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DISTRIBUTION OF EIGENVALUES IN MULTIVARIATE
STATISTICAL ANALYSIS!

By STEEN A. ANDERSSON, HaNS K. BRONS AND S@GREN TOLVER JENSEN
University of Copenhagen

Ten invariant multivariate testing problems involving the real, complex,
or quaternion structure of covariance matrices are considered. In each problem
the maximal invariant statistic and its distribution are described, as well as
the maximum likelihood estimators and likelihood ratio test statistics. These
results are obtained by means of a new, unified method based on invariance
arguments.

1. Introduction. In this paper we consider ten testing problems in multivariate
analysis. These are the problems of testing that (a) a covariance matrix has complex
structure; (b) a covariance matrix with complex structure has real structure; (c) a covari-
ance matrix with complex structure has quaternion structure; (d) a covariance matrix with
quaternion structure has complex structure; (e) two sets of variates are independent, when
their joint covariance matrix has real, complex, or quaternion structure; (f) two covariance
matrices are identical, when both have real, complex, or quaternion structure. See An-
dersson (1975) for a definition of these structures.

Some of these ten problems have been treated in the literature while the others are
new. Together they occur in a fundamental way in a general algebraic theory of normal
statistical models developed by Andersson, Brgns, and Jensen (1982). The class of normal
models considered includes most of the structured families of covariance matrices which
have appeared in the literature. It is shown that every testing problem where both the null
hypothesis Hy and the alternative hypothesis H, (H, C H,) belong to this class of models
can be decomposed into simpler problems, each of which has the form of one of the ten
problems described in (a)-(f) above.

In the present paper these ten testing problems are treated in detail in a unified manner
suggested by the general theory. Each problem is invariant under a group of linear
transformations, and our main aim is to obtain a concrete representation of the orbit
projection, i.e., the maximal invariant statistic, and to find a representation of its distri-
bution in terms of a density with respect to the Lebesgue measure. Furthermore, the
maximum likelihood estimators and likelihood ratio test statistics are obtained and their
distributions discussed.

For each problem the representation of the orbit projection is obtained using results on
simultaneous reduction of certain types of forms on vector spaces, i.e., simultaneous
diagonalization of matrices. The orbit projection is thus represented in terms of eigenvalues
of matrices with certain structures. Many of these results on simultaneous reduction of
forms are well-known and all but one occur in Bourbaki (1959). The exception is apparently
new and is given here as Lemma 8. '

Traditionally, distributions in multivariate analysis are derived by calculations involving
Jacobians of high dimensions. To use this method would require laborious calculations for
each of the ten testing problems and, to make the proofs rigorous, it would be necessary to
use arguments from differential geometry. In this paper a new method for obtaining the
distribution of eigenvalues is presented in Lemmas 4, 5, and 6. This method; based on
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actions of a set of certain polynomial transformations on a space of positive definite
symmetric matrices and on the space of eigenvalues, has several advantages over the
classical approach. The method once presented for one problem is readily adapted to all
other problems. It is elementary, requiring only the calculation of 2 X 2 Jacobians at most.
Lastly, the method is rigorous, not avoiding difficulties involving null sets of multiple
eigenvalues. .

In the existing literature about the complex normal and complex Wishart distribution,
one usually treats complex variates. It is important to note that in this paper all matrices
considered have real elements; by “matrices with complex or quarternion structure,” we
refer to real matrices with certain additional structures defined by the corresponding
complex and quaternion matrices.

The ten testing problems are treated in Sections 2-7. In each of these sections the joint
density of the eigenvalues is derived up to an unspecified norming constant. The exact
values of all norming constants are derived simultaneously in Section 8 using a new method
involving recursion formulae. The moments of each likelihood ratio test statistic are readily
obtained from these norming constants.

For the real case, the distribution of eigenvalues arising in problems (e) and (f) was
obtained by Hsu (1939), Fisher (1939), and Roy (1939), and are treated in detail in
Anderson (1958). For the complex case, the parallel results in (e) and (f) can be obtained
from work of Khatri (1965a). For the quaternion case, these two results appear in the
thesis of Gabrielsen (1975) written under the supervision of S. Tolver Jensen, obtained by
methods similar to those of Khatri.

Problem (b) was first treated by Khatri (1965b), while problem (a) first appeared in
Andersson (1978b), which also contains a statistical interpretation of the eigenvalues and
eigenvectors. Further results on problems (a), (b), (c), and (d), including a study of the
noncentral distributions, are given in Andersson and Perlman (1982a, b).

Related problems concerning distributions of eigenvalues have been studied by math-
ematicians and physicists in the context of statistical mechanics; c.f. Mehta (1967) and
Porter (1965).

2. Testing the hypothesis that a covariance matrix has complex struc-
ture. Let E be a p-dimensional vector space over the field C of complex numbers. By
restricting the scalar multiplication to the subfield R of real numbers, E is also a 2p-
dimensional vector space over R, and if e, - - -, e, is a basis for E as a vector space over C
then

1) €1, <+, €p,le1, + 1+, lep

becomes a basis for E as a vector space over R. If f is a C-linear map of E into E with
matrix A + iBw.ur.t. ey, -, e, then f considered as an R-linear map has matrix

A -B
@) (3 A)
w.r.t. (1). Since composition of linear maps corresponds to multiplication of matrices, it is
seen that the set GL(p, C) of nonsingular 2p X 2p matrices of the form (2) for ¢ = 2p is a
subgroup of the group GL (g, R) of all nonsingular ¢ X g matrices.

Let ¢:E X E — C be a hermitian left sesquilinear or symmetric bilinear complex form
on E (see Bourbaki, 1959, or Andersson, 1975) and C + iD = (¢(e., eg)) the matrix of ¢
wrt. e, « -+, e. Then § = Reo¢:E X E — R, where Re denotes the real part of a complex
number, is a symmetric bilinear real form on E.

The form ¢ is hermitian left sesquilinear if and only if C + iD is hermitian, i.e., C is
symmetric and D is antisymmetric. In this case the matrix of 8 w.r.t. (1) is

Cc -D
3) (D c)‘

Moreover, ¢o(f X f) is also hermitian left sesquilinear and the matrix of Rec(¢po(f X f))
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= (Reeg)o(f X f) wrt. (1) is
@) A -B\'(Cc -D\(A -B
B A D CJ)\B A}
Since ¢ is positive definite if and only if Re¢ is positive definite it follows that the action

5) GL(p, C) X #*(p,C) > #*(p,C), (M, T)— MTM',

where #*(p, C) is the set of positive definite matrices of the form (3), is well defined. It
follows from the first equation in (14) below that this action is transitive. Furthermore, for
q = 2p the action (5) is a restriction of the transitive action

(6) GL(g,R) X #"(q, R) > #*(q,R), (M, S)— MSM’,

where # (g, R) is the set of all positive definite symmetric ¢ X g matrices. Since the
action (6) is proper (Bourbaki, 1960, page I11.27), it follows that the action (5) is also
proper.

The form ¢ is symmetric bilinear if and only if C + iD is symmetric, i.e., C and D are
symmetric. In this case the matrix of § w.r.t. the basis (1) is

g (% 20)

Moreover, ¢o(f X f) is also symmetric bilinear and the matrix of Rec(¢o(f X f)) =
(Reog)o(f X f) wr.t. (1) is

A -B\'(Cc -D\(A -B
@ (6 )5 2)G X)erno
where &(p, C) is the set of matrices of the form (7).

We are now ready to consider the first statistical problem. Let x;, - - -, xxy, N = 2p, be
independently distributed observations from a normal distribution on R% with mean
vector 0 and unknown covariance matrix £ € #*(2p, R). A minimal sufficient statistic is
the empirical covariance matrix S= N~ x, x5, the maximum likelihood estimator, which
follows a Wishart distribution on #*(2p, R) with N degrees of freedom and parameter
N7'X. This distribution has the density

©)

det S
det =

N/2
) exp{—%(tr27'S)}, SE #*(2p,R)

w.r.t. a measure v = vp g, n On # " (2p, R), which is invariant under the action (6). Since
this action is transitive, » is uniquely determined by the condition that the integral of (9)
is 1.

Let H, denote the hypothesis that = € s# *(p, C), i.e., that = has complex structure. The
statistical problem of testing H, is invariant under the restriction of the action (6) to the
subgroup GL(p, C). Every invariant test statistic has a unique factorization through the
orbit projection

(10) m:#"(2p, R) > #*(2p, R)/GL(p, C),

where the right hand side denotes the set of orbits. The main problem is to find a
representation of (10) as a function into R’ for some ¢and, when Hj is true, to represent
the distribution of 7 by a density w.r.t. a Lebesgue measure on R,

Let

11 J=d, = (? _(I;’),
D
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where I, is the p X p identity matrix. It is seen that the linear map

t: #*2p, R) > #*(p, C)

(12)
S = (Sn Sl2) - 1/2<Sn + S22 S — SZl)

So1 S So1 — S1z2 S+ Sz

is well defined, because ¢(S) = (S + JSJ’) € #*(p, C). Since JJ is the matrix (w.r.t. the
basis (1)) for scalar multiplication by i, it follows that ¢/ commutes with all matrices of the
form (2), and thus also that ¢ commutes with the actions of GL(p, C). Moreover, the
residual

(13) . S — #(S) = 1/2<Sn - S S+ S21>

So1 + Sz S — S
has the form (7).

