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CONVERGENCE RATES OF ESTIMATORS OF A FINITE
PARAMETER: HOW SMALL CAN ERROR PROBABILITIES BE?!

By ANDREW L. RUKHIN

Purdue University

In this paper we investigate the rates of convergence to zero of error
probabilities in the estimation problem of a finite-valued parameter. It is
shown that if a consistent estimator attains Bahadur’s bound for the proba-
bility of incorrect decision at some parametric point then the error probability
does not tend to zero exponentially fast for some other value of the parameter.
We evaluate the minimal possible rate of convergence of this probability at a
fixed parametric point for all asymptotically minimax procedures, and estab-
lish a necessary and sufficient condition for any of these procedures to have
a constant risk. A simple example is constructed to demonstrate the asymp-
totical inadmissibility of the usual maximum likelihood estimator.

1. Introduction. Let Py, § € ® = (1, ..., m} be a finite collection of (different)
probability distributions with positive densities f;, and let x = (xy, ---, x,) be a random
sample from a member of this family. If § = {§" = 6"(x),n=1,2, -.-} isa sequence of
estimators of the finite-valued parameter § then the error probability, Py(8” # ), is an
important characteristic of §. The rate at which this probability tends to zero for a
consistent estimator 8 is of interest. Typically, this rate is exponential, so that the following
quantities (asymptotic efficiencies), G(6, 8) = —lim inf n™"log Py(8" # ), are positive and
finite.

In this paper we are concerned with how small the error probabilities Py(8"  8) can be,
i.e., how large the quantities G(6, §) can be, for a consistent estimator &.

It follows from results of Bahadur (1960, 1967, 1971) and Bahadur, Gupta and Zabell
(1980) that for any consistent §

(1.1) G(0, 6) = minn:n"0K(n’ 0)9

where K(n, §) = E,{ f,(x)/fs(x)} is the Kullback-Leibler information number. However
equality in (1.1) cannot be attained for all 6, since if 8, is asymptotically maximin, then

mingG (6, 8,.) < min,. .« K(n, 9).
Indeed it is known that if for all §
mingG (6, é,.) = miny,G (4, §),
then
(1.2) . mingG(0, 8,) = —max,infoc,<1log Es{ f,(x)/fs(x)}*

(see Krafft and Puri, 1974; and Renyi, 1969).
By convexity

infocs<ilog Eo{ f3(x)/fo(x)}* > —E,log{ f,(x)/fs(x)} = =K, 0).

This inequality also follows from the comparison of most powerful test and minimax test
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of hypothesis f; against alternative f, (see Chernoff, 1972, page 49).
In this paper it is shown that if (1.1) reduces to an equality for some 6, then

min,. <G (n, §) = 0.

This result is proved in Section 2 by means of a useful lemma generalizing (1.2).

For all n there exists unique maximin estimator 6", and it has a constant risk Py(8" #
9) (see Wald, 1950, Theorems 5.3 and 5.4). However there is a wealth of asymptotically
maximin estimators, and it is of interest to find among them a procedure which minimizes
the risk, i.e., maximizes G(4, 8), at some 6.

In Section 3 we study efficiencies G(d, 8) for an asymptotically maximin estimator 8. A
sharp upper bound for these quantities is established, and a method of finding an estimator,
which attains this bound, is given. The latter procedure belongs to the class of weighted
maximum likelihood estimators with prior probabilities depending on the sample size. We
also give a necessary and sufficient condition for the constancy of risk of all maximin rules.
A simple example, which demonstrates the asymptotical inadmissibility of the usual
maximum likelihood estimator for the gain G(, ), is constructed.

2. Lower bounds for error probabilities. We start with the following lemma.

LEMMA 1. Letcy, -+, cn be real constants. Then for any estimator 8
(2.1)  ming{G(H, 8) — co} = —max,infs=ofcs + s(c, — c5) + log Ee{ f,(x)/fo(x)}*].
For any subset N of ©® .
(2.2) mingen{G(0, 8) — cp} = —MaXnxgyeeninfsolco + s(c, — cs) + log Eo{ fy(x)/fo(x)}°].

The first part of the lemma follows from (1.2) by replacing probability distributions Py in
Krafft and Puri (1974) by positive measures e®P,. By assigning prior probabilities which
give zero mass to elements of ® outside a certain subset N we obtain (2.2).

There exist procedures for which (2.1) and (2.2) hold with equality. These asymptotically
maximin estimators (for the shifted efficiencies G(6, 8) — cy) can be taken to be weighted
maximum likelihood estimators 3,,, which, ignoring ties, maximize exp(rncy) [[7 fo(x)).

