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ORDER RESTRICTED STATISTICAL TESTS ON MULTINOMIAL
AND POISSON PARAMETERS: THE STARSHAPED RESTRICTION!

By RicHARD L. DYKSTRAZ AND TIM ROBERTSON

University of Missouri, Columbia and University of Iowa

Likelihood ratio statistics for (i) testing the homogeneity of a collection
of multinomial parameters against the alternative which accounts for the
restriction that those parameters are starshaped (cf. Shaked, Ann. Statist.,
1979), and for (ii) testing the null hypothesis that this parameter vector is
starshaped, are considered. For both tests the asymptotic distribution of the
test statistic under the null hypothesis is a version of the Chi-bar-square
distribution. Analogous tests on a collection of Poisson means are also found
to have asymptotic Chi-bar-square distributions.

1. Introduction and summary. Shaked (1979) derived the maximum likelihood
estimate of a vector of Poisson (normal) means subject to the restriction that this vector

is “starshaped.” A vector a = (a1, a2, - - -, ax) is said to be lower starshaped provided
alzalzmz 2a1+a2-;-~~ R,

with an analogous restriction defining an upper starshaped vector. Starshaped vectors
arise naturally in reliability theory as well as in certain situations where finite populations
are amalgamated. We refer the interested reader to Shaked (1979) and Dykstra and
Robertson (1981) for further discussion on starshaped parameters.

In Section 2 we consider a multinomial sampling situation with probabilities p:, ps,
-+ +, Pr- The maximum likelihood estimate of the vector p = (pi, p, - - -, pz), subject to
the restriction that it be lower starshaped, is derived. This derivation is quite direct and
elegant in light of the complexity involved in finding the maximum likelihood estimate of
P subject to other order restrictions (cf. Barlow, Bartholomew, Bremner and Brunk, 1972).

In addition, asymptotic distribution theory for the likelihood ratio test of the homoge-
neity of pi, pz, - - -, pr against the alternative that p is starshaped and for testing that p is
starshaped as a null hypothesis is also presented in Section 2. In both situations, the tail
probabilities under the null hypothesis of this asymptotic distribution turn out to be of the
form

w0 =3 (57 e,

where x% denotes a standard Chi square random variable with ¢ degrees of freedom. A
somewhat similar distribution is encountered in the problem of testing homogeneity when
the alternative is restricted by p\ = p; = - - - = ps, (cf. Chacko, 1966) and for testing p1 = p»
= ... = p; as a null hypothesis (cf. Robertson, 1978, and related results in Robertson and
Wegman, 1978). Such weighted Chi square distributions are encountered in many order
restricted inference problems (cf. Barlow et al., 1972). They were first encountered by
Bartholomew (1959) and are usually called Chi-bar-square distributions.
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The lowered starshaped ordering, H;, might be termed “decreasing on the average”.
This is somewhat similar to the restriction

Hy:i' S 0,= (k=)' Sk 6, i=1,2 .-, k—1.

An equivalent way of stating Hyis i Y-, 6, = k' Y%,6,;i=1,2, .-., k — 1. We note
that the order restrictions specified in H; are less restrictive than those imposed by H;
which in turn are less restrictive than §, = 6,.,,i =1, - - ., £ — 1. In the multinomial setting,
maximum likelihood estimates of p subject to H> and distribution theory for testing the
homogeneity, Hy, of p vs. H, — H, and for testing H; as a null hypothesis can be found in
Robertson and Wright (1982). Again, the asymptotic distribution is a Chi-bar-square.

In Section 3 we assume independent samples from each of & Poisson populations. The
analysis in Section 2 together with the well known fact that the joint distribution of
independent Poisson random variables, conditioned on the value of their sum, is multinom-
ial, is used to derive maximum likelihood estimates under the starshaped restriction on the
parameter values. Asymptotic distribution theory for likelihood ratio statistics used for
testing homogeneity versus starshaped and for testing starshaped as a null hypothesis is
also presented.