LEMMA 1. Let ¢ be a positive definite hermitian left sesquilinear form and ¢ a
symmetric bilinear form on E. Then there exists a basis for E such that the matrices of
¢ and | are respectively the identity matrix I, and a diagonal matrix

A1 0
A= . = diag(Al) ttty AP))

0 A

where \; = Ay = --- =)\, =0.
Proor. Bourbaki (1959, page 123).

An equivalent formulation of the lemma is that there exists a C-linear map f: E — E
such that ¢o(f X f) and yo(f X f) have matrices I, and A respectively w.r.t. the original
basis e, - - -, e,. Since the matrices for Reo¢ and Reey transform according to (4) and (8)
the lemma also has an equivalent formulation in terms of 2p X 2p real matrices. Let
T e #*(p,C) and R € ¥(p, C). Then there exists an M € GL(p, C) such that

(14) MTM' =L, and MRM’=<OA _AO>

It is seen from (14) that £A,, ..., =)\, are uniquely determined as the eigenvalues of R
w.r.t. 7, i.e., the solutions to the equation

(15) det(R — AT) =0.

From (14) and (15) with 7' = ¢(S) and R = S — #(S) and the fact that S = #(S) +
(S — t(S)) is positive definite, it then follows that there exists an M € GL(p, C) such that

, _(L+A 0O
(16) MSM' = (O I- A)
and that (10) can be represented by
(17) mH(2p, R) = Ap,

where A, = {(Ay, -++,A,) ERP|1>A; = ... = A, =0} and 7(S) is the ordered family of
nonnegative eigenvalues of S — £(S) w.r.t. £(S).
That the function 7 in (17) is continuous follows from

LEMMA 2. The ordered family of eigenvalues of a symmetric m X m real matrix R
w.r.t. a positive definite symmetric m X m real matrix T depends continuously on (T, R).
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Proor. Let (T,, R,) be a sequence of pairs of a positive definite symmetric m X m
real matrix and a symmetric m X m real matrix such that (7, R.) — (T, R). One has to
show that the ordered family (A1,, -+, Amn) of solutions to the equation

det(R, = AT,) =an [[Z1 (A —An) =0
converges to the ordered family (A;, - - -, A,.) of solutions to the equation
det(R—AT)=a[2 (A=A,)=0.

Since the eigenvalues A; = inf{x’Rx/x'Tx|x'x = 1} and A, = sup{x’Rx/x'Tx | x'x = 1} are
continuous functions of (T, R), it follows that the sequence (A1, - -+, Amn) is bounded. It
is therefore enough to show that every convergent subsequence (A1, - -+, Amn’) converges

to (A1, »++, Am). But if (Ao, «++, Amn’) = (1, + <+, pm) it follows that a, [[ (A — Aw)
converges to both a [ (A — A,) and a [[ (A — ), and the uniqueness of the roots of a
polynomial gives that (ui, + -+, m) = (A1, -++, An). O

REMARK. Since the action of GL(p, C) on #*(2p, R) is proper, it is known that the
final topology induced by 7 on #*(2p, R)/GL(p, C) is locally compact (Bourbaki, 1963,
page 39). Since the right hand side of (16) depends continuously on (Ay, - -+, A,) € A, the
lemma above shows in fact that the representation of (10) by (17) is also topological, i.e.,
the identification of 2#*(2p, R)/GL(p, C) with A, is a homeomorphism.

THEOREM 1. The maximum likelihood estimator of £ under H, is t(S) and the
likelihood ratio statistic for testing Hy is

(18) b (1= ADN2
where (A1, -+, Ap) = 7(S). Under the hypothesis H,, the statistics t(S) and =(S) are
independently distributed. The distribution of t(S) has density
det T\'"” L .
(19) exp{—®%N tr(Z~T)}, T€ #"(p, C)
det =

w.r.t. @ unique measure v¢, , y which is invariant under the action (5). The distribution of
7(S) has density (18) w.r.t. a measure k on A, which is uniquely defined by

(20) (t, M) (vgop.n) = Ve pn @ K.
Furthermore, k has the density

(21) Miza<p=p(A2 = AF) [T5=1 A (1 = A P72
w.r.t. a Lebesgue measure on Ap.

REMARK. The distribution given by the density (19) is the complex Wishart distribu-
tion with N degrees of freedom and parameter N™' 3 € #* (p, C).

Proor. The density of S is given by (9). Since GL(p, C) is a group it follows that
' e #*(p, C) when = € #*(p, C), and a direct calculation shows that tr £7'S =
tr =7'(S). Since ¢ commutes with the action of GL(p, C), the function det ¢(S)/det S,
S e #*(2p, R), is invariant. Using the representation (16) the density (9) can be rewritten
as

N/2
3:;) exp{— %N tr(E'T)),

(22) P (L= AN (

where T = ¢(S) and (Ay, -+, A,) = 7(S). The first sentence of the theorem follows from
(22).
Next, the distribution of (¢, 7)(S) = (¢(S), 7(S)) has the density (22), where T € #*(p,
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C) and (Ay, +++, Ap) € Ap, wrt. (¢ 7)(vp o, v)- Since the action (5) is transitive, Ve p,n 1S
uniquely determined by the condition that the integral of (19) must be 1. The theorem
now follows from Lemmas 3 and 5 below. O

LEmMA 3. Let G be a locally compact group, which acts properly on a locally
compact space X and properly and transitively on a locally compact space Y. Let
furthermore t: X — Y be a continuous map which commutes with the actions of G, and let
7: X — X/G denote the orbit projection. Then the map (t, 7) is proper. If v is an invariant
measure on X and v is an invariant measure on Y then there exists a unique measure «
on the locally compact space X/G such that (¢, 7)(v) = vo ® k.

Proor. (Compare Bourbaki, 1963, page 39.) Since the action of G on X is proper, the
final topology on X/G is locally compact and every compact subset of X/G has the form
7(K), where K C X is compact. Thus every compact subset of Y X X/G is contained in a
compact subset of the form L X #(K), where L C Y is compact. One has to show that
(¢, )" (L X m(K)) C X is compact. Since the action of Gon Y is proper, the set

{€€EG|3z€Kgt(z) EL} = {gE€G|gt(K) N L # D) = P(t(K), L)

is compact (Bourbaki, 1960, page II1.33). Thus one has (¢, 7) (L X #(K)) = {x € X|t(x)
EL n(x)En(K))={xEX|t(x) EL,Iz€KIgEG:x =gz} = {gz€EX|2€EK, g€ G:
gt(z) € L} C P (¢(K), L) K, which is compact.

To prove the second assertion, let z and f be non-negative continuous functions with
compact supports on Y and X/G respectively. Since £ commutes with the actions, it is seen
that the positive linear map & — [h(#(x))f (7(x)) dv(x) defines an invariant measure on Y.
Because of the uniqueness of an invariant measure on Y, there exists a non-negative
constant k(f) such that »(h)x(f) = [h(#(x))f(7(x)) dv(x). It is easy to see that « is a
positive linear map, so that « is a measure on X/G. 0

All assertions in Theorem 1 have now been proved except for (21). To prove this we
have developed a new method, based on invariance under polynomial transformations,
which also can be applied to the eigenvalue problems in the following sections.

Since #* (p, C) N #(p, C) = D and t(T) = T for T € #*(p, C), it follows that the
linear map

(23) H*(2p,R)— 8, S— (¢(S), S - t(9)),

where & = {(T, R) € #*(p, C) X ¥(p, C)| T + R € #*(2p, R)}, is well-defined, one-to-
one, and onto. The fact that ¢ commutes with the actions of GL(p, C) gives that (23) also
commutes with the actions of GL(p, C) on #*(2p, R) and &, the latter given by

(24) GL(p,C) X §— &, (M, (T,R)) - (MTM', MRM’),

which is well-defined because of (8). Let r(x),= ¥ 7.y a;x**' be a real polynomial of odd
degree such that 7(0) =0, 7(1) = 1, and Dr(x) > 0,0 < x < 1. Let

(25) r(T,R) =Y", a;(RT-)¥R, (T, R) € &,
and
(26) 7(8S) = ¢(S) + r(¢(S), S — t(8)), S€ #*(2p, R).

