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Let T'(-) be a suitably regular functional on the space of distribution
functions, F, on R*. A method is given for obtaining the derivatives of T at F.
" This is used to obtain asymptotic expansions for the distribution and quantiles
of T (F,) where F, is the empirical distribution of a random sample of size n
from a distribution F' with an absolutely continuous component. One- and
two-sided confidence intervals for T (F) are given of level 1 — a + O (n /%) for
any given j. Examples include approximate nonparametric confidence intervals
for the mean and variance of a distribution on R.

1. Introduction. In a previous paper (Withers, 1980a) the author considered an
asymptotically normal random variable Y, whose cumulants have power series expansions
in n”"% the Edgeworth and Cornish-Fisher expansions for the distribution and quantiles
of Y, were re-expressed as power series in n™'/% in terms of the coefficients of the cumulant
expansions.

In Section 3 the cumulants of 7 (F,) are expanded as power series in n~! where T'(-) is
a real functional on %, the space of distribution functions on R*, and F, is the empirical
distribution of a random sample X, ..., X, from a distribution F on R* the cumulant
coefficients needed for the distribution and quantiles of n/*(T (F,) — T (F)) to within
O (n"?) are given in terms of the derivatives of T at F. Conditions for the validity of these
expansions have been given by Bhattacharya and Ghosh (1978) for the case where T (F)
is a function of [ f dF for some function f in R*. (However, they do not give explicit
expressions for the expansions, nor do they consider the quantiles.)

Section 4 illustrates these results for 7' (F,) the sample variance and the one-sample
Student ¢-statistic.

Section 5 extends these results to 7,,(F,) where T,(-) has an expansion in powers of
n~'% This is then applied to obtain nonparametric confidence intervals for T (F) with
error O(n"?) for any given j. These intervals are illustrated for T (F) the mean and
variance of A(X;) for any given function A(-).

We begin with a method for obtaining the derivatives of 7' (F).

2. Functional derivatives. In this section we specialise the notion of a functional
derivative used by von Mises (1947), and give a rule for differentiating a functional
derivative. ‘

Let x, x1, x2, - - - be arbitrary points in R*, let G, H be arbitrary distributions on R®, and
let T'(-) be a real functional defined on the space of such distributions. Von Mises defined
the ith derivative of T'(-) at (x4, - - - x,, H) as any symmetric function T}?(xl, .+, x)such
that for all distributions G on R,

(2.1) g"(0)= f J'T}‘,’(xn, <oy x) [[-1 d{G(x) — H(x)},
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where g(¢) = T (H + ¢(G — H)), 0=<e=<1,and g"(e) is the ordinary ith derivative of g(e)
with respect to e.

When g"*"(.) is continuous, the rth order Taylor series expansion of g(1) about g(0)
is then

22 T(G)—T(H)=z:-=1f .-.Jﬂ?(xl, -o oy x) [[5=1 d{G (%) — H(x)}/i!

+ AXG, H),
where

A(G, H) =J' f Ty, ooy ) T2 d{G (%) — H(x)}/(r + 1)

and Hg(x) = H(x) + )\{G(x) H(x)} and A is some constant in [0, 1] depending on
(G, H, T'). We shall make T H( ) unique by imposing the constraint

(2.3) FuTy =0, 1sj=<i,

where .4 4 is the operation of averaging with respect to H over the jth argument:
(2.4) Fuf(x, o, x) = f fley, oo 1,9, v, -+, x) dH(y).

Thus, G(x,) — H (x) in (2.1) and (2.2) can be replaced by G (x)). If for a given H there does
exist a function T H( ) satisfying (2.1) for all distributions G on R*, then the unique ith
functional derivative of T (H) is obtained by operating on it with {1 — %y, 0 <j < i} and
,, the operation of symmetrising a function of { arguments.

For example, if T (H) = [ (x)§ dH (x) where (x)o = x — [ z dH (2), then for any constants
a, b, ¢, TH(x,5) = —(x)o(y)o + (x)oa + (y)ob + c satisfies (2.1) and (1 — Fix)(1 — S T § (x,
y) = —(x)o(y)o satisfies (2.3) as well.