2. Multinomial problem. Suppose we have n independent trials of an experiment,
the outcome of which must be one of 2 mutually exclusive events with corresponding
probabilities, pi, ps, -+, pr (Y %1 p, = 1). We are concerned with two hypotheses, Hy : p;
=pPe= e =pp = l/kand

P+ p2 Pr+p2+ee +ppg 1
(21) Hl.plsz---E r_1 ZZ
It is convenient to define a one to one transformation of the parameter space by introducing
new parameters 6y, 6, .- -, 6, defined by

(22) (21—1 pj)/(Ethi pj l = 17 2’ Tty k - 17

thuspr =[5 0, 0. = (1= 6-1) []/51 60,i=2,83,--+, bk — 1 and pr = (1 — 6s—,). In terms
of the 6,’s, our hypotheses are Hy: ;= i/(i + 1),i=1, ...,k —land Hi:0,=i/(i + 1), i
=1, ---, k — 1. Consider first estimation of #. The likelihood function can be written

(2.3) L(0) = [[!=! 6,25 o _gyi, 0=6=1,

where p, is the relative frequency of the event having probability p,:i =1, 2, -.-, & It is
easy to find the maximum of the function 8“(1 — 6)® subject to 8 = ¢(0 < § < 1). This
maximum is attained at § = {a/(a + b)} \/ ¢, where \/ denotes the larger of the two
numbers. It follows that the maximum likelihood estimates which satisfy H, are given by

(2.4) 6,=0,\ G/i+1), i=1,2 .-, k—1,

where §, = (¥;=18,)/(X;51 B)). Evaluation.of p at @ =  gives the MLE of p under the
restriction specified in (2.1).

Turning to the testing problem, we let Ao denote the likelihood ratio test statistic for
testing H, against H, — H, and let To; = —2 In Ay;. Then
(25) To=2¥E {(nY;=15)[In 6, — In(i/i + 1)] + npi[In(1 — 6,) — In(1/i + 1)]}.

Expanding In 8, and In{i/(i + 1)} about §,, and In(1 — 8,) and In{1/(i + 1)} about 1 — 6, via
Taylor’s Theorem with a second degree remainder term, we obtain

Ty = 2 Y} _n2;=113/(0— _é)2+n2}=1ﬁj b — i\
01 =1 2(1,2 14 1 2,8,2 12 l+1

L\ 2
np;+1 _ 2, npl+l L
- G, —6,) + o (a i+1) ]

(2.6)
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where «a, is between 6, and 9,; B, is between #, and i/(i + 1); v; is between (1 — 8,) and
(1 -6, and Y. is. between (1 — 6,) and 1/( + 1). The law of large numbers implies that,
under Hy, 6, converges to i/i + 1.

To study the asymptotic power of the likelihood ratio test, we consider a sequence of
alternatives p, satisfying H; which converges to p where p; > 0 for all i. We let p,, denote
arandom vector corresponding to p,, i.e., np, is multinomial (n, p,.); and 6,, b, correspond
to P, Pn via (2.2). Somewhat surprisingly, it can be shown, by conditioning on Y21 p,;,
that E (8,,:) = 0n,:.

A straightforward application of the CLT to \/;(f)n — Ppr) and then use of the delta
method (Kepner, 1979) applied to vn (0, — 6,) = Vn{g(P.) — g(p»)} shows that

(2.7) Vn(@, — 6,) - MVN(0, ¥),

where ¥ has elements
¥ = 6:(1—6)/Y5p, i=],
y = N .
0, 1#].
Therefore, fortunately, we have asymptotic independence among thevn é,,,,’s.

If we recall that 8,,, = f.. v/ 1/(i + 1), we can express the likelihood ratio test statistic
as

(28) Tgf) = f:ll Wn,i = 5:11 (Xn,i + sn,1)2an,1 - (Xn,i + an,z)an,zI[Xn‘lﬁSn,,SO]y
where, with ¢; = (i + 1)%/ik,
(29) Xn,z = \/;(én,i - n,z)czl/Qy sn,i = \/;<0n,z - l _:: 1)011/2

i ﬁn, j ﬁn,z-f»l — . Isn, ] Isn,i+1 —
Qni = [ZFI ,8,2,: + o ]c, 1 and b,;= [Zj=1a_?‘: + " ]c,l.
To obtain the limiting distribution of T'§’, we shall apply (2.7) under the assumption &,
— §; < =, in which case a,;—, 1and b,, >, 1 asn — .
In this situation, X, — » Z;, where Z; is a N(0, 1) random variable. Using Theorems 4.9
and 5.1 of Billingsley (1968), we have

Wi = (Zi + 8,)° = (Z, + 8:)* Liz+8,=0) = [(Z, + 8:) \/ OF.

In the event that §,, — o, it can be shown that a,, is bounded away from zero
asymptotically while X, ; converges in distribution, so that W,, —, . We have thus
established the following theorem.

