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OPTIMAL DESIGN AND REFINEMENT OF THE LINEAR MODEL
WITH APPLICATIONS TO REPEATED MEASUREMENTS DESIGNS!

By JoacHiIM KUNERT

Universitdt Dortmund

The information matrices of one design in a finer and a simpler linear
model are compared to each other. The orthogonality condition ensuring that
both matrices are equal is examined in the model for repeated measurements
designs which was considered e.g. by Cheng and Wu (1980). Examples of
unbalanced designs fulfilling the orthogonality condition are shown to be
optimum. Moreover, nearly strongly balanced generalized latin squares are
introduced and their universal optimality is proved, if the numbers of units
and periods are sufficiently large.

1. Introduction. Consider two linear models, the first containing exactly the set of
parameters of the second and some additional nuisance parameters. Then we call the first
model the finer and the second the simpler one. If an optimal design is investigated in the
finer model, it often turns out to be optimal in the simpler model, too, and turns out to
fulfil an orthogonality condition ensuring that the information matrices (for the estimation
of the same effects) of the design are equal in both models. One example is the generalized
Youden design in the so-called regular case of the two-way heterogeneity model which is
a balanced block design in the one-way heterogeneity model and has the same information
matrix in both models (see Kiefer, 1958). This result is due to an ordering property between
the information-matrices in the finer and in the simpler model, which was shown by
Magda (1980). We show an orthogonality condition which ensures equality of the two
information-matrices for general linear models and apply it to the special case of repeated
measurements design.

Our result is that this orthogonality condition for the estimation of direct effects in
models with and without residual effects (and vice versa) is not so closely related to strong
balance or balance as might be expected from the literature. Optimality has so far been
shown exclusively for designs which either are strongly balanced (see Sinha, 1975, Sonne-
mann, 1982, Cheng and Wu, 1980 or Magda, 1980) or balanced (see Hedayat and Afsari-
nejad, 1978 or Cheng and Wu, 1980).

We give some examples of optimal and orthogonal designs which are neither balanced
nor strongly balanced. To achieve orthogonality, we sometimes use a preperiod, i.e. residual
effects even in the first period.

Finally we consider situations, where no designs exist, which on the one hand are
optimal in the model without residual effects and on the other can fulfil their orthogonality
conditions. We examine the situation where the numbers of units and of periods are
divisible by the number of treatments and there is no preperiod. We prove the optimality
of “nearly strongly balanced” designs over a subset of all possible designs; and in general
if the numbers of units and periods are sufficiently large. This sufficient size is of some
practical importance if the number of treatments does not exceed eight.

2. Strategies to find optimal designs. Consider a set of designs A. Each d € A
induces a linear model
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2.1) Y=Amm+ B +e

where Aq € R™* and By € R™*? depend on d, e is a n-dimensional random vector having
uncorrelated components with common variance and expectation zero. n and £ are unknown
vectors of parameters.

In what follows A~ is a generalized inverse of the n X m-matrix A, im (A) is the column-
spann of A, pr(A) = A(A’ A)~A’ is the projector onto im(A), and pr*(A) = I, — pr(A) is
the projector onto the space which is orthogonal to im (A), where I, is the identity matrix
of order n. The matrix

ba = Aupr-(Ba)Aq

is called the information matrix of d for the estimation of . Let 1, be the n-dimensional
vector of ones.

Assume that Ag1, € im(Bg) for every d € A. Then pr*(B;)Aql, = 0, the row- and
column-sums of % are equal to zero and 1,7 is not estimable. The set of all linear contrasts
of 7 can be estimated if the rank of ¥, is equal to p — 1 (see Kiefer, 1975). As optimality
criterion, we use the concept of universal optimality. This criterion includes the criteria of
A- and D-optimality (see Kiefer, 1975). We call a n X n matrix C completely symmetric, if
all diagonal elements of C are the same and all off-diagonal elements are equal. Kiefer
(1975) showed that a design d* € A with the properties that %;. is completely symmetric
and has maximal trace over A is universally optimal for the estimation of n over A. Further,
all designs which are also D- or A-optimal for the estimation of » over A must have an
information matrix equal to ;.. All proofs on bptimality in this paper use this tool.