The first derivative T'{(x) is most easily calculated using

(@)

LEmMMA 2.1. Ty(xi, ---, x) is the coefficient of A1 --- Ai' in the Taylor series
expansion of g(e) about ¢ = 0 when
(2.5) G=7Y,-1\0,, where}j-1Aj=1,

and {\,} are otherwise arbitrary positive weights, and 8, puts mass 1 at x.

(The proof is obvious.) However, the higher derivatives are more easily calculated using
the following rule for differentiating derivatives:

THEOREM 2.1. Suppose that the i + 1st derivative of T'(-) at (xi, - - - , xi+1, H) exists.
Then the first derivative at (x;+, H) of T}}(xl, -+, x;))—considered as a functional of
H—1is
(2.6) (T;l{)(xl, ey x,~))“’(x,~+1) = T;?l)(x], ceey Xigl) — Z£=1 T}?(xly cee L Xrl)ry

where ( ), indicates that the rth argument is dropped: for example,

(TP )2 =T (x,5,2) — TP (x,2) — T2 (y, 2).

Proor. S(H) = T‘;} (x1, -+, x,) is the coefficient of Ay -++ A.{"in T((1 = HH + {G)

for G given by (2.5). SH (x,+1) = coefficient of ¢ in S((1 — e)H + €9, ) = coefficient of
€'\ -+ A in T(M), where M — H=(—{— ¢+ ¢(e)H+ L and L = (1 — $edy,,, + {G.
Denoting the ith term in (2.2) as V;(G — H), we have

T(M) = T(H) + "' Vi/k! + A1 (M, H)
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where V; = V(M — H) = V,(L) by (2.3). The coefficient of ¢ in [[f L(y,) is Y1 (¢! —
$ 8, (yn) [Th=1mt Xio=1 A»8. (), so that the coefficient of et'in T(M) is A — B, where A
= coefficient of {*"!in V, with 2 = i + 1 and B = coefficient of ¢* in V), with &£ = i. Now
take the coefficients of A; --- A;in A and B.

3. Expansions for the moments, cumulants, and distribution of T'(F,). In
Corollary 3.3 of Withers (1980a) it was shown that if Y, is a r.v. with rth cumulant having
the formal expansion

(3.1) K.(Y,)=n”?¥r, 1 A.n™, r=1, where A;p=0, Ay =1,

then P,(x} = P(Y, < x) has the formal “reduced Cornish-Fisher” expansions

(3.2) Po(x) = ®(x) — ¢(x) Tro1 n77"%R, (x),
(3.3) O (P(x) =x— Y nT P fo(x),
(3.4) PN @) =x+ Y2 n g (x),

where ®, ¢ are the distribution and density of the standard normal r.v. and A,, f,, g. are
certain polynomials of degree 3r — 1, r + 1 and r + 1 respectively, odd for r even and even
for r odd. For example, if He, is the ith Hermite polynomial (He,(x) = 1, He;(x) = x,
He,(x) = x> —1, ...) then

(35) hl = f] =g = A11 + A32H€2/6, and
hz = (Af] + A22)Hel/2 + (4A11A32 + A43)He3/24 + A§2H85/72,

and
(3.6) hy = A + (A} + 341142 + As)Hey/6

+ (IOA%lAqg + 5A11A43 + 10A22A32 + A54)He4/120

+ (2A11A§2 + A;;2A43)H€6/144 + A32H83/1296

In this section we formally expand the cumulants and moments of 7'(F,) in the form

(3.7) K(T(F.) = Y1 ann™, E(T(F,) —T(F)) =Y ,zrpayn”, r=1,

where a0 = T'(F) and a2 = [ T (x)>dF (x) = or(F)? say.
It follows that (3.1) is formally satisfied by

(3.8) Y. =n"*{T(F,) — T(F)}/or(F)
with
(3.9) A= ailan, (r,0) # (1, 0).

Expressions for the coefficients {a,.} needed to calculate 4,, f,, g, for 1 =j < 3 are given in
terms of the derivatives of T at F. We use the notation

[1,12°] = J' f T, T3 [T dF (x), [1,2, 8, 123] = f J'J' T, T, T%, T o, [13 dF (),
and so forth, where T',...., = T# (x1, - - -, x:).