It is easy to see that

(P8 # 0)}/" ~ max, e[ Po{e™ 1 fo(x) > €™ T[T fo(x)} 1/
= max,,:,,#ginfs»es(c"_”")Eg{ fo(%) /fo(x)}°.
Therefore
(2.3) G (8, 8.) = —max, . esinfuo[s(c, — co) + log Eof{ £,(x)/fo(x)}°]

and equalities hold in (2.1) or (2.2).
Also, if ¢, — ¢g + Ejlog{ f,(x)/fs(x)} > 0, which means that the derivative of the convex
function s(c, — ¢y) + log Ey { f,(x)/fs(x)}° is nonnegative at s = 1, then

infeo[co + s(c, — cg) + log Eo{ f,(x)/fo(x)}°]

= infocscil e, + s(cs — ¢,) + log Eqo{ fo(x)/fo(x)}°].
It is easy to see that
(2.4) info[co + s(c, — co) + 1og Ey{ f,(x)/fo(x)}*] < min(c, ¢,),

and that the estimator 8 . is consistent if and only if for all 6, n,0#n, cy—co+ K, 0) >
0.

THEOREM 1. Let & be an estimator such that G(6, §) = min,.,«K(n, 8) for some .
Then min,.,«G(n, §) = 0.
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Proor. Let
G(6, 8) = min,..xK(n, §) = K(§, 0),
and in (2.1) put ¢; = K(§ 8), ¢, = 0 for n # 0. Then the left side of (2.1) is equal to
min{0, min,.,«G(n, §)} = min,.,«G(n, 3).
But because of (2.4)

max,«infeo[c, + s(c, — ¢,) + log E,{ f,(x)/f,(x)}°] = max,«,min(c,, ¢;) =0

and
infeso[co + s(cg — cp) + log Eo{ fe(x)/fo(x)}°]
= K(§ 0) + infocsa[—sK(§, 0) + log Eo{ f(x)/fy (x)}°]
=K 6) — K 0) =0.
Thus

maX,x,infesolc, + s(c, — ¢,) + log E { f,(x)/fo(x)}’] =0

and because of (2.1) min,.,x¢G(n, 8§) = 0.

REMARK. A slight modification of the proof shows that if for some positive &
G(e, 8) = minn:'rﬁéﬂK(ny 0) +e= K(g’ 0) + &,

then
min,.«G(n, 8) < e?/Vardlog{ f(x)/fo(x)}],
where the variance of this inequality is assumed to be finite. Thus e-closeness to the bound

(1.1) implies that the function G(, 8) is of order &> for some 7.

3. Maximin procedures and weighted maximum likelihood estimators. In this
section we are interested in the behavior of a maximin procedure 8., i.e. a procedure such
that .

3.1) mingG (0, 6m) = —maxginfeolog Eqo{ f,(x)/fo(x)}* = &.

More exactly how large can be the asymptotic efficiency G(6, 8,.,) under condition (3.1),
and how does one evaluate sup, G (6, 8.) for a particular value of § and find 8, for which
this supremum is attained?

To answer these questions we define real c(n, 8) for § # 7 as the real solution of the
following equation

infeo[sc(n, 0) + log E.{ fo(x)/f,(x)}°] = —g.
We also define

50 = min,,;,,,‘ac(n, 0)
THEOREM 2. For any 6
(32) supamG(O, 8,,,) =g + Cy.

ProoF. First we show that for any maximin procedure 8,,, G(8, 6.) < g + Cs. For any
n, n #0 ‘
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infocsi[—sCo + log Eo{ f4(x)/fo(x)}°]
= infocsa[—sc(n, 0) + log Eo{ f1(x)/fo(x)}°] = —cp — &
and
infocs<a[—sC5 + log Eo{ f4(x) /fo(x)}°]
= —Cp + infoce<i[sCo + log E, { fo(x)/f,(x)}°]
= —¢p + infocsa[sc(n, 0) + log E,{ fo(x)/,(x)}°] = —C — &.
Combining these inequalities we see that
—c(n, 0) — g = infocsci[—5Cs + log Eq { /,(x)/fo(x)}°] = —Cs — &.
Therefore if £ is defined by the formula c¢(¢, §) = ¢y, then

infocs<1[—sC + log Eo{ fe(x)/fo(x)}°]
3.3)
= maxy: sinfocs<i[—5C + log Eo{ f,(x)/fo(x)}°] = —Cs — &.

Because of Lemma 1 and (3.3)
min{G(6, 8») — T, G(& 8n)} = —infeo[Cs — sCs + log Ey{ fi(x)/fs (x)}°]
=—CGt+tet+tg=8

But because of (3.1), G(¢, 6») = &, so that G(0, 6,.) — v < &.