Now assume that for every d € A, B; € R™*7 is partitioned into By = [B1a| Baa], where
Bi; € R™, r < q. Then Aj; pr* (B14)A, is the information matrix of d for the estimation
of 7 in the simpler model

(22) Y=A,; n+ Bld(j) + e.
We call model (2.1) finer than model (2.2).

ProposITION 2.3. (cf. Magda, 1980). Let %, be the information matrix of d € A for
the estimation of m in model (2.1). Then %; = Aupr*(Bis)Aq with equality holding if and
only if

(2.4) ALprt (Big)Bzg = 0.

ProorF. It can easily be checked that
pr([Bia| B2q]) = pr(Bia) + pr(pr* (Bis)Bza).

Proposition 2.3 is an immediate consequence of this equation. [

This proposition implies two strategies to find optimal designs which we shall use in the
following sections. Let A* denote the set of all d € A for which A jpr*(B14)Aq is completely
symmetric and has maximal trace over A. (We conclude that A* is the set of all designs
which are universally optimal in the simpler model (2.2).)

STRATEGY 1. Assume there is a d* € A* such that A j+pr*(Big)Baa = 0. It follows for
the finer model (2.1) that (i) d* is universally optimal for the estimation of n over A, and
(ii) the set of all D- or A-optimal designs for the estimation of 7 is equal to the subset of
A* consisting of all designs d € A* which fulfil the orthogonality condition (2.4).

We point out that the orthogonality condition (2.4) depends on d and in general is not
the same for all d € A*. If no design d € A* fulfils its orthogonality condition, we can
generalize Strategy 1 in the following way.

STRATEGY 2. Find a d* € A* with the properties (i) %;- is completely symmetric and
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has maximal trace over A*, (ii) tr(%s) = tr(Azpr*(Bia)Aqs) for a;]l d in a subset A of A.
Then d* is universally optimal for the estimation of n over A* U A.

3. Description of the model. In a setting of repeated measurements design each of
a set of n experimental units is, in each of p periods, exposed to one of ¢ treatments. The
treatment which is applied to unit j at period i is determined by the repeated measurements
design d and is called d(i, j). At each period we measure the effect of the treatments
applied to each unit by a random variable y. It is assumed that each measurement is
influenced by an additive first order residual effect of the treatment to which the unit
under consideration has been exposed in the period before. (For details see Hedayat and
Afsarinejad, 1975, 1978.) We distinguish between designs with no residual effects on the
first period (cf. Hedayat and Afsarinejad, 1978 or Cheng and Wu, 1980) and designs with
residual effects on the first period, i.e. with a preperiod (cf. Sinha, 1975, Sonnemann, 1982,
Magda, 1980). For designs with preperiod we assume that either the preperiod can be
chosen freely, i.e. that the experimenter can apply a treatment to each unit before the
experiment begins, or that the preperiod is consisting only of ones, as might be the case if
one of the treatments (say number one) is a control and none of the units has been treated
before the beginning of the experiment.

Formally speaking a repeated measurements design is a function d from {0, 1, ---, p}
X{1,.--,n}to{0,1, ..., t}. The set of all such d with

d0,j)=0 and d(,j)#0, 1l=i=p, 1l=<j=n,

is denoted by £.,, and called the set of all repeated measurements designs without
preperiod. The set of all such d with

d(i,j) #0, 0=i=p, 1=j=n,

is called &, ., the set of all repeated measurements designs with preperiod.
Let yaqi; be the response obtained from the jth unit in the ith period under d € &;,, U
% »,p. Then the observations are assumed uncorrelated with common variance and

E(ydij) =}L+ai+ﬂj+Td(iJ)+pd(i_1J), 1= iSp, 1_<_an, with p0=0.