LeEMMA 4. The map 7 defined by (26) is a diffeomorphism of #*(2p, R) onto #*(2p,
R) which commutes with the action of GL(p, C). Moreover,

(27) tofF =t and 7oF = roq,
where 1 is the homeomorphism of A, onto A, given by

(28) F(Al; * "yAp) = (r(Al)y DY r(Ap))’ (Al) .. ',}\P) S Ap~
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The Jacobian of ¥ is an invariant function and is given by

2 _ 2
(29) det DF(S) = {Dr(0)}* ' L {r(}‘“)iQ }{\Z(}‘ﬂ Ny
a T N

5 ’(;“) Dr(\.),

o

where (A1, +++,Ap) =7(S), A=Ay, -+, Ap) = {(a0, B)|la< B, Aa>Ap}, B=B(Ay, - -+,
Ap) = {(a, B)la=BAa=2p>0},C=C(Ay -+, ) = {(&, B)|a =B, Aa = Ap = 0}, and
| C| denotes the number of elements in C.

Proor. It is seen from (25) that »(MTM’, MEM') = Mr(T, R)M’ for M € GL(p, C)
and (7, R) € &. It follows from the representation (14) that M can be chosen such that
MTM’ = L, and MRM’ = R, = diag(A1, +++, Ap, — Ay, +++, — Ap). Then Mr(T, R)M' =
r(MTM’, MRM') = r(I,, Ro) = diag(r(\1), « -+, r(Ap), — r(A1), - -+, — r(A,)), and it is seen
that (T, r(T, R)) € &. Using the isomorphism (23), it is then seen that 7(S) € #*(2p, R),
7 corresponds to the mapping (T, R) — (T, r(T, R)) of & into &, 7 commutes with the
action, and that (27) holds.

The next step is to show that 7 is one-to-one. Since 7 commutes with the action of
GL(p, C) it is enough to show that (T, r(T, R)) = (Ip, r(I2p, Ro)) implies that T'= I, and
R = Ry. This means one has to show that r(I;,, R) = r(L,, Ro) implies that R = R,. Since
7 is one-to-one it follows that R and R, have the same eigenvalues w.r.t. Iz, or in other
words there exists M € GL(p, C) such that MM’ = I, and MR,M' = R. Then

Mr(Lyp, R)M’' = r(MM', MRoM') = r(L,, R) = r(Lp, Ro)
= diag(r(A1), -+, 7(Ap), = r(A1), ooy = T (),
and since M is orthogonal, one has
(30) Mr(ILyp, Ro) = r(Lzp, Ro) M.

For every polynomial of odd degree g, (30) implies that M commutes with diag(q(r(A1)),

w, q(r\)), — g(r(Ay), «-+, — @(r(Ap))). Since g can be chosen such that g(r(A,)) =
Ao, @ =1, - -+, p, one obtains that M commutes with R, and therefore that R = MRy M’
= RoyMM'’ = R,. Therefore 7 is one-to-one. '

Since 7 commutes with the action of GL(p, C) and 7 is onto, it follows from (27) that 7
also is onto.

The fact that 7 commutes with the action gives that the Jacobian is an invariant
function. It is therefore enough to calculate det DF(S) when S = I, + R,. Using the
isomorphism (23), the Jacobian of 7 is the same as the Jacobian of the mapping (7, R)
— (T, r(T, R)), which again is the same as the Jacobian of R — r(T, R). Thus one has to
find the absolute value of the determinant of the mapping

(31) dR — Yo a; ¥iLo R§(dR) R ™.

Since dR has the form (7), where C = (c,z) and D = (d,z), it is seen that the mapping (31)
multiplies c,z, @ < B, by '

(32) 27:0 a; Z%io )\f Afzj_k
and d.p, a =< 8, by
(33) Yoa Yo AE(= Np)¥ R,

The Jacobian is therefore a product of all these factors. If (a, 8) € B, (32) is equal to
Dr(\,) and (33) is equal to r(A,)/A.. If (a, B) € C both (32) and (33) are equal to Dr(0).
If (a, B) € A, we have two geometric progressions, and it is seen that (32) is equal to
{r(\a) — r(Ag)}/(Aa — Ap) and that (33) is equal to {r(As) + r(Ag)}/(As + Ap). Since (29)
is positive, it follows that 7' is differentiable. O

LEMMA 5. The measure k in Theorem 1 has the density (21) w.xr.t. a Lebesgue measure
on A,.
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Proor. The invariant measure vp 5, y on #*(2p, R) has density |det S|”"*w.r.t. a

Lebesgue measure (Bourbaki, 1963, page 93). Since F is a diffeomorphism, f‘l(v,?'zp, ~) has
the density

(34) {det S/det 7(S)}®P*V/2| det DF(S)|

w.r.t. vp 5, n. It follows from Lemma 4 and (16) that (34) is an invariant function g (7(S)),
S € #*(2p, R), where

+1/2
1-A% ]"

gy, -+ o, Ap) =151 [1—_—{7(7\—)}—2

(35)
{r(Aa)}? = {rp}* = r(\a)
VDY) s =

ADr(0)}*'' la Drx.),

for (A1, - -+, Ap) € A,. Using (27) we obtain that
vep,N®F k) = A X F ) (vepn®k) = (1 X F)((¢ ) (v 2p,n))
= (&, m)(F " (vR,2p,n)) = (t, 1) (g °T)VR,2p,N) = ¥c,p,n D &K,
so it is seen that
(36) F k) = gk.
Let
B, oo Ap) =T15-0 @ =AD" V2 T4 A2 = AR [18 Aas (A1, +++, Ap) € A,

and let p = (1/k)«. Then « has density £(>0) w.r.t. u and it follows from (35) that 7(u)
has density

{Dr(0)}*'°'T[s Dr(\.)
w.r.t. p. By considering the restrictions of u to the faces
{()\1’ ."?AP)ERP'1>)\1 = ... =)\’"1>}\m1+1= e =Amq>)\mq+] = ... =Ap=0}

of Ap,wherel=m; < ... <m,=p,q=1,2, ..., p, it follows from the next lemma that
p is a Lebesgue measure on A ,. Hence p is concentrated on the interior of A,, and on this
subset £(Ay, -+, Ap) is equal to (21). O

LEMMA 6. Let u be a measure on the interior {(81, ++-,8;) ERI1>8> -+ >4,
>0} ofAg, g =1,2, .-, such that ¥ '(u) has density

Hg=1 {Dr(sa)} m,’

ne.=1,2---,a=1,...,q, wr.t. u for any polynomial r of odd degree such that r(0) =
0,r(1) = 1, and Dr(x) > 0,0 < x < 1. If u is not identically zero thenn, =1, a=1, ---,
q, and p is the restriction of a Lebesgue measure to the interior of A,.

Proor. The condition on g is that

(37 J'fdﬂ =J'f(r(31), o0, r(8g)) [Té=1 {Dr(8.)}™ du(8y, - -+, 8;)

for any continuous function f with compact support. For a fixed f it follows from the
Weierstrass approximation theorem that (37) even holds for any continuously differentiable
function r with r(0) = 0, r(1) = 1, and Dr(x) > 0, 0 = x < 1. (If the polynomials g,
tend uniformly to vDr on [0, 1] then the polynomials 7.(x) = [3{g.(¢)}* dt + x[1 —
[0 {g»(t)}* dt] are of odd degree, r,(0) = 0, r,(1) = 1, and r,, and Dr, tend uniformly to r
and Dr, respectively, on [0, 1]. Hence Dr,(x) > 0, 0 < x < 1, for n sufficiently large.) By
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monotone convergence (37) is extended to the case where fis an indicator function for a
compact subset. Let I = [[[@a, @ + o] and J = [[a[ba; b + ca] be two rectangles in the
interior of A, with sidelengths ¢, >0,a=1, ---,q9.Since 1 >a,+c1>a;1>--->a,+ ¢,
>a,>0and1>b +c¢ >b > - > b, + ¢, > b, >0, there exists a continu-
ously differentiable function r with r(0) = 0, (1) = 1, and Dr(x) > 0,0 = x =< 1,
such that r(x) = x + (by — @a), x € [@4, Ax + €], a =1, ---, q. Then Dr(x) = 1 for x €
[@as @ + Co], @ =1, -+, g, and if f is the indicator function of JJ it follows from (37) that
w(I) = p(J). Hence p is translation invariant. If p is not identically zero it must be the re-
striction of a Lebesgue measure, and then it is clear that n, =1, a =1, ..., ¢.0

3. Testing the hypothesis that a covariance matrix with complex structure
has real structure. Let x;, ---, xy, N = p, be iid. observations from a normal
distribution on R?? with mean vector 0 and unknown covariance matrix

= r -v +

It follows from Section 2 that the empirical covariance matrix transformed by the mapping
(12) is a minimal sufficient reduction which follows a complex Wishart distribution with N
degrees of freedom and parameter N~ 'Z. This distribution has the density (19) w.r.t.
Vc,p,N-

For p > 1 we shall consider the hypothesis Ho that ¥ = 0, i.e., that X has a real structure.
The statistical problem of testing H, is invariant under the restriction of the action (5) to
the subgroup GL(p, R) ® I. = {diag(A, A)| A € GL(p, R)} of GL(p, C). The problem is
to find a representation of the orbit projection

(38) mH " (p,C)—> #"(p,C)/GL(p, R) B I,

and, when H, is true, the distribution of .
The group GL(p, R) ® I, acts on #*(p, R) ® I, = {diag(H, H)|H € #*(p, R)} by
restriction of (5). The linear map

. ot + _ H -F H 0
t:# (p, C)— H(p, R) P L, S_<F H)"(o H)

commutes with the actions of GL(p, R) ® I,, and the residual

S—tsS) = <°F _5) € A(p,R) ® J,

where

0 —-F
d(p,R’)®J1={(F O)

and /(p, R) is the set of all antisymmetric p X p real matrices.

