) .equals

: 2 2 2

The next two theorems deals with the asymptotic behavior of confidence intervals
based on the two given variance estimators, namely intervals (with confidence level 1 —
2a) of the form

(4.7) Xsys(n) + Za v Vr(n )
(4.8) Xsys(n) +Z, VVc(n s

where Z, is the upper a-point of the standard normal distribution.

THEOREM 4.2. Ife(-) satisfies (3.1) and (A2) in model (1.1), then confidence intervals
of the form (4.7) are asymptotically (n — o; k = N/n fixed) conservative.
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We can hope for more stringent attained levels (coverage probabilities) for intervals of
the form (4.8). The next theorem shows, however, that these levels can be far too stringent
even if the correlation function is nonincreasing convex.

THEOREM 4.3. If in model (1.1), the process e(-) satisfies (3.1), (A2) and (A3), then
the coverage probabilities of intervals (4.8) can be asymptotically (n — «; k fixed) zero.

In order to be protected against the disastrous asymptotic performance of Cochran’s
estimator depicted by Theorem 4.3, we can correct it for asymptotic bias to obtain the
estimator '

w 2 2
Vac(n) = (1 - 1/k) — (1 T Yo 1),

which we will call Modified Cochran’s estimator and the associated confidence intervals
(4.9) Xos(n) £ Zo N Dipye(n)- .

We will establish an asymptotic lower bound for the coverage probability of such
intervals. The theorem that follows thus provides an insurance against poor behavior of
intervals (4.9).

THEOREM 4.4. If in model (1.1), the process ¢(-) satisfies (3.1) and (A2), then the
lowest possible asymptotic (n — o; k fixed) confidence level attained by intervals (4.9) is
20(Z,/VE) — 1.

We conclude that: (i) the estimator based on the assumption that p(¢) = 0 if £ # 0 in
model (1.1)—the so called “random population” model—yields confidence intervals that
are conservative asymptotically; (ii) the estimator based on the assumption that p(¢) =
e A\ > 0, yields confidence intervals that can have zero asymptotic coverage probability
if the assumption is wrong.

5. Proofs of some results.
5.1. Proofs in Section 2.

ProoF oF THEOREM 2.1. Consider first the case m = 1, i.e. the single random start
systematic sampling expected variance Viy(n) which equals

E(V R o))} = {% o (e — sw}

2k n—1 —
+n—(k———_1—)_ "1(n v)p(kv)}.

By a variation of Toeplitz Lemma, given e.g. in Heilbron (1968),
iy (1 - %)p(v) — Yo p(v) =8(1)as N> o, ¥} (1 - %)p(kv)

— Y1 p(kv) = S(k) asn — o,

and hence

. _ of,_1 2 2k _
(1) lime.nVis(n) =o (1 k){l T S+ S(k>} = Vi
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which proves (2.1) in this case. In order to generalize (5.1) for multiple random start
systematic sampling, we notice first that

_ 1 _
V{Xastm (1)} = coom Im Yia (X - XN

where ¢;m = (/— m)/({/— 1) = m(k — 1)/(mk — 1) is the finite population correction
for sampling (without replacement) m out of ¢ elements, because Xism) = (1/m)
Y1 X.j,i=j1<j2 < -++ <jm = ¢being the random starts of the constituent systematic
samples of size p, say. Therefore,

_ k-1 = k-1 _
V{Xsys(m)(n)} = (m) Zf=l (ij - XN)z//= (7_"‘1') V(Xsys(P))

which yields, in view of (5.1),

~ - 2
Tty { V(Rayaimy (1))} = ('%_—Tl) 02(1 - %,){1 - (8@ - fsw))}

and (2.1) follows since /= mk and n = mp. 0O

Proor or THEOREM 2.2. In view of (2.2), all we need to show is that for all /> 1,
£g(¢) =0, or equivalently S(1) = #S(¢). But this follows by adding the inequalities

p(1) + -+ + p(¢) = fp()
p(+ 1)+ -« + p(27) = p(2¢)

p(AM—1)+1) + -+ + p(¢/M) = (p(¢M),
which hold for an arbitrary integer M = 1, and by letting M — «. 0O

ProOF OF THEOREM 2.3. (i) is equivalent to the non-positivity of the function

Q(4) — Q)

- Q) = (4= Dg'(0)

under the stated assumptions, and hence to the claimed monotonicity of g(-) for #> 1.
(ii) follows from (i) and the fact that if @ (-) is convex then

¢
—-(¢-1)Q'(H) = J’ - Q'(t) dt =Q(1) — Q(9),
1
where the inequality is due to the consequent monotonicity of @'(-). 0
5.2 Proofs in Section 3.

SKETCH OF THE PROOF OF THEOREM 3.2. From the unconditional result, it follows
that

1
Z g &exp(ivnX,,t) — exp(— o’t?/2), all ¢,
where we define
X'.j = X.j - XN

and script letters denote operators over the superpopulation distribution.
All we have to show is that, as k, n — o,
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V{% Yk, exp(i«/;X’.jt)} — 0, allg

or equivalently, for any fixed value of ¢,

1
(5.2) ‘k—2 let’,mskan,k(f’ m) -0

with an,x(¢, m) = Cov{exp(i VnX'.t), exp(i VnX’mt)}. We need two lemmas in order to
prove (5.2)

LEMMA 5.1. Let ¢= ¢, = [ks], m = my = [kw], k= 1, 2, ..., where s and w are
distinct numbers in the unit interval. Under either (B1) or (B2),

(Vne.q,, Vivm) = p N0, 62) X (0, 62)

2
. \ . .. . . . . (6“0
i.e.,, a bivariate normal distribution with covariance matnx( 0 02) .