We refer to the unknown parameters as follows: p is the overall effect, «; is the ith period
effect, B; is the jth experimental unit effect, 74, ;) is the direct effect of treatment d (i, j),
and pag-1,j) is the residual effect of treatment d (i — 1, j) (cf. Hedayat and Afsarinejad, 1978
or Cheng and Wu, 1980).

In vector notation we have

(3.1) E(Yy) = Lopp + Pa+ UB + Tar + Fap

for the np observations Y. It can easily be seen that 1,, = Tq1, = P1, = Ul, for every d
€ Qnp U &np. If ® indicates the Kronecker product of matrices, then Fyl, = 1, ®
[0]1p-1] = P[0]|1,-1]’ for every design d € ., without preperiod, while Fy1; = 1,, for
every design d € Q,,,,,p with preperiod.

Thus the information-matrix for the estimation of direct effects

3.2) ba = Tapr*([Lnp | P| U| Fal)Ta = Tipr*([P|U|Fa])Ta
and the information-matrix for the estimation of residual effects
(3.3) ba = Fapr*([Lp| P| U| Tal)Fa = Fapr*([P| U| Ta])Fa

each have row and column sums zero.

We adopt the following notation from Cheng and Wu (1980). For a design d € ;,n,,U
2, n» the symbols iz, &, Raiu, aiu, Maij, Tai, Fai are, respectively, the number of appearances
of treatment i in period %, in period 2 — 1, on unit « in the periods 1 to p, on unit « in the
period 0 to p — 1, preceded by treatment j, in the periods 1 to p, in the periods 0 to p — 1,
where l=u=n,1=<k=p,1=<i,j=<t Observe that £, 4ir, Nai, R and ma; are the
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elements of TP, FyP, ToU, FoU and T,F,, respectively, and ry, (resp. Fu) are the
diagonal elements of T Ty (resp. FyFy).
Now consider ¢, n, p such that npt~ is integral, i.e. t| np (say). Then a design d € Qnp

U & is called

(a) balanced block design (BBD) on the units, if (i) Tapr*(U) T, is completely symmetric,
and (ii) 7. € {[pt™'], [pt™'1 + 1}, 1 =i <¢, 1 < u < n, where [x] is the integral part
of the real number x,

(b) uniform on the units, if d is a BBD on the units and ¢| p,

(c) BBD on the periods, if (i) Tapr*(P)T, is completely symmetric, and (ii) 4 € {[nt™'],
[t 1+ 1),1=ist1<k=p,

(d) uniform on the periods, if d is a BBD on the periods and ¢| n,

(e) generalized Youden design (GYD), if d is a BBD on the units and a BBD on the
periods,

(f) generalized latin square (GLS), if d is a GYD and ¢|p and ¢| n.

It should be noted that if ¢ = 2 our definition of a BBD is more general than the usual

definition. )

4. Designs fulfilling the orthogonality condition. All proofs in this section will
be done with Strategy 1. We concentrate on searching optimal designs for the estimation
of direct effects. The problem of designs for the estimation of residual effects is only shortly
treated. The examples of optimal designs are restricted to such which are not balanced or
strongly balanced.

THEOREM 4.1. Let t|n and t|p. Assume there is a GLS d* € Q. U &y, such that
(4.2) md*ij = t_lrd*j, 1= ZS t, 1 S]S t.
Then d* is universally optimal for the estimation of direct effects over Qn,, U §...,. Every
design d € Q. p U Q4np which is also D- or A-optimal for the estimation of direct effects

over Qnp U ﬁt,n,p must also be a GLS and fulfil the orthogonality condition analogous to
(4.2).

ProOF. (i) From Proposition 2.3 and Equation (3.2) 4; = Tupr*(1,,)Tq with equality
holding iff
(a) Tapr-(1,,)[P|U|Fa] = 0

(i) Tapr*(1,,)Tq is completely symmetric and has maximal trace, if and only if d is
equally replicated, i.e. if all r4 are equal. This is true for the GLS d*.
(iii) The orthogonality condition (a) can be split up into

(b) Tapr-(L,)[P|U]=0
and
(c) Taprt(L,,)Fa= 0.