Now we exhibit a maximin procedure & such that for a particular value of 4, G(6, §) =
&g + . Namely, define § = §, to be the weighted maximum likelihood estimator with ¢, =
¢ and ¢, = 0 for n # 0.

Because of (2.3) and (3.3)

G (0, 8) = —max,. einfso[—sC + log Es {fi(x)/fh(x)}° ] =g+ &
and for £ # 0
G (¢, 8) = —max,.meinfe-o[sc, + log E¢{ f,(x)/fe(x)}°]
= —max,. einfeofsc(, 1) + log E:{ f,(x)/f:(x)}*] = &.

Thus § is a maximin procedure, for which the supremum in (3.2) is attained. Theorem 2 is
proven.

COROLLARY. Let

- 8= {6: infyolog Eg{f,(x)/fo(x)}° = —g for some n}.

Every maximin procedure 8,, has a constant asymptotic efficiency G (0, 6,.) = g, if and
only if © = ©.

This result is clear since ¢, = 0 if and only if § € ©,. Thus if @) # ® any maximin
procedure with constant risk is inadmissible.

Theorem 2 also provides a method which in some situations (namely when @, #* ©)
allows one to improve upon the traditional maximum likelihood estimator. To illustrate
this method let us consider an example in which f; is a normal density with mean a, and
variance 1.

Easy calculation shows that

— infsso[sc + log Es {£,(x)/fo(x)}°] = {(a — @9)* — 2¢}*(a, — as) /8
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for ¢ < (a, — as)?/2. Therefore
& = min.o(a, — a5)?/8, co, = {(a, — as)* — 2| @, — ao| (28)*}/2.
Using Theorem 2, for any maximin procedure §
(3.4) G(0, 8) < g + minyue(ay, — a)*/2 — (28)"*ming:,e0| @y — as],
and for the maximum likelihood estimator &
G(6, 8) = min :omo(ay — a)?/8,

which of course does not exceed (3.4). Moreover G (6, §) is equal to the right side of (3.4)
if and only 1fm1n,, 1,,‘0(a,, — ay)%/8 = g, i.e. when @ = 0. If 6 # O, then for any 6 &€ O,
there ex1sts a maximin estimator & such that G(8, §) > G (4, 8)

In fact & can be inadmissible w1th respect to the gain G(0 ). Let m =3, a1 < az < as,
and, say, a1 + as < 2a.. Then8—11fx<(a1+a2)/2 8—31fx>(a2+a3)/2 §=2
otherwise. The weighted maximum likelihood estimator § has the form § = 1 if X < (3a:
— a3)/2, 8 = 3 if X > (az + a3)/2, 8 = 2 otherwise. Here ¥ = },x; /n. Simple calculation
shows that

G(1,8) = (Baz — 2a1 — a5)?/8 > (a2 — a1)?/8 = G(1,8)
and for 0 # 1
G(b,8) = G, 5) = (& — @)*/8,

which implies inadmissibility of the maximum likelihood estimator.
Since the maximum likelihood estimator is the Bayes estimator with respect to the
uniform prior distribution over ©, it is admissible for any finite sample size. Indeed

Py(8" % 1) = ®(—bn'2/2) > P,{8" % 1} = ®((a/2 — b)n'’?),
Py(8" # 2) = ®(—bn"?/2) + ®(—an'?) < P{8" # 2} 20 (—an'?/2),
Py(8" # 3) = ®(—an'?/2) = Py{6" # 3},

where a =as — as, b = a; — a and @ is the standard normal distribution function. Thus
§ does not improve upon 8 for any n. However

lim log P(8" # 2)/log Po(8" # 2) = 1,
while
lim log P1(8" # 1)/log Py(8" % 1) = 2 — a/b)* > 1

Therefore for large values of n, 8 is preferable to 5.
In Table 1 the efficiencies e, = —n"'log Ps(6" # 0) and d,, = —n"tlog Pg(&" # 6) of

TABLE 1
Efficiencies e, and d, of estimators 8 and § for different sample sizes
=1 6=2 60=3
n
€n dn €n dn €n = Qp
2 2.039 1.271 0.368 0.572 0.714
4 1.652 0.946- 0.287 0.427 0.460
6 1.506 0.823 0.252 0.357 0.367
10 1.377 0.715 0.217 0.285 0.287
50 1.178 0.558 0.156 0.170 0.170
100 1.155 0.532 0.144 0.150 0.150
1000 1.129 0.504 0.128 0.128 0.128

o 1.125 0.500 0.125 0.1256 0.125
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procedures & and § are evaluated for differer}t sample sizes when a@ = b/2 = 1. In this case
the estimator § is considerably better than & at § = 1 with their efficiencies almost equal

at § = 2 even for relatively small sample sizes.
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