FE%(P,R)}

LEMMA 7. Let ¢ be a positive definite symmetric bilinear real form and ¢ an
antisymmetric bilinear real form on a p-dimensional real vector space. Then there exists
a basis such that the matrices of ¢ and  are I, and

0 —-A 0 0

A 0O 0 O
(39) A= 0 0 0 -—X

0 0 A O

SO OO

respectively, where \; = + -+ = A7) = 0.

Proor. Bourbaki (1959, page 123). [
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An equivalent formulation of the lemma is that for every H € #*(p, R) and
F € o(p, R) there exists A € GL(p, R) such that AHA' = I, and AFA’ = A. This yields

another equivalent formulation in terms of 2p X 2p real matrices. For T = ((})f{ %) €

0 -F

H*(p, R)@IzandRE(F 0

) € A(p, R) ® J,, there exists

M= (‘5‘ f;) €GL(p,R)® L

such that

(40) MTM' =1,, and MRM’' = (?\ _(‘)\) .
It is seen from (40) that A, -« -, £A[,/2; are uniquely determined as the eigenvalues of R
w.r.t. T, each with multiplicity two. (When p is odd, 0 is always an eigenvalue with
multiplicity two.)

For T = t(S) and R = S — ¢(S) it now follows that there exists an M € GL(p, R) ® I,
such that

, (I, —A
(41) MSM _(A I, ),
and that (38) can be represented by
(42) ‘lTI.yf-'—(p, C)—-) A[p/z],

where 7(S) is the ordered family of the nonnegative eigenvalues of S — #(S) w.r.t. £(S). As
in Section 2 it is seen that this representation is also topological.

THEOREM 2. The maximum likelihood estimator of £ under H, is t(S) and the
likelihood ratio statistic for testing H, is

(43) [1%28 (1 =AY,
where (A1, - -+, Arp/21) = 7(S). Under the hypothesis H, the statistics t(S) and #(S) are
independently distributed. The distribution of t(S) has the density

<det T

(44) det 2

N/2
) exp{—%N tr(E7'T)}, TEH# (p,R)R I,

w.r.t. @ unique measure vp , y which is invariant under the action of GL(p, R) ® I, on
H(p, R) ® I,. The distribution of w(S) has density (43) w.r.t. a measure k on Mgy
which is uniquely defined by

(t, m)(vc,p,N) = Vi p,n® k.
Furthermore, k has the density
(45) [isa<p=toz (A% = AR [IIZP AT (1 = A7,
where ¢ = p — 2[ p/2], w.xr.t. a Lebesgue measure on A .
REMARK. The maximum likelihood estimator of I" under H, is H. Since the mapping
T = diag(H, H) — H from s#*(p, R) ® I, onto #*(p, R) transforms v , n into vg,, 2n, it

is seen from (44) that H is Wishart distributed with 2N degrees of freedom and parameter
(2N)'T.

Proor. If in Section 2 one replaces GL(p, C) by GL(p, R) ® L,, #*(2p, R) by
f+(l7, C), #*(p, C) by %+(P, R)® L, #(p, C) by «(p, R) ®J,, VR,2p,N bY Yc p, N, Ve, p,N
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by v&.p,vand (A1, + -+, Ap) by (A4, « + -, A{p/2)), then the proof is completely analogous to the
proof of Theorem 1 except for the following changes: The determinant of the right hand
side of (41) is [[{2¥ (1 — A2)? which gives (43). The invariant measure v, » has density
| det S| ™/*w.r.t. a Lebesgue measure on #*(p, C) (Bourbaki, 1963, page 95) which gives
the factor [[L22 (1 — A2)™? in (45). Finally, we shall show below that the Jacobian of

dR — Y0 a, Y3lo Rt (AR)RY *,

where

dR=(g. _5)Ed(p,R’)®J1 and R(,=<?X _6\),

is

2
(46) 22 Drr,) HIS,K,;Sl,,/z][{rO‘“)} {r(s)) ] Itz {r()\ )}

A=A} X,

when1>AX; > .. > Arp2 >0, which gives the remaining factors in (45).
To prove (46), first note that J #/*' = (—1)/ J, implies

smoa s (O -A\*(o -F\(o -A\""_(0o -F
e 0)\F o)\A 0 F, 0)

where Fo = Y7 a;(—1)’ ¥3Lo A*FA¥* Now partition F = (F, ), where F, zis 2 X 2, 1
=< a, B =[p/2], and where 1fp isodd, Fy(p2+1i82X1,1<y=<[p/2]. Then F,, for 1 <y
=< [p/2] is of the form t¢J; and is mapped into

k 2)—k
. 0 AN\ [0 —£\/0 -
Z/=0 aj(_l)] ZI%LO(}\Y Ov) <t O) <>\‘/ Oy>
B N 0 -t
= 2/’=0 af>\3’(2j + 1)<t 0) = D"(Av)(t O)’

which gives the factor Dr(A,) in (46). For 1 = a < 8 <[p/2], Fap E(Uw ‘Z) is mapped into

2k 272k
0 A v s\[(0 -—=A
m (—1) T/ « B
21:0 (lj( ].) Zk=0 <}\a 0 ) <w u)()\/j 0 )
2k+1 2j—2k—1
1 [(0 =X v s 0 A
m ERIYAWES! « B
+ 21=0 (lj( 1) 2k=0 <}\a 0 ) (w u)(—)\,; 0 )

_ZI o a zk 0)\21@)\2/ Zk(U -S‘) ZI o Z, 1>\2k+1)\2] 2k— 1( u w)

w u s —U

_ av + bu as-— bw
aw—bs au+ bv )’

where

a={AarMa) —Apr(Ap)}/AZ =A%) and b= {Asr(Aa) — Aar(Ap)}/ (X% = N}).
The determinant of this mapping is (a* — %)% = ([{r(Ay)}* — {r(Ag)}21/(A% — A%))?, which
gives the (a, B)th factor in (46). If p is odd then F,,/2+1 = : is mapped into

2y
{0 — }\v
Z;n=0 aj(_l)j()\y ();Y) <ls}> N r()‘v : (Z)’

which gives the factor {r(A,)/A,}* in (46). 0
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4. Testing the hypothesis that a covariance matrix with complex structure has
quaternion structure. Let / denote the division algebra over R of quaternions and let
1, i, J, % be a canonical basis; i.e., i> =% = k%> = —1,ij = —ji = k, jk = —kj = i and ki = —ik
= j. The conjugate of a quaternion ¢ = a + ib + jc + kd is denoted by ¢ = a — ib — je— kd.
Define the R-linear map p of H into H by p(a + ib + jc + kd) = a + ib — jc + kd. It is seen
that p is an involutive antiautomorphism of H; i.e. p(p(g)) = q and p(g1qg2) = p(g2)p(q1) for
g, q1, g2 € H. Moreover, the set {g € H|p(q) = ¢} = {a + jc|a, ¢ € R} is isomorphic to
the field of complex numbers, so it is here denoted by C. (More generally, it can be shown
that there is a one to one correspondence between the embeddings of the field of complex
numbers into /7 and the involutive antiautomorphisms of /H other than the conjugation
operator.)

Let E be a p-dimensional right vector space over H. Since E is a right vector space, the
scalar multiplication of an x € E by ¢ € H is denoted xq. By restricting the scalar
multiplication to the subalgebra of real numbers, E is also a 4p-dimensional vector space
over R, and if ey, - --, e, is a basis for E as a vector space over /1 then

(47) €1, ***, €p, eli’ tt epi7 elj7 ) epj7 e1k7 Tty epk

becomes a basis for E as a vector space over R.
If fis an H-linear map of E into E with matrix A + iB; + jB; + kB; w.r.t. e, - - -, e, then
f considered as an R-linear map has matrix

‘A —B; —B:; —B;
B, A -B; B,
B, Bs A -B
B; -B, By A

(48) M=

w.r.t. (47). Since composition of linear maps corresponds to multiplication of matrices, it
is seen that the set GL(p, H) of all nonsingular 4p X 4p matrices of the form (48) is a
subgroup of GL(2p, C).