For an equally replicated design (b) is fulfilled if the design is a GLS and (c) is equivalent
to (4.2).0

If all 7 are equal, then Condition (4.2) is just strong balance, i.e. all ma;; are equal. This
holds for generalized latin squares without preperiod. But for designs with preperiod,
Condition (4.2) is more general.

ExaMPLE 4.3. Assume that d* € ., is a strongly balanced GLS without preperiod.
Now construct a GLS d* € &, np DY taking a preperiod with all entries equal to ones and
the other periods like d*. Then d* fulfils Condition (4.2).
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THEOREM 4.4. Lett t nandt|p. Assume thereisa GYD d* € Q;,, U 8. ., such that
(4.5) may=n""Yb_, /d‘mZi'jk, l=sistl=sj=st

Then d* is universally optimal for the estimation of direct effects over Qnp U &, ». Every
design d € ﬂén,p U 8., which is also D- or A-optimal for the estimation of direct effects
over Qunp U Qpnp must also be a GYD and fulfil the orthogonality condition analogous
to (4.5).

PROOF. (i) ¥; =< Tapr*(P)T, with equality holding iff
(a) Tapr*(P)[U|Fa]1=0

(ii) Tapr-(P)Ty, is completely symmetric and has maximal trace if and only if d is a
BBD on the periods (see Kiefer, 1958).

(iii) Condition (a) is split up into

(b) Tupr*(P)U=0
and
(c) wpr-(P)Fy = 0.

For a BBD on the periods (b) is fulfilled if and only if it is uniform on the units, i.e. if it is
a GYD. (c) then is equivalent to (4.5). 0

ExaMPLE 4.6. Consider the GYD without preperiod d € €., where t =3, n =4, p
=15 and

123 231 231 123 123
s-|132 211 332 221 133 ”
213 312 213 113 322 |("™
321 123 123 3832 211
periods
The matrix with entries mg;; is
6 6 6
TWF;=|7 6 6
6 7 6

and is equal to the matrix with entries
471 yR Qik/:ljk =47 Y8, luntuje-1.
ExampLE 4.7. Lett|n + 1 or ¢|n — 1 and assume that p = ntA, A € N. Define
n+1)tt—-1, if t|ln+1,

r= {(n— D41, if tln—1,
e+ if tln+1,
T -1 if tln—1.
If there is a GYD d € &,,,,, with preperiod, such that

A ln =11 if i=Fk+ xt(wWherex=0,1,--.,nA — 1),
! “* " 1q, else,

(ii) the preperiod of d is equal to the last period,

(iii) there are integers a and b, a — b = A, such that

_Ja, if 1=i=t-1 and j—i=1, or i=¢ and j=1,
Mayj = b, else,
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then d fulfils the orthogonality condition (4.5).
As an example consider d € §5.412, where

3 123 123 123 123
f_ |2 123 321 113 322 .
=13 | 231 132 221 133 |f"s
1 312 213 332 211
preperiod pel';ods

THEOREM 4.8. Let t|n and t | p. Assume there exists a GYD d* € Q. U &, such
that

4.9) Maey =p ' Vet Naivlaju, 1=i=<t 1=j=t

Then d* is universally optimal for the estimation of direct effects over Qnp U Q4 p . Every
design d € Qnp U &,,., which is also D- or A-optimal for the estimation of direct effects
over Qnp U &y, must also be a GYD and fulfil the orthogonality condition analogous
to (4.9).

ProOOF. The proof uses Tipr*(U) Ty as an upper bound of %, and is analogous to the
proof of Theorem 4.4. 0

ExamPLE 4.10. Consider the GYD d € Q3,155 where
211 313 123 223
121 231 132 323
d=1{123 231 232 311 |;periods
212 113 313 232
332 122 311 132
un‘its
The matrix with entries mg; is

655

TeFa=1565

556

and is equal to the matrix with entries 57 Y%_; naiufiaj-

ExaMPLE 4.11. Let t|n and ¢|p — 1. Take the strongly balanced GYD without
preperiod d* € Q5 considered by Cheng and Wu (1980) in their Theorem 3.3. Construct
a design d € §,,,, with preperiod by adding a preperiod consisting only of ones.

