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We are fortunate that three powerful mathematical statisticians have cooperated here
to summarize the current progress of decision theoretic multiparameter estimation for
non-normal problems. Paralleling results of Stein and others for the normal distribution,
these authors have established in certain discrete settings that the usual estimators can be
dominated uniformly in multiparameter settings for weighted sums of squared error loss
functions, if the loss function is known.

While these results are a triumph within statistical decision theory, they will affect
applied statistics little. Even for the normal distribution, despite Stein’s celebrated esti-
mator for the “equal variances case,” classical decision theory still rules out good “unequal
variances” estimators: in the unequal variances case minimax shrinking coefficients in-
crease with decreasing variance, violating the principle of less shrinking with more
information. Thus minimax theory gives the wrong answer for the most prevalent appli-
cations. Nor will the rules derived here for the Poisson distribution satisfy applied
statisticians. The authors cannot be blamed for this—they have devised ingenious esti-
mators in order to dominate 8° = X. Rather, the fault lies in requiring uniform frequentist
dominance with respect to the weighted sum of coordinate losses, and that the weights
used to define these losses are rarely known in practice. Simpler and more applicable
multiparameter estimation shrinking methods are available for these distributional set-
tings, but they emanate from Bayesian or empirical Bayesian viewpoints. The following
discussion amplifies these points.

1. The unequal sample size case. In many Poisson applications we have n, inde-
pendent Poisson observations for estimating the Poisson mean A;, i = 1, 2, ---, p. This
happens, for example, if X, is the total number of failures of component type i in 7, time
periods with failure rate A,, so

1) Xmd ~ Poisson(m\,), i=1,2,.--,p

and there are p different types of components. In such cases one wishes to estimate A,, and
not 6, = n.\; of the paper. Then X, = X,/n, is the unbiased estimate, with variance A,/n,.
The loss function (1.2) of the paper then becomes

(2) L= Y% e, — ) 2/A™

with ¢, = n® ™. This choice of ¢, has no special appeal, and other ¢, also should be
considered. In the equal sample size case, however, the losses on 6, in (1.2) of the paper and
A, above are equivalent.

Not only do transformations of parameters affect loss functions, but they also affect
prior distributions. For example, Table 2 and Table 3 assume exchangeable prior distri-
butions on the 6,, i.e. a < 6, < b for various a and b. But then the A, are not exchangeable,
because a/n, < \, < b/n,. In practice, the A; are more likely to be exchangeable than the
6,, and in such cases the theory provided does not properly combine sample and apriori
information.

Section 3 also covers negative binomial distribution, to which the preceding
remarks apply. It is hard to see how the m, should be chosen for the component losses
(p. — p.)%/p7 to be meaningful.

2. Dependence of dominating rules on the loss function. For each loss function
(1.2) a different estimation rule is produced that is superior to 8° = X. Note that §° emerges
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as the most broadly applicable estimator of the paper because it alone is considered with
each loss function. In practice, statisticians rarely know how to choose among loss
functions, and yet any improvements on 8° always depend on the loss function. For
example, estimators that dominate 8° for L, differ sharply from those that dominate for
L;. Do the authors know of a Poisson estimator that dominates 8° for both Lo and L;? Any
possible improvement would be modest because X, is admissible for each component.

3. Desired extensions. Most estimators suggested by the decision theory approach
for multiparameter problems are too complicated for applications. Stein’s estimator is
reasonably simple, but the rules provided here do not emulate it for large equal A;, when
they should. Only 8" shifts 8° toward a reasonable center, the geometric mean, but 8
may not dominate §°. For applications, statisticians need simple rules that shift toward a
good center (near the mean of the data), that account for unequal sample sizes, and that
provide measures of accuracy and interval estimates. While these objectives can be
accomplished, the summed loss function approach hinders rather than aids such progress.

4. Bayes and empirical Bayes alternatives. The difficulties just cited occur with
the normal distribution too, where empirical Bayes provides a remedy, c.f. Morris (1983b)
for a recent summary. To see how empirical Bayes theory applies to the Poisson case, let
X; have the distribution (1), given A;, so X; = X,/n has mean A, and variance A,/n;. Also
assume that {)\,} are independently distributed with common mean p = E();) and variance
A =Var (\;),i=1, --., p. For known y, A, the best squared error linear Bayes estimator
of A, is

®3) Af=(1-B)X+Buy

with shrinking coefficient B; = (u/n,)/(A + p/n;). Note that (3) is the posterior mean
E\;| X, if and only if A; has the conjugate (gzamma) prior distribution. We see that (3)
shrinks X, toward the common marginal mean u and that the amount of shrinkage B;
decreases as n; increases.

Empirical Bayes theory assumes p and/or A are unknown, and uses information in the
marginal distribution of X; to estimate them, the marginal mean and variance of the
independent X, being u and A + p/n,. In the equal sample size case (n; = n) with p = 4, for
example, we can estimate the common value B of the B, by

p—3 Q/n

P—1A+j/n

withji=Y X,/pand A = (S/(p — 1) — ji/n}*, S =Y (X, — i) Then the empirical Bayes
estimator

(5) A=01-B)X +Bj

mimics (3). Related empirical Bayes estimators for other natural exponential families
appear in Morris (1983a).

The estimator (5), considered as a vector, should outperform the other estimators of
Table 2 under L, for most exchangeable prior distributions u = 0, A = 0. The B values for
Tables 2 and 3 can be determined from u and A for the six uniform distributions as B =
.60, .82, .88, .91, .33, .45 respectively. These B values are the fractional reductions in risk
relative to 8° achieved by the linear Bayes rules (3), being directly comparable to the
values in Table 2. Accounting for unknown p, A, the empirical Bayes estimator for p = 10
would yield about 70 percent of this or 42, 57, 62, 73, 23, 32 percent respectively. Thus, (5)
provides about four times as much improvement over §° as does 8%, the best minimax
estimator of Table 2.

Any improvement on §° must be justified by additional assumptions, e.g. by empirical
Bayes or loss function assumptions. Applied statisticians probably can recognize empirical
Bayes situations with exchangeable prior distributions more readily than they can specify

(4) B =
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appropriate loss functions. Theoretical statisticians also need release from the overly
stringent demands of the frequentist decision theoretic criteria adopted for multiparameter
estimation by Professors Ghosh, Hwang, and Tsui. I hope they will add their impressive
talents to the search for a more congenial framework from which to advance the theory
and application of multiparameter estimation.
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