THEOREM 3.1. The cumulants and moments of T (F,) have formal expansions of the
type (3.7). The cumulant coefficients {a,. } needed to compute the polynomials {h,(x), f,(x),
& (x), 1 =7 =3} in (3.2) — (3.4) for the distribution of T(F,) are given formally in terms
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of the derivatives of T by a = T(F), as = [1%],
forj=1: a; = %[11], as; = [1*] + 3[1, 2, 12],

forj=2: ax =[1, 11] + %[12%] + [1, 122], as = [1*] — 3[1°]* + 12[1, 2%, 12] + 12[1, 2, 13,
23] + 4[1, 2, 3, 123],

forj=3: a;, =[111]/6 + [1122]/8, ass = 3[1%, 11]/2 — 3[1%][11]/2 — 3[1, 2, 12] + 3[1, 12,
22] + 3[1, 1221 + 3[1, 2, 122] + 3[1% 122]/2 + 3[1, 2, 1233]/2 + [12, 23, 31] + 3[1,
12, 233] + 3[1, 23, 123], as = [1°] — 10[1%][1%] — 60[1, 2, 12][1*] + 20[1, 2°, 12]
+ 15[12 22, 12] + 60[1, 2, 3, 12, 23] + 60[1, 2%, 13, 23] + 30[1, 2, 3%, 123] + 5[1, 2,
3, 4, 1234] + 60[1, 2, 34, 13, 24] + 60[1, 2, 3, 14, 234].

Also, the leading moment coefficients are given by

2 3
ali = ai, Az = Az, Qo1 = A1, Qs = A + A11, Q32 = Q32 + 3a21011, Wiz = A3z + 3az1a12 + an
M 2
+ 3a11 @, Qi = 3a31, Aty = Qa3 + 4a11 Qzz + 6as1 Az + 6az aty, ak; = 10as: (as2 + 3az an), sy
2 2 3
= Qg4 + 5(143(111 + 10a33a21 + 10(132 ((l22 + au) + 30a22a21a11 + 15a21a12 + 10a21a11.

See the remark on page 438 of Bhattacharya and Ghosh (1978) concerning the validity of
(3.7)

The proof of the theorem will require two lemmas. The first of these gives the joint
moments of the empirical distribution, F,(x) = n' Y, 1(X, < x), where 1(-) is the
indicator function. Define

(3.10) po=p(xy, o0, 0) =E L= (1K =x) - F(x)}.
For example, pu; = F(min’, x,) — F(x;)F(x;), where min)-; x, denotes the vector
(minj-; (x,)1, -+ -, minj— (x,),)". For integers iy, ia, -+ let [ =i+ i+ --- + 3,7 =1, and
let ps,.o,...o, = thaor,e o, (X1, X2, « ++, x7) denote

K, (1, =+ oy ) oy (Xiy w15 05 X1,) = oo o, (X, 40, =005 X1,

where .% is the symmetrising operator and K is the integer such that on allowing for the
symmetry of each y,, no two terms are the same and each term has coefficient one. For
example,

Hoo = pa (21, X2) pa (X3, Xa) + pa (21, x3) pa (X2, X4) + p2(x2, X3) p2 (X1, X4).
(If & < a; < --+ < a, and a” denotes @ - a ---- a (R times), then p....q% has
¢ a,R)Y/T¥ (a.!"R,!) terms. For example, y.2.; has 105 terms.)
LEMMA 3.1. The pth joint central moment of the empirical distribution is

(811) E[[-i {Falx) = F@)} =n7 Yig=mppnn—1) «-- (—j+ 1) Xp p,...i,
where Y, denotes summation over all integers (i1, - - -, i) that add to p and satisfy 2 < i,
sSEh=...=1.

Its proof is straightforward. This lemma directly implies

LEMMA 3.2. Lets,..., denote the operation of integrating with respect to the signed
measure u,...,,: that is, for f a function of I, variables ..., f= [ fdu,....,, . For ¥, as in
Lemma 3.1, let B,., = Y,%,...,. Then the random integral operator #,, =[[’-1 ( Fir, —
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Sr), p = 1, has mean
(3.12) Egm=n7"Yigzprnn—=1) - (n =7+ 1) Bpy = Y pj2=y=p—1 n”%,,,