If one is interested in the estimation of residual effects, then designs with preperiod are
in general preferable, as they have more observations of the residual effects. For designs
with preperiods, the theorems analogous to Theorems 4.2, 4.5 and 4.9 are obvious. It thus
can be shown that the designs in Example 4.7 are also optimal for the estimation of
residual effects.

For designs without preperiods, a difficulty arises from the fact that Fy;1, in general is
neither in im(7y) nor in im(U). So we have that e.g. Fipr*(U)F, has row- and column-
sums, which are not zero, and thus cannot be equal to %;. We circumvent this problem in
the following way:

@a= Fipr*([P|U|Ts| Fal:))Fs < Fipr*([U| Fs1,)Fa
with equality holding iff
(4.12) Fapr*([U|Fs1.)[P| T4] = 0.
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ExaMPLE 4.13. The design d € Q3,156, where

231 231 231 231 123 123
231 231 231 231 231 312

J— 312 128312 123 312 231 od
312 312 312 312 312 2371 |(Perods
123 312 123 312 231 312
231 231 231 231 231 231

fulfils the condition (4.12) and is universally optimal for the estimation of residual effects
over {23156, the set of all designs without preperiod. (Note the existence of a strongly
balanced GLS without preperiod in 23156, which is as good as d for the estimation of
residual effects.) d is not uniform on the units and the matrix with entries my;; is

11 10 9
TaFa=| 9 11 10{. *
10 9 11

5. Designs which nearly fulfil the orthogonality conditions. It should be real-
ized by the reader that in a great many combinations of ¢, n, p the orthogonality conditions
from Section 4 cannot be verified by integral m; for any GYD or GLS d € @, U &;.r.».
The value of the knowledge of the orthogonality conditions in such situations is exemplified
in this section. '

ExaMpLE 5.1. For simplicity of computation, we restrict our attention to designs
without preperiod. Assume ¢ = 3, n = 3, p = 8. Any GYD d € Q335 can be gained from a
GLS by skipping one period. This omitted period determines three types of GYD d in
3,3, as follows.

Type 1: The last period of d is equal to the omitted period.

Type 2: The last period of d applies exactly one treatment to the same unit as the
omitted period does.

Type 3: The last period of d applies no treatment to the same unit as the omitted period.

We first consider the model without period effect which is simpler than (3.1). Without
loss of generality, we get the following orthogonality conditions for the three types of
designs. The matrix with entries mg; should be equal to

20 18 18 19 19 18 19 18 19
87118 20 18], 871119 19 18], 87119 19 18
18 18 20 18 18 20 18 19 19

for designs of type 1, 2, 3 respectively.
From the restriction Y5-1 ma; = rs; — £un = 7 for every GYD d € £3,35 we conclude that
tr{Tapr(pr*(U)F)T4} is minimized by taking the matrix with entries maq; equal to

3 2 2
TiFa=|2 3 2
2 2 3

for all three types of designs. The minimum of the three minima is attained by Type 1. We
conclude that the design d, where

1 23332 21
d=12 31113 3 2|,
31222113

is universally optimal for the estimation of direct effects over the set of all GYD without
preperiod in £233s. (This is done by realizing that Typr*([U| F,])P = 0.)
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EXAMPLE 5.2. Assume ¢ = 3, n = 12, p = 2. Compare the design

d= 123 231 123 231
{231 123 231 123/’

~ which is balanced (i.e. all mq; = 0, all other my; are equal) and is a GYD, with the design

f= 123 123 123 231
1123 231 123 123’

which is neither balanced (or strongly balanced) nor a GYD. In the model with neither
period nor residual effects, the design d is better (Typr*(U)T, = T} pr*(U)Ty). None of
the designs fulfils the orthogonality conditions on the mg; (but in the model without period
effects both have respectively the same information matrices as in the one with period

effects).
The orthogonality conditions on the matrix with entries ma; (respectively my;) are