Let ¢: E X E — H be a hermitian left sesquilinear quaternion form on E with matrix
® = C + iD, + jD, + kD; = (¢(es, €3)). Then C is symmetric and D,, D, and D; are
antisymmetric. Moreover, § = Re ¢, where Re denotes the real part of a quaternion, is a
symmetric bilinear real form on E and the matrix of § w.r.t. (47) is

C -D, -D, —-D;
D, C -D; D,
D2 D3 C _D 1
D; -D, D C

(49) A=

The form ¢o (f X f) is also hermitian left sesquilinear and the matrix of Rec (¢° (f X f))
= (Reop) o (fX [) wr.t. (47) is

(50) M'AM.
Since ¢ is positive definite if and only if Ree ¢ is positive definite it follows that the action
(51) GL(p, H) X #*(p, H) = #*(p, H), (M, T) > MTM’,

where # " (p, H) is the set of positive definite matrices of the form (49), is well defined. It
follows from the first equation in (59) below that this action is transitive. Moreover, since
it is a restriction of the proper action (6), it is also proper. We remark that #*(p, H) is a
subset of #*(2p, C).

Next let ¢: E X E — [ be a hermitian left p-sesquilinear quaternion form on E, i.e.,
o(xq1, ¥q2) = p(g)o(x, ¥)q2, (¥, x) = p(p(x, ), and ¢(x1 + x2, y) = d(x1, y) + $(x2, ¥),
91,92 € H,y,x,%1, 2 €EE. If ® = C + iD, + jDy + kD3 = (¢(es, 3)) is the matrix of ¢ then
C, D, and D3 are symmetric and D is antisymmetric. Moreover, § = Re° ¢ is a symmetric
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bilinear real form on E, and the matrix of § w.r.t. (47) is

C -D, —-D; -D;

—_ —D1 -C D3 —Dz
- Dz D3 (o —Dl
—Ds D, —-D: -C

The form ¢ (f X f) is also hermitian left p-sesquilinear and the matrix of Rec (¢ (f X f))
= (Re°¢)o(f X f) wr.t. (47) is

(83) MEM e ¥ (p, H),

where & (p, H) is the set of matrices of the form (52).

Let x1, -+, xn, N = 2p, be i.i.d. observations from a normal distribution on R* with
mean vector 0 and unknown covariance matrix X € #*(2p, C). As in Section 3, one obtains
as a minimal sufficient statistic an observation S from a complex Wishart distribution on
H*(2p, C) with N degrees of freedom and parameter N~' =. This distribution has the
density (19) (with p replaced by 2p) w.r.t. vczpn-

Let H, denote the hypothesis that £ € #*(p, ), i.e. that = has quaternion structure.
The statistical problem of testing H, is invariant under the restriction of the action (5)
(with p replaced by 2p) to the subgroup GL(p, H). The problem is to find a representation
of the orbit projection

(52)

(54) 7 #"(2p, C) — #"(2p, C)/GL(p, H)
and, when H is true, the distribution of .
Let
0 0 0 -I
- fo o I o
(55) J=dJd, = 0 -, 0 o |
I, 0 0 0

It is seen that the linear map
t:#"(2p, C) — #*(p, H)

Hy, Hy, —-F. -Fyp
Hy;, Hyp —Fy —Fy
Fu Fye Hy, Hy,
Fo Fy  Hy Hj

(56)
Hu+Hyy Ho—Hy —Fu+Fp —Fi—Fy
1 Hy, — Hiy, Hp+ Hy —Fa—Fi —Fp+ Fu

2\ F11. — Foy  Fip+ Fy Hy, + Hyy Hy, — Hy
For+ Fiy Foo— Fiu H,, — Hy, H,, + Hy,

is well defined because t(S) = %(S + JSJ’) € #*(p, H). Since JJ is the matrix w.r.t. (47)
for scalar multiplication by &, it follows that J commutes with all matrices of the form
(48), and thus also that ¢ commutes with the actions of GL(p, H). Moreover, the residual

Hi,—Hyy Ho+ Hyy —Fiu—Foy —Fip+ Fy
Hy + Hy Hypy—Hy —Fa+Fy —Fo—Fn
Fiu+ Fy Fpp—Fy Hi, — Hy, H; + Hy
Foy—F; Fyp+ Fi H; + Hy, H,, — Hy,

57 S—t(S) =% € < (p, H).

LEMMA 8. Let ¢ be a positive definite hermitian left sesquilinear form on E and ¢ a
hermitian left p-sesquilinear form on E. Then there exists a basis for E such that the
matrices of ¢ and y are I, and A, respectively, where A is defined in Lemma 1.
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Proor. (See Bourbaki, 1959, page 120.) Since ¢ is positive definite there exists an
additive map u of E into E such that y(x, y) = ¢(u(x), y), x, y € E. For q € H, ¢(u(xq), ¥)
=Y(xq,y) = p(@)¥(x, y) = p(q)¢p(u(x), y) = ¢(u(x)o(q), y). Hence

(58) u(xq) = u(x)p(q), g€ H, x€ E.

Moreover, ¢(u(x), y) = Y(x, ¥) = p(Y(y, x)) = p(¢(u(y), x)), and it follows that the
orthogonal complement w.r.t. ¢ of any u-invariant H-subspace S of E (i.e., u(S) C S) is
also u-invariant. E is therefore a direct orthogonal sum of minimal u-invariant subspaces.
Let S be one of these subspaces. Since p(q) = ¢ for ¢ € C = {a + jc| a, c € R}, it follows
from (58) that the restriction of u to S is a C-linear map of S into S, and it must have an
eigenvector. Therefore there exists A € C and x € S such that o(x, x) = 1 and u(x) = xA.
Hence u(xH) C xH and, since x[{ C S, S = xH. Since X¢(xi x) = ¢(xA, x) = o(u(x), x) =
Y(x, x) = p (Y (x, x)) = p(dp(u(x), x)) = p(A (%, x)) = $(x, x)p(N), it follows that p(A) = A, and
since A € C, A € R. This shows that there exists an orthonormal basis e;, - - -, e, for E and
A1, -++, A € R such that u(e,) = e.As, @ = 1, -+, p: ie. the matrix of ¢ is the identity
matrix and the matrix of  is diag(Ai, -- -, A,). It can be assumed that each A, = 0, for if
A« < 0 we can replace e, by e, and thus replace A, by —A, > 0.0

Since the matrices of Re°¢ and Re°y transform according to (50) and (53), the lemma
has an equivalent formulation in terms of 4p X 4p real matrices. Let T € #*(p, H) and
R € & (p, H). Then there exists an M € GL(p, H) such that

(59) MTM’' =1, and MRM’ =diag(A, —A, A, —A).

It is seen from (59) that +A,, ..., £A, are uniquely determined as the eigenvalues of R

w.r.t. T, each with multiplicity two.
For T'= ¢(S) and R = S — #(S) it now follows that there exists an M € GL(p, ), such
that

(60) MSM’' = diag(I, + A, I, — A, I, + A, I, — A)
and that (54) can be represented by
(61) 7 H#*(2p, C) — A,,
where 7(S) is the ordered family of non-negative eigenvalues of S — ¢(S) w.r.t. £(S). As in
Section 2, it is seen that this representation is also topological.
THEOREM 3. The maximum likelihood estimator of = under H, is t(S) and the
likelihood ratio statistic for testing Hy is
(62) [I2- 1 =2ADY,

where (A1, -+, A,) = 7(S). Under the hypothesis H, the statistics t(S) and =(S) are
independently distributed. The distribution of t(S) has the density

det T\"*
(L> exp{— % N tr(z—‘T)}, T € #*(p, H)

(63) det =

w.r.t. a unique measure vy, N which is invariant under the action (51). The distribution
of w(S) has density (62) w.r.t. @« measure k on A, which is uniquely defined by

(64) (t, W)(Vc,zp,N) = VH,p,N ® k.

Furthermore, k has the density

(65) [Tiza<p=p A& = A3 [[2=1 AS(1 — A2~

w.r.t. a Lebesgue measure on A,.
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REMARK. The distribution given by the density (63) is called the quaternion Wishart
distribution with N degrees of freedom and parameter N™' = € #*(p, H).