_ JP/2,p even _|p/2, p even
where for p = {(p ¥1/2 podd P {(p Z /2, p odd

Lo = Boss Loprer = —Cops Boos + By
Lppr+2 = C2.p, Bpps = Clops Bopss + Bops_sy **
Lpp-1= (V-1 (D= D! Bppy + -+ - + Bp1,
and
=1 hiz--- i, summedover L=, << ... <<k
ProoF or THEOREM 3.1. When G =F,, H = F and r = «, the Taylor Series expansion
(2.2) may be written in the notation of Lemma 3.2 as T(F,) — T(F) = #,@Q: + %.Q: +

----- , where @, = T#"/i!. Using the shorthand @} = @, (x:) @\ (x2), @ Q> = @1 (x1) Q2 (x2,
x3), and so forth, we can write

{T(F,) — T(F)}" = ¥3-p #n Cop ({Q.)),

where C,;, ({Q.}) is the coefficient of ¢/ in the expansion of (Y%, ¢ Q,)” given by Lemma A2
of Withers (1982b). Applying (3.11), we see that (3.7) holds with

(3.13) ay = Va1 L4y Con({Q}).

For example, ab = @7, aly = 4@, and ak = A Q3 + o45.,3Q7 Q.. Because of (2.3), in
calculating these expressions we may replace F(x,) in (3.10) by zero. Calculation yields
oy TETe = [12][11] + 2[1, 2, 12], and so forth.

Substitution into (3.13) and the relations between the moments and cumulants com-
pletes the proof. 0

CoROLLARY 3.1. Let f:R° — R* and H:R* — R be functions such that for some
integer I = 3 derivatives of H of order I are continuous in a neighborhood of u=p(F)
= [fdF, [ |f|'"dF < «, and lim sup)/| .| [ ¢*" dF|< 1 for t in R*. Set

a

lil...[l_ .

-— H(p), u"""‘>=f(ﬁ,—ul,) e (fy, — ) dF,
e,

o,

and suppose o” = Y, I'l'" # 0, where Y, sums over {1=<1i,j<k}. Set Y, = n'2{T(F,) —
T(F)}/o, where T(F) = H(u(F)). Then there exist polynomials {h,}:R — R such that
(3.14) sup: | P(Y, = x) — ®(x) + ¢(x) X1 2 n"2h, (x)| = o(n~T27%).

For1=r=1-2x<3, h,is given by (3.5), (3.6), (3.9) and the expressions for as, - - -,
aq3 in Theorem 3.1, where now [1, 11] = [ora1yrbrer |

[1’ 23’ 123] = la,lbzv;,ld.ezf;;“a,d,“bzezuv;,f,,
[1,12°] = [1, 12, 12] = [ pheeymbrdyoe

and so forth, with summation over repeated suffixes implied.

Proor. The first part follows from Theorem 2(b) of Bhattacharya and Ghosh (1978).
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The second part follows by checking their (1.14) against the expressions above, obtained
formally from Theorem 3.1 and the fact that

(3.15) T (X1, «+ o, %) = Z Mpyxy o0 Up,x, Preby e = fi(x) — J f. dF;

but this amounts to checking that (2.2) with r = I — 1 reduces to the Taylor expansion for
H(u(F) + €), where ¢ = u(G) — p(F). (Their n™'/*W7, is essentially the Taylor expansion
(2.2).)0

4. ExaMPLES. Let A(-) be a given real function on R®, and V; = h(X,), 1 =j < n. Set
p=wuF)=EVi=[hdF;u=[{h(x)—p} dFx) = E(Vi—p), =LA =pr

ExampLE 1. T(F) = u(F). Here . = pf’ (x) = h(x) — u(F), and higher derivatives
vanish. Substitution yields the Edgeworth expansion.

ExaMPLE 2. T(F) = uz(F). Here pi¥ (x) = pi — p2(F), ps? (x, ¥) = — 2u.p,. Since T(G)
is “quadratic” in G, higher derivatives vanish. Substitution yields as = ps — p3, @10 = po;
forr =1,

An=—A— D72 Ap=(A— 1) (Xe — 3\s + 2 — 6A3);
forr=2,
A=A —1)7"(4 — 2\s), Aw = (A — 1)72(As — 4hs + 124 — 3A] — 24AsA3 + 96A3 — 6);
A =0, Ags= (A —1)7"2(=3\s + 21\, — 26 + 18A3),
and for r = 3,

Ass = (A — 1)™2(A10 — 5As — 40A7A3 — 10A6As + 20As — 30AZ + 480AsA3 + 360AA3 + 30A%
— 60\, — 1560M3 + 24).