THEOREM 2.2. If p, satisfies H; and converges to p such that p; > 0 for all i, and if
8n,1, as defined in (2.9) tends to 8, (possibly &) fori=1, -+ ., k — 1, then TP is distributed
asymptotically as
(2.10) U=k [(Z+8) v 0P,

where Z,, - - -, Zy_, are independent N(0, 1) random variables.
Of course the distribution of the random quantity in (2.10) is intractable, except under
the null hypothesis Ho(8; = 0,7 =1, ---, £ — 1). To elaborate, suppose I is a subset of {1,

2, ...,k —1} and let E;be the event E; =[Z;=0,i € I; Z,< 0, i € I']. Then, for any real
number v,

PUzu,E)=PQwerZizu,2,=0,i€1,Z;,<0,i & I)
=PNerZizu,2,=0,i€1)-P(Z:;<0,i & I)
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=PQNerZizu|Z,=0,i€I). (%)
= P(xnzu)- (%),

where m is the number of elements in I. The last step follows from Lemma B on page 128
of Barlow, Bartholomew, Bremner and Brunk (1972). Partitioning the event { U = u} by
intersecting it with all such events, E;, we obtain the following result.

THEOREM 2.3. If H, is true then

1

r-1
lim, . P(To1 = t) = Y555 <k ; 1)(5) P(x:=t) = xia(t)

for all real t(x§ = 0).

Critical values for this distribution for 2 = 3, 4, - - -, 15 and a = .10, .05, .01 are given in
Table 1.

We note that the asymptotic distribution of —2 In A", where A is the unrestricted
likelihood ratio (or of the usual Pearson Chi-squared goodness of fit test) under the
conditions of Theorem 2.2, is the same as U’ = Y (Z; + §;)% Clearly for the same size
test, the critical point of U’ must be substantially larger than the critical point of U.
However, U and U’ become equivalent as the §, — o, and hence the restricted test must
eventually have greater power.

We now turn to the problem of testing H: as a null hypothesis when “not H,” is the
alternative. Since the unrestricted maximum likelihood estimate of §; is equal to 6;, it
follows directly, by writing the likelihood ratio in terms of 6 and @ and expanding In 8, and
In(1 — 8,) about 9, and (1 — 9,) respectively, that our test statistic can be written as

Ty=-2In A, = 3k [Z—’;—;‘ﬁ +‘i;;—l]n(é, -4y,

where a, is between § and d; (and thus converges a.s. to 6,) and »; is between 1 — f; and
1 — 6, (and thus converges a.s. to 1 — 6,).

By employing arguments similar to those used in Theorem 2.2, we are led to the
following Theorem.

TABLE 1
. _ (e-1) (1)
Critical values for xe-1(t) = Y520 ( ’ )(5 ) Plx:=1t]
a

k 10 05 01
3 2.95 4.23 7.28
4 4.01 5.44 8.77
5 4.95 6.50 10.02
6 5.84 748 11.18
7 6.67 8.41 12.26
8 748 9.29 13.31
9 8.26 10.15 14.29

10 9.02 10.99 15.29

11 9.76 11.79 16.21

12 10.49 12.59 17.12

13 11.22 13.38 18.01

14 11.93 14.15 18.91

15 12.63 14.91 19.78
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THEOREM 2.4. If p, converges to p and if 8,, (as defined in (2.9)) converges to §,
(o0 are possible values) for i =1, ---, k — 1, then T" is distributed asymptotically as

V=Y [(Z + 8) A0]*

where Z,, ---, Z,—1 are independent N(0, 1) random variables. Consequently, if we
consider the asymptotic distribution of T\" for p, = p € H, then lim,_.P(T{" = t) =
X (t), where m is the number of subscripts i such that 8, = i/(i + 1) (under these
circumstances 8, is either zero or +»). Thus,

Suppermlimuo Py (T = t) = lim,... Py (T = t) = x31(8),

where Py (T{" = t) is the probability of the event {T\” =t} computed under H.

We note that Theorems 2.2 and 2.4 imply that the likelihood ratio tests considered here
are consistent in the sense that for p lying in the region defined by the alternative
hypothesis, the power function must converge to one.

3. Poisson problem. Suppose we have a random sample of size n from each of %
Poisson populations having means A;, A2, ---, A,. Shaked (1979) found the maximum
likelihood estimate of A = (A;, Az, - - -, Ax) subject to the restriction H; requiring A to be
lower starshaped:

At Ae >}\1+}\2+-~~+)\k

A = >... >
(3.1) Hi:\ = g = = 7 = 0.