Proor. Ifin Section 2 one replaces GL(p, C) by GL(p, H), #*(2p, R) by #*(2p, C),
H*(p, C) by #*(p, H), ¥ (p, C) by & (p, H), vgap.n by vcopn, and vcpn by v p .y, then
the proof is completely analogous to the proof of Theorem 1 except for the following
changes: The determinant of the right hand side of (60) is [[ (1 — A2)% which gives
(62). The invariant measure vc,, v has density | det S|=%/? w.r.t. a Lebesgue measure on
#*(2p, C) (Bourbaki, 1963, page 95) which gives the factor [] (1— A2) % in (65). Finally
the Jacobian of

dR —Y71 a; Y 7-0 RE(AR)RY ™,
where dR has the form (52) and R, = diag(A, —A, A, —A), is

ri\,) 2H {ra)) — (rde)y’ ]
)\Y I=a<fB=p }\2 — }\/%

(66) Dr(m{

when 1 >A; > ... >\, > 0, which gives the remaining factors in (65). The proof of (66) is
analogous to the proof of (29). 00

5. Testing the hypothesis that a covariance matrix with quaternion structure
has complex structure. Let E be as in Section 2, fa C-linear map of E into E, ¢: E X
E — C an antisymmetric bilinear complex form on E, and C + iD = (¢(e., €s)) the matrix
of pw.r.t. e, -+, e,. Then Cand D are antisymmetric. Moreover Re ° ¢ is an antisymmetric
bilinear real form on E, the matrix of Rec¢ w.r.t. (1) is given by (7), (p° (f X f)) is also
antisymmetric bilinear, and the matrix of Reo(¢o(f X f)) = (Re°p)°(f X ) wr.t. (1) is
given by

A -B\( ¢ -D\(A -B

where 7 (p, C) is the set of all antisymmetric matrices of the form (7).

Let x1, ---, xn, N = p, be ii.d. observations from a normal distribution on R* with
mean vector 0 and unknown covariance matrix
r -¥ -¥ -¥;
\I’l F —‘1'3 ‘1'2
v, ¥, r —-v. /)
¥; —¥, ¥, T

po

It follows from Sections 2 and 3 that the empirical covariance matrix transformed by the
mappings (12) (with p replaced by 2p) followed by (56) is a minimal sufficient statistic,
which follows a quaternion Wishart distribution with N degrees of freedom and parameter
N~! 3. This distribution has the density (63), w.r.t. vsn.

For p > 1 we shall consider the hypothesis Hy that ¥.= ¥; = 0, i.e., that Z has a complex
structure. The statistical problem of testing H, is invariant under the restriction of the
action (51) to the subgroup GL(p, C) ® I, = {diag(4, A)|A € GL(p, C)} of GL(p, H).
The problem is to find a representation of the orbit projection

(68) a: H# (p, H) - #*(p, H)/GL(p, C) ® I,

and, when H, is true, the distribution of 7.
The group GL(p, C) ® I, acts on #*(p, C) ® I, = {diag(H, H)|H € #*(p, C)} by
restriction of (51). The linear map

. oot + _ H - H 0
t:#*(p, H) — #*(p,C)® L, s_(F H).,(O H)
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commutes with the actions of GL(p, C) ® I,, and the residual

S—(S) = (g ‘OF> € 4(p,C)® i,

where

0 -F

A(p, C) B J, = {(F 0 )‘FE A (p, C)}.

LEMMA 9. Let ¢ be a positive definite hermitian left sesquilinear complex form and
Y an antisymmetric bilinear complex form on a p-dimensional complex vector space.

Then there exists a basis such that the matrices for ¢ and Y are I, and A respectively,
where A is defined in (39).

ProoF. Bourbaki (1959, page 123). O

Since the matrices for Re° ¢ and Re -y transform according to (4) and (67), respectively,
an equivalent formulation of the lemma is that for every H € #*(p, C) and F € &/ (p, C),
there exists A € GL(p, C) such that AHA’ = I, and AFA’ = A. This can be reformulated
in terms of 4p X 4p real matrices. For
0 —-F

F O) €4(p,C)® I,

Ts<f)1 g>ex+(p,¢:)®12 and RE(

there exists

M= (A O)e GL(p,C)® I

0 A
such that
0 0 —-A O
'’ ,_[ O 0 0 A
(69) MTM' =1, and MRM’ = A 0 0o ol

0 —-A 0 0

It is seen from (69) that £A,, - --, £A[,/2; are uniquely determined as the eigenvalues of R
w.r.t. T, each with multiplicity four. (When p is odd 0 is always an eigenvalue with
multiplicity four.) For T'= ¢(S) and R = S — ¢(S) it now follows that there exists an M €
GL(p, C) ® I, such that

I, 0 —-A O
, |0 I, 0 A
(70) MSM’' = A 0 L 0
0 -A 0 1,
and that (68) can be represented by
(71) 7 HT(p, H) = A/,

where 7(S) is the ordered family of non-negative eigenvalues of S — #(S) w.r.t. £(S). As in
Section 2, it is seen that this representation is also topological.

THEOREM 4. The maximum likelihood estimator of T under H, is t(S) and the
likelihood ratio statistic for testing Hy is

(72) 158 (=A%),
where (A1, -+, A[p/21) = 7(S). Under the hypothesis Hy the statistics t(S) and =(S) are
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independently distributed. The distribution of t(S) has the density

det T\"* 1 » .
(73) —_ exps—=NtrE& ' T);, TE # (2p,C)Q L,

det = 2
w.r.t. a unique measure vgp,n which is invariant under the action of GL(p, C) ® I, on
H*(p, C) ® I,. The distribution of #(S) has density (72) w.r.t. a measure k on App/
which is uniquely defined by

(t, 'n')(vﬂ,p,N) = V(C,p,N® K.
Furthermore, k has the density
(74) ' [ia<p=iorn A2 = AR)* TIPI A (1= A) 2+,

where ¢ = p — 2[ p/2], w.r.t. a Lebesgue measure on A(p/s).

REMARK. The maximum likelihood estimator of r _‘Pl) under H, is H. Since the

¥, T
mapping T = diag(H, H) — H from #*(p, C) ® I, onto #*(p, C) transforms v¢,, y into
Vepan, it is seen from (73) that H follows a complex Wishart distribution with 2N degrees
1 (T -1,

of freedom and parameterm ¥, T

Proor. If in Section 2 one replaces GL(p, C) by GL(p, C) ® I, #*(2p, R) by
H*(p, H), #*(p, C) by #*(p,C) ® L, ¥ (p, C) by & (p, C) @ Ji, vg,2p,n bY Vi pn, Vepn
by vcpnvand (A1, -+ -, Ap) by (A1, -« -, Arp/21) then the proof is completely analogous to the
proof of Theorem 1 except for the following changes: The determinant of the right hand
side of (70) is [[(1 — A2)*, which gives (72). The invariant measure vy, ~ has density
|det S|~ #~2/2 wr.t. a Lebesgue measure on #*(p, H) (Bourbaki, 1963, page 95) which
gives the factor [[(1 — A%2)™%*! in (74). Finally the Jacobian of

dR — Y7o a; Y70 RE(R)RY*,

where

0 0 -C D 0 0 —-A O

0 0 D C 0 0 0 A

dR=| o _p o o |ESPO®I and Ro={, o o ol
-D -C 0 0 0 -A 0 0
is
ri\,) rdAa)} — {rdg)} ]! raA )™
(75) 124 Dr(A,) ()\Y Mi=a<p=p2 [{ ( )iz — iz( s)) 122 —(}\ )
Y « B y

when1>A;> ... > App/21 > 0, which gives the remaining factors in (74). The proof of (75)
is completely analogous to the proof of (46). O

6. Testing independence of two sets of variates where the simultaneous co-
variance matrix has real, complex, or quaternion structure. Let D denote R, C,
or [{ and let § = dimz D), i.e., § = 1, 2, or 4. Let M (p2, p1, D) denote the set of all p; X p;
real matrices when D = R; the set of all 2p, X 2p; real matrices of the form (2), where A
and B are p, X p; matrices, when D = C; and the set of all 4p, X 4p; real matrices of the
form (48), where A, B;, B: and B; are p; X p; matrices, when D = . Let E, and E; be
right vector spaces over D of dimensions p; and ps, respectively, g: E; — E; a D-linear
map, and ¢: E; X E;— D a left sesquilinear D -form. The 8p. X 8p; real matrices of g and
Re o Y w.r.t. bases for E; and E; considered as vector spaces over R are both of the form
(2) when D = C and of the form (48) when D = H, hence belong to M (p., p1, D). If f1: E;
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— E; and f;: E; — E, are D-linear maps, then y o (f3 X f1) is a left sesquilinear D -form, and
since Ree (Yo (f2 X f1)) = (Re°y) o (f2 X f1), it is seen that

M, Y M1 € M(ps, p1, D)

for M, € GL(p:, D), My € GL(p2, D), and ¥ € M (ps, p1, D).