As a check these were derived independently from Church (1925) and also from K (27),
1 < r < 5 of Fisher (1929). Hsu (1945) gave conditions for the validity of this expansion for
the distribution of p2 (F,) without giving any of its terms.

ExampLE 3. Student’s one-sample ¢-statistic is t,_, = (n — 1)">S(F,,), where S(G) =
p2(G) 2 {(W(@) — p(F)}.

Differentiating S, then substituting G = F, we obtain S, = w5 "?t., Sxy = —pz 2 Sopc (115
— u2), and so forth. Substitution yields

az = 1, ajp = 0, a; = —A3/2, Az = —2A3, Qg2 = 7}\%/4 + 3, Q43 = —2)\4 + 12A§ + 12, ap =
—25>\3/16 + 3)\5/8 - 15A3)\4/16, A3z = —123)\3/4 + 3A5 - 15}\3)\4/4 - 83)\;‘3/8, and Azg = —18()}\3
+ 6A5 + 20A3Aq — 105A3.

So, for example, under the conditions of Cerollary 3.1 with I = 6, the distribution of
Student’s ¢-statistic in its standardized form is

P(n'?S(F,) = x) = ®(x) — ¢(x) Y3 n”?h.(x) + O(n?),
where
Ri(x) = —(2%% + 1)A3/6, ha(x) = —Aa(x® — 32)/12 + A3 (a® + 24° — 3x) /18 + x°/2,
and
B3 (x) = A3(3 + 6x2 — 12x* — 8x5)/48 + As(1 + 8x% + 2x*)/40 + A3Ae(—15 — 90x* — 30x*
+ 4x%)/144 + A3(105 + 525x% + 210x* — 28x° — 8x°%)/1296.

The {a.,} above were checked against the expansion on page 214 of Geary (1947), who
gives an alternate expansion for the density of ¢,-1, as does Davis (1976).
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5. Nonparametric confidence intervals. A frequently encountered approximate
nonparametric confidence interval is that based on the approximation n'2T,(F,) ~
A°(0, 1), where

(5.1) To(Fy) = {T(F.) — T(F)}/or(Fy),

the Studentised statistic. That is, a one-sided confidence interval for T (F) of level 1 — &
=~ 1 — a = ®(x) is given by re-arranging

A nl/sz)(F,,) =x or A*: nl/ZT(Q;(F,,) = —X,

and a two-sided confidence interval for T'(F) of level 1 — & = 1 — a = 2®(x) — 1 is given
by re-arranging
A*:n'"? | To)(Fy)| < x.

According to (3.2) the error 1 — & — (1 — a) of these approximate confidence intervals
has magnitude n "2 in the one-sided case and n~! in the two-sided case. (The reason the
magnitude is not merely n~'/? in the two-sided case is that 4, is an even function.)

The main result of this section, Theorem 5.1, shows that for any j = 1 their errors can
be reduced to magnitude n 7% This is done by adding to T\ (F,) successive correction

terms of the form n™"?T,(F,), where T\, depends on x, defined in terms of « as above.
Thus we need to consider statistics of the form 7,(F,) where

(5.2) T.(G) = Yoo n *T»(G), Gin Z,.

ExampLE. For T (F) = p(F) and {u,} as in Section Four,
P(n'’T(F,) = x) = ®(x) — n”*¢p(x)h1(x) + O(n "),
where Ai(x) = —psu2?*(1 + 2x%) /6. Hence for To)(F) = —hy(x)
P(n'*To(F.) + n7*T(F,) < x) = ®(x) + O(n™"),
under suitable conditions.

To obtain an expansion for the distribution of T,.(F,) we first need to expand its
cumulants. This may be done in terms of (a,.); = (a.),,... 5,0 the coefficient of A¢’ - - - Avin a5,
of (3.7) when T'(-) = ¥/ A, Tw(-), {\.} are arbitrary numbers, and jo + j, + --- + j. = r.