This result can be found in a straightforward fashion using the results in Section 2 together
with the fact that the conditional distribution of independent Poisson variables, given their
sum, is multinomially distributed.

We first write the likelihood function in terms of the variables ¢1, ¢2, - - -, ¢, defined by

(32) 4)1 =>\l/21k21 >\ly l: ly 2y "'yk —1 and (;bk =2];=1 >\l}
thus A, = ¢ur, i=1,2, ---, b — 1, and A, = ¢ — Y22 ¢,¢x. H, is then equivalent to

Ste

(3.3) Hii¢ = = k-1 g =k

and these restrictions do not involve ¢.. The likelihood function is proportional to
(3.4) [T ¢8%) - (1= Ti ¢0)"™ ] [e7"- 9 ¥7],

where X, is the mean of the sample from the ith population. Because H; does not restrict
¢r, the two factors in brackets may be maximized independently. Using the results from
Section 2, we obtain the restricted maximum likelihood estimates as follows:

(3.5) d=0,v {{/G+1}, i=12 -, k-1,

where ¢, = %, /Y%~1 %, and ¢ = Y%_1 %, = ¢x. (Note that ¢1, s, - - -, b are the unrestricted
maximum likelihood estimates of ¢1, ¢2, ---, ¢,.) Using the invariance property of
maximum likelihood estimation, we have the following theorem.

THEOREM 3.1. (Shaked, 1979). The maximum likelihood estimates of A1, Aa, « -+,
Ar subject to the restriction H, are given by

- X, i -
A’Z[mvm]'x:m, i=1,2 k=,
J= J

w12 (v |

(3.6)
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The likelihood ratio statistic for testing Ho:A; = A2 = --- = A, against the alternative
H, — H, can be written as

(l/k) ny X
Bl R — Y g
If we let So1 = =2 In Aoy and let Y=nY%. X, then the joint conditional distribution of
y¢1, y¢2, cen, (1 = Y4 ¢>,) given Y = y is multinomial with parameters y and ¢:, ¢,

MY 1 - f— 11 ¢t
If we let A, (satisfying H;) converge to A (A, > 0 for all i) such that

) . . 371/2
(3.8) On,i = ‘/;(Z}ﬂ Any/ 25 Ay — .—l—-)[(l + 1 ] — §; (possibly )

(3.7) Ao =

i+1 ik

and let X, ; denote the corresponding independent sample means which occur in S} =
—21n A, then using the Dominated Convergence Theorem we obtain

lim, .P(SH = t) = lim, ..E{PSH = t|Y,)} = E{lim,..P(S{ = ¢t| Y.)}
=E{P(U=zt¢t)}=PU=1),
where U is distributed as in Theorem 2.2.

THEOREM 3.2. Under the conditions in (3.8), S is asymptotically distributed as
T in Theorem 2.3. In particular, if Hy is true, then hm,._mP(S(”) =t) = xi-1(2).

In similar fashion, the problem of testing H; as a null hypothesis against “not H;” as an
alternative can be handled by conditioning on Y = n Y%, X,,, and using the multinomial
results of Section 2.

In particular, if we write the likelihood ratio as

(I oM = T gy
(I 0%y (1 = Yt gy &

and base our test upon S; = —2 In A;, we obtain the following distributional result.

(3.9)

THEOREM 3.3. Suppose A, is a vector of parameters converging to X such that 8,
(defined in (3.8)) tends to 8; (possibly = ). Then S{ has the same asymptotic distribution
as that given for T{” in Theorem 2.4. Thus, the asymptotic distribution of S\ for X, =
A € H, is given by lim, ...Py(S{” = t) = x%(t) where m is the number of subscripts i such
that Y51 A,/ 550N, = i/ (i + 1). It follows that

(3.10) supaes, imy.o PA(S{” = t) = Py (S1 = t) = xi-1(0).

Note that Theorem 3.3 enables us to construct likelihood ratio tests of a particular size
asymptotically when testing H; versus all other alternatives. Of course (3.8) and (3.10)
assure us that our tests are asymptotically consistent in the sense that if A is in the region
of the alternate hypothesis, the probability of rejecting the null hypothesis converges to
one as n — oo,

It should be noted that even though Shaked (1979) allows the more general starshaped
ordering,

MzYiwN/YiwzYiwN/Yiwz 2 T w/Siwiz 0,
his restriction that the sample size from the ith population be proportional to w; effectively

reduces the problem to the one considered earlier.
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