LEMMA 5.2. Let by (s, w) = anr(tr, me), 0 < s, w < 1. Under the conditions of the
theorem, if s # w then b, (s, w) — 0 pointwise as k, n — .

Lemma 5.1 follows from convenient double array versions of the CLT for dependent
variables. These Central Limit Theorems, as detalled in Iachan (1980b), are extensions of
results in Diananda (1953) and Brillinger (1975, page 94). The method required a uniformity
argument based on Anderson (1971, page 425).

Lemma 5.2 follows from the joint asymptotic normality and independence of Y., =
‘/l_le.(k and Z,; = «/;X’.m,,, since in this case Cov(g(Yn.), &(Zn 1)) — 0 as k, n — o for
any bounded continuous g(-). Put g(x) = ™ to get b, , — 0,

Finally, note that

1 1 1
?let’,msk an, i (Cr, mp) =f j b, k(s, w) ds dw + O(1/k)

and that the RHS — 0 as &, n —  (by the DCT), since b, — a.. 0 in the unit square by
Lemma 5.2. 0O

6.3 Proofs in Section 4.

PRrROOF OF THEOREM 4.1,

LEmMMA 5.3. Under assumptions (Al), (C1) and (C2), we have as n — » and b =
N/n is held fixed:

(i) Wisa consistent estimator of 0%

(i) rrisa consistent estimator of pr = p(k).

The proof of (i) follows from covariance formulae given, for example, by Hannan (1960),
and (ii) is a consequence of Bartlett’s (1946) formula (cf. Section 3.7 of Grenander and
Rosenblatt, 1957) applied to the process Y (t) = (j + kt).

A theorem attributed to Slutsky (cf Billingsley, 1968, page 31) easily implies the
following.

LEMMA 5.4. Under the same assumptions, asn — « and k = N/n is fixed, tnry—p
¢npr and 1/ri, — pl/px.

Theorem 4.1 is then a trivial consequence of the two lemmas and of the definition (4.3)
of Cochran’s estimator of the variance.
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PROOF OF THEOREM 4.2. We shall first need a lemma.

LEMMA 55. V.isan asymptotic (n— o; k = N/n fixed) overestimate of the variance
of systematic sampling from a population following model (1.1) with a nonincreasing
correlation function p(-): V.(n) = Vys(n) with probability 1 for n large enough.

Proor. Recall from (2.2) that
1
(5.3) nVeys(n) —p 02(1 - Z) (1 —2g(k)) = Vs,
with g (k) = (S(1) — kS(k))/(k — 1). We have shown in the course of the proof of Theorem
2.2 that g(k) =0, k > 1, if p(-) is nonincreasing. On the other hand, in view of Lemma 5.3,
nV.(n) —p o%(1 — 1/k), together with (5.3) yield the result. O

Under the given assumptions, we can apply Theorem 3.1 to get«/ﬁ (Xoys(n) — X N)/Osys
—p A0, 1), so that, in view of (5.3) and Slutsky’s Theorem, as n — « and £ is fixed,

(5.4) (Xepa(n) = Xn)/V V() —p H(0, 1).

The coverage probability of interval (4.7) is given by
!Xs (n) _XN' 'Xsys(n) _XNI

(5.5) Py =Zt=zP{————— =<7,
{ VV.(n) ] ' { VVays(n) }

for large enough n, in view of Lemma 5.5. Since by (5.4) the right-hand side of (5.5)
converges to 1 — 2a (the nominal confidence level of intervals (4.7)), the theorem is
proved. O

ProoF oF THEOREM 4.3. We will make use of the following lemma, the proof of which
can be found in Iachan (1980c).
Let H(x) = (tn(1/x)) ' = 1/x - 1)L, 0<x< 1.

LEMMA 5.6. H(x) — 0asx— 0, H(x) > % as x — « and H(-) is nondecreasing in
[0, 1].

If we recall the definition (4.6) of the ratio R (%; p) then, by a reasoning similar to the
one in the proof of Theorem 4.2, all we need to prove is that lim inf, .. R (%k; px) = 0 for
some sequence (p}¥) of nonincreasing convex correlation functions. We show that

AN
p,f(t)=<1—;), n=kp+r>k 0<r<ek,

satisfy the requirements. In view of Lemma 5.6, when % is fixed, H(p}(k)) — % as
n— . Also, ¥i-1 pX(v) — k Y o-1 p(kv) = (k. — 1 — r)/2 as n — . Therefore,

lim inf, o R (k; pif) = limp o —— 2222 (R)__ -

k—1-r
1_2<__2 )

PROOF OF THEOREM 4.4. We first state a lemma.

LEMMA 5.7. Let Hy(x) = 1/k(x™* — 1) — 1(x™! — 1). Then Hi(x) < % (1 — 1/k), 0

=x=1

For a proof of this lemma, we again refer to Iachan (1980c). If we define Ruc(k; p) = P —
lim,—n Vac(n)/ Vs, the ratio necessary for our confidence interval calculations in this
case, then it is easy to show as before that
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where we define the functional
&r(p) = (Do=1p(v) — kY1 p(kv)}/(k — 1).

Recall again from the proof of Theorem 2.2 that g.(p) = 0 if p satisfies (A2), and then
using Lemma 5.7 in (5.6) we obtain Rac(k; p) = 1/k. Therefore, the result follows from

. 1 Zn(n) — X |
lim P < Zo ¢ = 26(ZuVRuc(k; 0)) =12 20(Z/VE) = 1. O
Vuc(n)
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