Let x be an observation from a normal distribution on R?%” with covariance matrix =
€ H*(p, D) and let p = p; + p; with 0 < p; < p,. Partition x into 8 p-dimensional
subvectors x,, a = 1, - .., 8, corresponding to the partition of = into p X p submatrices
given by its “ D -structure” (see (3) and (49)). Furthermore, partition each x, into x. and x2
consisting of the first p; and the last p, coordinates of x., respectively, a« = 1, ---, 6.
Permuting these 28 subvectors into the order x1, - - -, x3, x3, - - -, x3, one transforms X into
the form

_[(Zn 2
(76) E”(zm 222>’

where 211 € #* (p1, D), 22 € #*(po, D), 21 € M(p2, p1, D), and =12 = =5,. The set of
positive definite matrices of the form (76) is here denoted #*(p, ps, D). We shall discuss
the problem of testing the independence of (x}, ---, x}) and (x% ..., x3).

Let x, - -+, x5, N =p > 1, be i.i.d. observations from a normal distribution on R®” with
mean vector 0 and unknown covariance matrix X € #*(pi1, ps, D). The maximum
likelihood estimate S of Z also has the form (76),

_ S S
§= <szl Szz)’
and it follows from the preceding sections that S is D -Wishart distributed with NV degrees
of freedom and parameter N 'Z.

The statistical problem under consideration is that of testing the hypothesis H, that
312 = 24 = 0. This problem is invariant under the action

GL (p1, D) ® GL(p2, D) [ #7 (p1, p2, D) = #*(p1, p2, D)

77 M, O Su S = M SuM7 M,S..M%

0 M)’ \Sai So M>Sa My M2S:eM5)’
where GL(p:, D) ® GL(p., D) = {diag(M,, Mz)| M, € GL(p:, D), M> € GL(p., D)}. If
one permutes the coordinates as above it is seen that GL (p;, D) @ GL(p:, D) becomes a
subgroup of GL (p, + ps, D) and thus (77) is a restriction of the actions (6), (5), or (51) in

the cases D = R, C, or H, respectively.
The linear map

t: %+(P17P2, D)“’-”WPI’D)@]KWPZ’D)

S = Sll SIZ — Sll 0
SZI SZZ 0 SZ2

commutes with the action (77) and the transitive action
(78) GL(p1, D) ® GL(p2, D) X #*(p1, D) ® H#*(p2, D) — H*(p1, D) © #*(ps, D)
(M, T) > MTM’',
where #*(p1, D) ® # " (p2, D) = {diag(E,, =) | =1 € #*(p1, D), 2 € # " (p2, D)}.
LEMMA 10. Let ¢1: E1 X E1 — D and ¢2: E2 X E> — D be positive definite hermitian

left sesquilinear forms and g: E; — E, a D-linear map. Then there exist D-bases of E,
and E; such that the matrices of ¢ and ¢» are I, and I, respectively, and the matrix of
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gis
Afe+-0 «.-0

0 «++Ap--0

2

where A\ = +-- = Ap, = 0.

Proor. It follows from Lemma 11 in the next section that there exists a basis f1, - - -,
fo, of E; such that the matrix of ¢ is I, and the matrix of ¢, (g X g) is diag(A%, -+, A3),
where A, = ... = A, = 0. Let e; = g(f,)A; " for A; > 0; these e;’s are orthonormal w.r.t. ¢
and they can therefore be extended to a basis ey, - - -, e, for E; which is orthonormal w.r.t.
¢1, i.e.,, the matrix of ¢, is I, . Since g(f;) = e,A;, i =1, - -+, p2, the lemma follows. 00

In terms of real matrices, the lemma states that for ®; € #*(pi1, D), D € #*(p2, D),
and G € M (p2, p1, D), there exists an A; € GL(p:, D) and an A; € GL(p,, D) such that
A A =1, R;, A;®:A3 =1, ®I;, and (A2)'GA1 = A Q.

For &, = Sy;, ®> = S22, G = Sa1, M1 = A,, and M, = (A5)7", one obtains that there exists
an M € GL(p:, D) ® GL(ps, D) such that
LRI N® 15)

(79) MSM’ = <A ®I I,®I,

Hence the orbit projection corresponding to the action (77) can be represented by
7w H (P, P2, D) > Ap,,

where 7(S) is the ordered family of the first p, non-negative eigenvalues of S — ¢(S)
w.r.t. £(S) each with multiplicity 8. (0 is always an eigenvalue with multiplicity at least

3(p1 — p2).)

THEOREM 5. The maximum likelihood estimator of = under H, is t(S) and the
likelihood ratio statistic for testing H, is
(80) P2 (1= A2
where (A1, --+, Ap) = @(S). Under the hypothesis H, the statistics t(S) and =(S) are
independently distributed. The distribution of t(S) has density

det T\ 1 o
expd — = Ntr(E7'T)}, TE #*(p1, D) ® #*(p2, D)
det 2 2

(81)

w.r.t. a unique measure vp , n® vp ,, y Which is invariant under the action of GL(p1, D)
® GL(p2, D) on #*(p1, D) ® #*(p2, D). The distribution of =(S) has density (80) w.r.t.
a measure k on Ap, which is uniquely defined by

(t, m)(vppn) = (VD,pl,N® VD ps,N) k.
Furthermore, k has density

(82) P (1— }\3)—3(p—1+2/s)/2}\§(pl—pz)+8—1 Hlsa<ﬁsp2(>\§ - }\2)8

w.r.t. a Lebesgue measure on Ap,.

REMARK. The maximum likelihood estimators for 2;; and X, are S;; and Sa., respec-
tively, and it is seen from (81) that these are independently distributed and that S;; follows
a D-Wishart distribution with NV degrees of freedom and parameter N™' =, i =1, 2.
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Proor. The proof is analogous to the proof of Theorem 1. The determinant of (79) is
Ima - A%)%, which gives (80). The invariant measure vp, ~ On #*(p, D) has density
|det S|~(P71*%9)/2 wr.t. a Lebesgue measure, and that gives the first factor in (82). The
Jacobian of

(83) dR — Y% @, $iLo RE(dR)RY ™,
A eL 0 AN QI .
wheredR=(G 0 ),GeM(pz,pl,D)andRo=<A®Ls 0 8),1s
AL) PR A2 — A28
(84) 22, Dr(\,) ry) [Mi<e<p=p s )}2 {Z( 2
}\y }\a - }\B

when 1> A; > ... > A, > 0, which gives the remaining factors in (82).

We shall indicate the proof of (84) in the case D = H: Recall that G is of the form (48).
Under the mapping (83) the (y, y)th element of A is multiplied by Dr(A,), the (y, y)th
elements of Bi, Bs, and B; are multiplied by r(\,)/\,, and for 8 > p. the (y, 8)th elements
of A, By, B, and Bs are multiplied by r(\,)/A,. For 1 = a < 8 < p; the pair of elements
(tap, tpa) Of A, By, By, and Bs are mapped into the pair (atos + btpa, atpa + bt,z), where a
and b are as in the proof of Theorem 2; this mapping has the determinant

(@ = b%)° = [({r(\)}* = {r(e)}*)/(AZ = AQ)P. 0

7. Testing the hypothesis that two covariance matrices with real, complex, or
quaternion structure are identical. As in Section 6 we denote by D either R, C, or
H, and 8 = dimgD. Let S; and S, be independent observations from D-Wishart distribu-
tions with N; and N degrees of freedom and parameters 2, € # *(p, D), respectively,
p = N; and p < N,. Since vp p, v is invariant and det(NS) = N°odet(S) for S € #*(p, D),
it follows from the preceding sections that the distribution of (Si, Sz) has density

det S\ det S;\"* 1
— = tr(Z1S, + =518 S. + 2
<det 2]) det =, exp 2 tr(Z7'S; 71S) ¢, (S1, Sp) € # 7 (p, D)

w.rt. 15, 8,® vh N, Where vy, N, = (1/N)PN?p v, p = N, i =1, 2.
Let H, denote the hypothesis that =; = X,. The statistical problem of testing H, is
invariant under the action

(85)  GL(p, D) X #*(p, D)* = #*(p, D), (M, (S, S)) = (MS, M’, MS, M’").
The linear map
t: # " (p, DY — #*(p, D), (S, S:)—> S1+8:
commutes with the actions (85) and (6), (5), or (51), respectively.
LEMMA 11. Let ¢ be a positive definite herjmitian left sesquilinear D-form and Y a
hermitian left sesquilinear D-form on a p-dimensional vector space over D. Then there

exists a basis such that the matrix of ¢ is I, and the matrix of ¢ is A = diag(Ay, - -,
Ap), where Ay = «++ = Ap.