6 1 1 . 211
T}F;should be equalto 27'|1 6 1| andis |1 2 1],
1 16 11 2
211 0 2 2
TaF4 should be equal to 1 2 1| andis |2 0 2].
11 2 2 20

We find that f comes so much nearer to its orthogonality condition that %= 15/8 pr*(1;)
=3/2 pl‘J“(13) = ba.

In the following we consider the situation that ¢|n and ¢|p and that we have only
designs without preperiod to compare. We have seen in Section 4 that for generalized latin
squares without preperiod, the orthogonality condition (4.2) is equivalent to strong balance.
Strongly balanced generalized latin squares can only exist if *| 7 and p = 2¢ (see Cheng
and Wu, 1980). If p = ¢, the nearest to strong balance one can get (for a design being
uniform on the units) is balance. In this situation balanced designs are universally optimal
for the estimation of direct effects over the class of designs which are uniform on the units
and the last period.

We treat the situation that p = 2, but ¢* | n. In order to come near to strong balance we
make the following definition.

A design d € Q.,,,, is nearly strongly balanced, if
(1) TaFqF4Tqis completely symmetric, and
(i) forall 1 <i,j=<¢t:may € {[n(p — Vt7%], [n(p — Dt 2] + 1}.

T3Fg is the incidence matrix of a BBD with equal numbers of treatments and blocks.
Theorem 5.2.1 of Raghavarao (1971) implies that F; Ty T3 Fy is also completely symmetric.

THEOREM 5.3. Assumen = at®+ bt,1<b=t—1,p= At A nearly strongly balanced
GLS d* € Q. without preperiod is universally optimal for the estimation of direct
effects over the class of all designs f € Qu.» without preperiod which are uniform on the
units and the last period.

ProOF. (i) G = Typr*([U|F4:1)Ta, as Ty-pr*([U| Fa- )P = 0. Using Strategy 1, it
suffices to show that T%-pr-([U| F4]) Ta- is completely symmetric and has maximal trace.
(ii) For every competing design f

Tipr*(U)Ty = npt 'pr(1;),  Tpr(U)F;=n(p — 1)t *L1;,
Fipr*(U)F=n(p—1—-p ")t L —n(p—-2t7*L1;<n(p—-1-p ")t 'L.
Thus



REFINEMENT OF THE LINEAR MODEL 255

Tipr([U | F) Ty < npt 'pri(l) —tn(p — 1 — p™" ) N(T7F; — n(p — Dt *L1})
- (F{Ty = n(p — 1)t7%1,17).
Equality holds for designs g which are also uniform on the first period, as then T;F; —
n(p — 1)¢7%1,1/ has row-sums zero. For such g, T'spr-([U | F,]) T, is completely symmetric
iff ToF F,Ty is.
It remains to minimize
[ {T:F;— n(p — Dt 2113 {F: T — n(p — 1)t 21,1;}]
=YYt (mp — npt™ + a + bt™)?,
subject to the constraints
Sii(my—npt2+a+bt™)=0
for every j, as
1:Tjpr*(U)Fs= 0.

The minimum is attained if exactly b of the my; are (for every j) equal to npt > — a — 1
and (¢ — b) are equal to npt~2 — a. The minimum is Y%= {(bt7*)%(t — b) + (1 — bt™")%b}
= b(¢t — b) and is attained by d*. [

THEOREM 5.4. Assume thatn = at> + bt,1 <= b=t — 1, p = At. A nearly strongly
balanced GLS d* € Q. without preperiod is universally optimal for the estimation of
residual effects over the set of all designs without preperiod which are uniform on the
units and the first and last periods.