From Withers (1982a) we have

LEMMA 5.1. The rth cumulant at T.(F,) has the formal expansion
(5.3) KA(Tu(F)) = Y s2r-2 bxn ™%, where by, = Y rtmimkrz 3 20 (@r);

and for j = (jo +++ Jo), Yo sSums over {jo+ +++ +j,=r,0jo+ Lj + --- +qj,=q}. In
particular, ‘

(5.4) bio = (@)1, bn = (@)1, b= (az1)2,
(5.5) bz = (@)1 + (@)oo, bez = (@20)11, bas = (age)s,

bis = (a)o + (@)ooor, b2s = (az2)2 + (@21)o2 + (@21)101,
(5.6)

bss = (as)21, bss = (aus)s,
and

{bu = (ai2)i + (@)oo + (@0)oooot,  bes = (@)1 + (@21)o11 + (@21)1001,
(5.7)
bis = (ass)s + (ase)iz + (as2)201, ba7 = (Qus)s1, bss = (as4)5.0

Note that (a,). = a,(T), (ay)o. = a,(Tw)) and so forth, where a,(T) = a,. Define
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[15, L] = [ T, Ty, dF (x1), [11, 1220] = [ [ T1yx, T(0)x,x,x,dF (x1) dF (x2), and so forth. The
cumulant coefficients {b,,} may now be expressed directly in terms of the derivatives of
{T,} at F using Theorem 3.1 and the following corollary of it.
COROLLARY 5.1. The expressions for {a,} in Theorem 3.1 imply
(ay). = (@) (T, (azn)n = 2[1, 1i],
(@se)21 = 3[15, 1,] + 3[1o, 20, 121] + 6[1o, 21, 120],
(az2)1 = [1o, 111] + [11, 110] + [120, 12,] + [1o, 122,] + [11, 122].
(ass)an = 4[13, 1] — 12[18][ Lo, 1,] + 12[1o, 25, 121] + 24[1o, 2, 21, 12]
+ 12[23, 1,, 120] + 24[10, 20, 130, 23:] + 24[ 10, 21, 130, 23]
+ 4[ 10, 20, 30, 123:] + 12[10, 20, 31, 123,]. O
For example, (as1)11 = 2[1o, 1,] implies (a21)101 = 2[1o, 12].
From (5.3) it follows that the rth cumulant of
(5.8) Y. = n'2b3 *{(Tn(F,) — bio — bun "%}
has the formal expansion
K/(Y,) =n"* Y 2 Bun* with Biy=B;=0, By =1,
and
B,, = b3"%b,,, (r, i) % (1,0) or (1, 1),

so that for F absolutely continuous and suitably regular, by Withers (1980a), the distri-
bution and quantiles of Y, have formal Edgeworth type expansions of the type (3.2)-(3.4),
where {A,, f, g} are polynomials given in Theorem 3.1 and Corollary 3.1 of Withers
(1980a), in terms of {B,.}. In particular we have

COROLLARY 5.2. The distribution of Y, given by (5.2), (5.8) has formal expansions of
the form (3.2)-(3.4) where
h] = f] =& = B]2 + BQ3H91/2 + B34H€2/6,

and

hg = Blg + (324 + sz)He1/2 + (335 + 3B12323)H92/6 + (B46 + 4B12334 + 3Bé'})He3/24
+ BZ3B34H94/12 + B§4He5/72

and g, has the form g.(x) = (az21);"*{To+1)(F) — Tps(F)} with T+ determined by x,
Toy, +++, Tin.
In particular when T)(G) = 0 and (ax): = 1, then

Tio(F) = —(an) — (az)s(x* — 1)/6,
Ten(F) = —{(az)> + (@2)10}%/2 + (a)5(2x” — 5x)/36 — (as3)a (x> — 3x)/24,
Tun(F) = —(ar2) — (@)oo — (@21)i0012/2 — {(@s3)3 + (@s2)e01} (x* — 1)/6
+ {(az)2 + (@) 01} (@s)s(x* — 1)/6 — (a54)s(x* — 6x° + 3)/120
+ (@s2)3(@as)a(x® — 5x? + 2)/24 — (a3)3(12x* — 53x* + 17)/324.
The next two theorems given formal results. Sufficient conditions for their validity are left

until Corollaries 5.3, 5.4. We first give for any prescribed j = 1 a one-sided approximate
confidence interval whose error has magnitude n 7’2
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THEOREM 5.1. Let T (-) be a real functional on % not depending on F. There exist
real functionals {q.(G, x) on # X A, r = 1}, not depending on F, such that for j = 1,