Proor. Bourbaki (1959, page 123).0

In terms of §p X 8p real matrices, the lemma implies that there exists an M € GL(p, D)
such that M (S; + So)M’ = Iy, and MS; M’ = A ® I;. Then MS: M’ = (I — A) ® I, and it
is seen that the orbit projection corresponding to the action (85) can be represented by

77':'%+(p) D)z_) AP)

where 7(S;, S2) = (A1, +--,Ap) and 1 > A; = ... = A, > 0 are the eigenvalues of S; w.r.t.
S; + Ss, each with multiplicity 6.
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THEOREM 6. The maximum likelithood estimator for = (the common value of =, and
2o) under Hy is (1/(N1 + N»))t(Si1, S2) and the likelihood ratio test statistic for testing H,
is

(86) T15-1 NJM/2(L = )M,

where (A1, ---, A\p) = 7(S1, S2). Under the hypothesis H, the statistics t(Si, S:) and
(81, S2) are independently distributed. The distribution of t(Si, Sz) has density

(N1+N>)/2
det T
_— ——tr(ZT) }, TE #(p,
(detz) EXP{ 2 x( )} H#*(p, D)

w.r.t. v9pnn, The distribution of m(Si, S;) has density (86) w.r.t. a measure k on A,
which is uniquely defined by

(t) W)(V?D,p,Nl® V(b,p,N) = V(b,p,Nl+N2® K.
Furthermore, k has density

(87) P (A=A PP g (N = Ap)®

w.r.t. a Lebesgue measure on \,.

Proor. The proof is analogous to the proofs for the other theorems. For (87), one
defines 7(Si, Sz) = (r(S1, S1 + S2), S1 + Sz — r(S;, S1 + S2)), where

r(R, T) =Y a,(RT ")¥R.
The determinant of
dR — S0 @ Tiko RAARIRY ™,
where dR € # *(p, D) and Ry = A ® I, is

8
221 DrA) TTise<p=s {%ﬂ}

whenl1>A;> ... >7,>0.0

8. The norming constants. In Theorems 1-6 we have represented the distribution
of the orbit projection « by a density w.r.t. a Lebesgue measure on A, for appropriate g.
This density is the product of the likelihood ratio statistic g and the density f of a measure
k with respect to that Lebesgue measure. (In Theorem 1, for example, the density of « is
the product of (18) and (21).) In order to find the density of 7 w.r.t. the usual Lebesgue
measure du(A) = [] dA,, one must evaluate the norming constant (fg(A\)f(A) du(N))~!. We
shall first evaluate the norming constants associated with Theorems 5 and 6 by a
simultaneous recursion argument. The remaining norming constants are easily obtained
from these. All the results are special cases of a result obtained by Selberg (1944).

We shall use the same notation as in Sections 6 and 7. The distribution of # in Theorem
6 has density

(88) b(8, p, N1, N2) [[#-1 >\$(N‘7'n)/2(1 - Ay)&(Nz—m)/‘z [Mize<p=p Qs — Ag)?

w.r.t. u, where m = p — 1 + 2/8 and b(8, p, N1, N:) is the norming constant. In fact, b is
defined for all real values of N1, N, € [m, »). Let vp, be an arbitrary invariant measure on
#"(p, D). Then vy, n = (8, p, N)vp,, where ¢(8, p, N) is a constant. Since (¢, 7) (v, v,
® vhpN,) = vopn,+n, ® b(8, p, N1, N2)fu, where fis given by (87), we obtain

b(8, p, N1, N»)c(8, p, Ni + N;) fi
C(S,py N])C((S, b, Nz) '

(t, M) (wpp @ vpp) = vp,p @ {
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It follows that
c(§, p, Ni)c(§, p, N2)
c(8, p, N1 + N3)

where %:(8, p) is a constant only depending on § and p.
In Theorem 5, 7 has density

90)  a(® pi, pz, N) [T220 AP 7P DTN = A3 PN PO ey NS — AB)®

(89) b(87 P Nl’ N?) = kl(s’ p)y

w.r.t. u, where p = p1 + p» and a(§, p1, p2, N) is the norming constant. In the same manner
as in the derivation of (89), it is shown that

c(8, p1 + p2, N)
¢(8, p1, N)c(8, p2, N)

(91) a(8’p1’p27 N) = k2(87p1)p2)’

where k3(8, p1, p2) is a constant only depending on 8, p:, and p,. (Recall that vp,~
= N®N2yG, v = N®N2c(8, p, N)vp,.) Since
a8, p, 1, N) = 2I'(6N/2) /{T'(8p/2)T'(§(N — p)/2)}
and
c(8, 1, N) = ¢(8/2)**/T'(8N/2),

where ¢ is a constant which depends on vp ;, it follows by induction from (91) that

(92) c(8, p, N) = ko (8, p)(8/2)°***/d 8, p, N),
where
(93) d@é,p, N) =[[{-1T'6(N -y +1)/2)

and k¢(8, p) is a constant only depending on § and p.

If (92) is substituted into (89) one obtains

k(8) p)d(S,P, Nl + N2)
94 b, p, N1, N,) = ,
®4 O P N ) = b NG, b, Vo)

where k(8, p) = ko(8, p)ki(6, p).
For a € [0, x), (8, p, m, N2)/b(8, p, a« + m, N3) is the % 8a’th moment of a distribution
on [0, 1] and
d(6, p, a + m)d(8, p, m + N;)
d (6, p, m)d8, p,a + m + N;)

is the %d8a’th moment of a product of p independent Beta-distributed variables. Hence
(94) holds for all real values of N; € [m, «). Analogously, it is seen that (94) holds for all
real values of N, € [m, «). (It then follows that b(p, N, N:) is defined for all real values
ole,NZE(p—l, 00)) .

By making the substitutions A\; = y; and A, = y15,, y =2, - - -, p, in (88) and integrating
over y; it is seen that

2 2 1 2 2
Wépp—1+=-,p—1+=|=pi-(p—-1+1 ,P—Lp—2+=, -].
< p,p 3P a) p{2(p ) }b<8p Lp 3 p+8)

If (94) is substituted into this expression, one obtains after a reduction that (8, p) =
k@, p — DI'(8/2)/T'(6p/2), and it follows that £(8, p) = k3(8){I'(8/2)}”/d(p, p), where
ks(8) is a constant only depending on 8. Since

b(5, 1, Ny, N3) = T'(8(N1 + N3)/2)/{T'(6N:1/2)T'(8N-/2)},
it follows that £3(8) = 1, so that

_ {T(8/2))7d(8, p, Ny + N»)
95) b0 N Ne) = 5 )0, b, NOAG, M)
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Finally, by making the substitution y, = A2, y =1, - - -, ps, in (90), one obtains that
(96) a(sypl,pZ, N)E2p2b(8’p2)p1)N_pl)

and that a(§, p, p2, N) in fact is defined for all real values of p; € (ps — 1, ) and all real
values of N € (p; + p2 — 1, ).

It is now a simple matter to obtain the norming constants associated with Theorems
1-4. These are:

(97 a(l,p+1,p, N+1) =271, p,p+1,N-p), 2p=N,

(o] f) -3

(98) 1
b p p
=202 |, p—|[Z |+, N-p+|Z]|]), p=N,
(3] o= [3] 2 vere[5]). +=
1 1 » 1
(99) a 27p+§’p)N+§ =27b 27p7p+§)N_p ) 2P5N:
ala,p—|2| =L 2] N1
2 2712 2
(100)

— ol p 121t N p
2 b(4,[2},p [2] 2,N p+[2]), p=N.

For each of the ten testing problems the ath moment, « = 0, of the likelihood ratio test
statistic is readily obtained from these norming constants. For the problem associated with
Theorem 1 one obtains

al,p+1,p,N+1) _d(1,p, N+ 1)d(1, p, Na + N — p)
al,p+1L,p,No+N+1) d(1,p, Ne+ N+ 1)d(t, p, N — p)
o o, TUN =y +2)/9T((Na+ N —p -y +1)/2)
= I T'((Na+N—y+2)/2T(N-p—y+1)/2)’

and similarly for the problems associated with Theorems 2-6

F(N—y+%)I‘<N¢x+N—p+[§]—y+ 1)
1 p
I‘Na+N—y+§FN—p+ 3 -y+1

I‘(N—y+g)l"(Na+N—p—y+1)

(102) 12

(103) 5

I‘(Na+N—y4-g)F(N—p—y+1)

TN -2y + 1)I‘<2(Na +N-p+ [‘5’} —y 1))

(104) iz
['(2Na + 2N — 2y + 1)I‘<2<N -p+ [g] —y+ 1))

TSN —y+1)/2T@G(Na + N — p, — y + 1)/2)

(105) v T'(6(Na + N—vy+1)/2)T(8(N — p; — vy + 1)/2)
and
(106 [, DOML+ No =y + D/2TOWia+ N — y + 1)/A0EM:a + Na =y + 1)/2)

"'T(8(Nia + Noa + Ny + N; — Y+ 1)/2)T(6(N: — vy + 1)/2)T(8(N. — y + 1)/2)
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