ProoF. (i) Fupr*((U|Ty|Fq+1.]))P = 0 and it thus remains to show that
Fo.pr*([U| Ta+ | Fa+1.]) Fa- is completely symmetric and has maximal trace.
(ii) For every competing design f

Fipr*([U| Tf])Ff1: = Fypr*(U)F;1, = p~'t 'n(p — 1)1..
It follows that
Fipr(LU| Ty| Fy1,))F; = Fipr*(U)F; — Fpr(pr*(U)T})F; — n(p — Dp~' ¢ *1.1;.

Complete symmetry holds iff F;T;TFyis completely symmetric. This is true for d*.
For every competing design

tr(Frpr* ([U| T; | FLDFy) = n(p — 1) = p" Tie1 i1 fifiu
—tn7p 7 Yot Yier {my —n(p — DY —n(p— Dp~'t ™
Under the constraints
Siima=Fy=¢t"n(p-1), Yic1 Y1 Aaw=n(p—1)
the maximal trace is attained by d*.00
We use Strategy 2 to extend the result of Theorem 5.3 to optimality for the estimation

of direct effects over all designs without preperiod. We see that with our rough methods
this can only be shown for numbers of periods and units which are large.

PROPOSITION 5.5. Consider the function f(x) = Y71 x? with the constraints (i) x:(1
=<1 =<m) is an integer, (ii) Y71 x; = mA, (iii) at least z of the components x; of x are not

equal to A. Then ¢ = mA® + z is a lower bound of f(x).

ProoF. Define d; = A — x;(1 <i<m). Then }7-: d; = 0 and
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21-1 x, 2:11 A - di)2 mA\? + Z =1 d2 =m\ + 2. ]

PROPOSITION 5.6. Let t|p and assume that d € Qin, is not uniform on the units.
Then

tr(Ga) < tr{Tupr*(U)Ts} < mp(t — 1)¢™" —2p7".

PrOOF. tr{T4pr*(U)Ta} =np—p ' Yie1 Yi=1 nZ.. dis not uniform on the units. As
N1 naiw = p for every u, at least two of the nq. are not equal to pt~'. Proposition 5.5
implies the conjecture. 0

PROPOSITION 5.7. Let t|p and t|n. Assume that d € Qu», is uniform on the units but
not on the periods. Then

tr(%s) < tr(Tapr*(P)Ta) < np(t — 1)t — 4n7".

ProoF. Uniformity on the units but not on the periods implies that at least four of the
£ are not equal to nt ™. 0

THEOREM 5.8. Assumethatn=at’+bt(1<b=<t—1)andp=A\t, suchthata=b(t
— b— 1)t and A = max{2, 47'b(t — b) + 2t™'}. A nearly strongly balanced GLS without
preperiod d* € &, is universally optimal for the estimation of direct effects over the set
of all designs without preperiod.

ProoF. From Theorem 5.3 it follows that
tr(@e) =npt -1t —n p—-1—-p ") 'th(t - b)

and that d* is optimal over the set of all GLS. The conditions on 7 and p and Propositions
5.6 and 5.7 ensure that tr(%.+) = tr(%.) for every design d € ,,,, which is no generalized
latin square. 0

Ift <8 and b = ¢ — 1, the conditions on n and p imply that n € {(£ — 1)¢, 2+ (t—1)¢
..} and p € {2¢, 3t, - - -}. Then the smallest nearly strongly balanced GLS for which we
have proved optimality over 2, needs the same number of periods and ¢ units less than
the smallest strongly balanced GLS. If £ = 9 the minimum number of periods is already p
= 3t. For larger ¢ it is still increasing.

EXAMPLE 5.9. Ift =3 and n = p = 6, then b = 2 and the nearly strongly balanced GLS
(123 1237
231 123
312 231 3 3 4
d* = periods, where T4:Fg:=|4 3 3|,
312 312 3 4 3
231 312
(123 231 |
e, e’
units

is universally optimal for the estimation of direct effects over 2s6,. The first six units of d
from example 4.13 form a design d € Q36,6 which is universally better for the estimation of
residual effects than d*
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