(5.9 P(Vu(Fn, x) = T(F)) = ®(x) + O(n™"?) for all suitably regular (T, F),
where V,,(G, x) = T(G) + ¥/ n7"?q,(G, x).
The first three are given by ¢:(F, x) = —[1%]"2x,
g:(F, x) = —[11]/2 + [12]7{[1°]1(1 + 2x?) + 3[1, 2, 12](1 + x°)}/6,
gs(F, x) = [12]2(x + x%)/2 + [12]772(4[1, 11] + [12%] + 2[1, 122])x/4
—[12172{[1*](5x + 3x%) + 6[1, 2%, 12](5x + 2x°) + 6[1, 2, 13, 23](3x + x*)
+ 2[1, 2, 3, 123](3x + x°)}/12 + [1*]**{[1°F*(23x + 16x°)
+ 48[1%][1, 2, 12](2x + x%) + 18[1, 2, 12]*(5x + 2x°)}/72.
Proor. Apply Corollary 5.2 with T\ given by (5.1), Ty = Twn if l <r=<jand T =

0 otherwise. Setting ¢,(F, x) = —[1*]"x and g.(F, x) = [1*]*T,(F) otherwise we have Y,
=< x if and only if V,,(F,, x) = T (F). The expressions needed for {7\ } are (az): = 1,

(a): = [1777[11]/2 — [137*3([1°] + 21, 2, 12])/2,
(az)s = —[1°17*%(2[1°] + 3[1, 2, 12]),
and so forth. Further details, including g4(F, x) are given in Withers (1980b). [0

From Theorem 5.1 we see that lower and upper confidence intervals of level ®(x) +
O(n™?) are given by

A" Vu(Fpx) = T(F),and A" : T(F) < Vju(Fn, —x),

respectively, and that a two-sided confidence interval of level 2@(x) — 1 + O (n /%) is given
by
A" ‘/jn(Fn, x) = T(F) = jn(Fm _x)'

The next result gives more detail about the errors in their levels:
P(A7) — ®(x) = en(x), say, P(A") — D(x) = —em(—x),

and
P(A™) — 2P(x) — 1) = eu(x), say.

THEOREM 5.2. For (T, F) suitably regular,
(5.10) en(x) = n 7 (@)[17] g, 11(F, x) + O(n"V*"7?)

and

2n 7% (x)[12] Vg, +1(F, x) + O(n"Y*?7%), j even,
(5.11) eh(x) =

O(n~V*Y%), jodd.

PROOF. e),(x) = P,(x) — ®(x), where P,(x) = P(Y, < x),
Y. = Y% n""*T(F,), and {T,)} are given in the proof of Theorem 5.1.

By Corollary 5.1, P;, (®(x)) = x + ¥;° n”""%g,(x), where g,(x) = —[1*] ?q, .1(F, x) is even
for j odd and odd for j even. Finally, one uses e7,(x) = ¢,,(x) — e;.(—x) + ¢, where

0, 1=j=2,x>0
O@™), Jj=z3,x>0,

where K is arbitrary. More details on e,.(x) are given in Withers (1980b). O

I € I = P(‘/jn(Fn, x) = ‘/jn(Fn’ _x)) = {
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The following examples use the notation of Section 4.

ExampLE 1. For T (F) = u(F) one obtains ¢:(F, x) = —u3"x,
q2(F, x) = p3'ps(1 + 2x7) /6,
@(F, x) = p¥2(x + x*)/2 — p7"ua(5x + 3x%)/12 + pz*u}(23x + 16x°)/72,
q4(F, x) = p2'pa(— 19 — 19x% + 36x*)/12 + uzus(27 + 86x2 + 24x*)/120
— p2uana(14 + 55x% + 18x%)/36 + pzui(110 + 529x” + 192x*)/648.

These results were reported in Withers (1982a), except for qa.

EXAMPLE 2. For T(F) = o%(F) one obtains q1(F, x) = —(u4 — u3)"2x,
q2(F, x) = pz + (e — p3) 7 { (16 — 3papz + 2ud) (1 + 2x%) /6 — w31 + x9)},

gs(F, x) = (1 — p3)/2(=3x + x°)/2 + (ps — u3) " 2udx — (e — pd)~"?

{(us — 4psp2 + 6,u4,u§‘ - 3;1.3)(536 +3x%/12 — usts(5x + 2x?)
+ 2u3p2(8x + 3x%))

+ (s — )7 { (s — Bpaps + 2p3)%(23x + 16x%) /72

— 4(ps — Bpapz + 2ud)ud(2x + x%)/3 + pi(5x + 2x%)}.

REMARK. Regularity conditions for this section are obtained by noting that the results
of Bhattacharya and Ghosh (1978) remain valid if H is allowed to depend on n and
continuity of a derivative of H is replaced by continuity of a derivative of Hy, = H
uniformly in n, and

(5.12) o2 = 0% is bounded away from 0.

For example, setting J,...,(H) = {"""*as defined in Corollary 3.1, and a,(H) = ay as
given by Corollary 3.1, we have

COROLLARY 5.3. Suppose that the conditions for Corollary 3.1 hold for H =
(Hp,--- , H)) a function from R* to R’*' with the condition o* # 0 replaced by o} # 0
where 03 = Y LH)L(H)p". Set Hpy = Y§ n?H,, To(F) = Hu(u(F)) and Y, = n"
2T (Fy) — Ho(u (F))— n~*H\(w(F))} / 0o. Then there exists polynomials {h,} : R — R such
that (3.14) holds. In particular h,, hs are given by Corollary 5.2, (5.4)-(5.6), and (a;), =
ay(Ho), (a,)o. = ay(H1), and so forth, and

(a21)1 =2 Z lz(HO)lj(Hl).uU’
(as2)or = 3 Y L(HO)L(Ho) u(H)p" + 3 Y L(H0){,(Ho) lem(Hy)p '™
+ 63 L(H)L(H) lim(Ho)p ™ ™.
Proor. From the above remark it follows that (3.14) holds with Y, replaced by
n*(TF,) — T.(F)}/oo = Y, — 8, and h, replaced by h,, depending on n through H),

where 8, = n'/? ¥§ n?H,(u(F))/0o. Now replace x by x — 8,, expand, and use Corollary
5.1 and (3.15). 0

Similarly, using Remark 1.1 of Bhattacharya and Ghosh (1978) and the form of ¢,(F, x)
in Theorem 5.1, we have

COROLLARY 5.4. Suppose for some J =1 and I =2 that f:R* — R* and H:R* > R
satisfy [ |fI'Y™" dF < , the derivatives of H of order I + J are continuous in a
neighborhood of u = w(F) = [ f dF, and lim supy—| [ €“* dF| <1, where g = {{., f.f.,,
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<5 fy-r fi,}, and iy, -+ - iy range over 1, - k and linearly dependent components
are excluded. Suppose also that o* of Corollary 3.1 is non-zero. Then there exist functions
{g/(G, x), r = 1} on % X R such that for x in R

—(J-1)/2 ; —_
|P<VJ"<Fn,x>sT(F))—®<x>|={°‘” LA

O(n~7"? if I=J+2;
where V,.(G, x) = T(G) + ¥/-1 n7%q.(G, x), and T(G) = H(u(G)). The first three q, are
given by Theorem 5.1 in terms of [17], - - -, [1, 2, 8, 123] which are given in Corollary 3.1.

Moreover, the above conditions with J = j, [ = J + 2, J + 3 imply (5.10), (5.11) hold
with the remainder terms replaced by o(n™?), O(n~Y*V/?) respectively, while the above
conditionswith I = J + 4, J = j imply (5.11). 0

As a final remark we note that the asymptotic expansions (3.2)-(3.4) are usually
divergent: for example the Edgeworth expansion for the distribution of the standardised
sample mean may diverge if [ e/t dF(x) = o (Cramer, 1946, page 223). However, the
moment and cumulant expansions (3.7) converge for a large class satisfying E| Y, | < o,
including T'(F) = H(u(F)) with H a polynomial on R* and u(F):% — R* of the form
[ fdF.

ADDENDUM. Since this paper was written we have noticed that Sargan (1976) has
independently given expressions for A, h2 of Corollary 3.1 His A, contains the following
errors: in the expression for H(g) on page 425, in line 1, —ay/2 should be +ay/2, and line
3 should read x(az + 12a10 + 4as + 12as + 2a4(a; + 3az)). An advantage of our method is
that an error such as the omission of the term 6asa, from the factor of I, in the 10th to last
line on page 425 of Sargan (1976) is immediately detectable since [1%] only occurs in A(x)
via asa.
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